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Université de Provence Indiana University
39, rue Frédéric Joliot-Curie Bloomington
13453 Marseille cedex 13 IN 47405
France USA
E-mail: phaissin@cmi.univ-mrs.fr E-mail: pilgrim@indiana.edu



ii

Abstract

Building on the dictionary between Kleinian groups and rational maps, we
establish new connections between the theories of hyperbolic groups and
certain iterated maps, regarded as dynamical systems. In order to make the
exposition self-contained to researchers in many fields, we include detailed
proofs and ample background.
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This work is dedicated to Adrien Douady.

“Que s’est-il passé dans ta tête ?
Tu as pris la poudre d’escampette
Sans explication est-ce bête
Sans raison tu m’as planté là
Ah ah ah ah !”

(Boby Lapointe, La question ne se pose pas)
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Chapter 1

Introduction

The classical conformal dynamical systems include iterated rational maps and
Kleinian groups acting on the Riemann sphere. The development of these two
theories was propelled forward in the early 1980’s by Sullivan’s introduction
of quasiconformal methods and of a “dictionary” between the two subjects
[Sul4]. Via complex analysis, many basic dynamical objects can be similarly
defined and results similarly proven. There is a general deformation theory,
which specializes to both subjects and which yields deep finiteness results
[MS]. Since then, the dictionary has grown to encompass a guiding heuristic
whereby constructions, methods, and results in one subject suggest similar
ones in the other. For example, in both subjects there are common themes
in the combinatorial classification theories [McM1], [Pil], the fine geometric
structure of the associated fractal objects [McM3], [McM5], [SU1], [SU2], and
the analysis of certain geometrically infinite systems [McM2]. A Kleinian
group uniformizes a hyperbolic three-manifold, and there is now a candidate
three-dimensional object associated to a rational map [LM], [KL]. Of course,
essential and important differences between the two theories remain.

Other examples of conformal dynamical systems include iteration of smooth
maps of the interval to itself and discrete groups of Möbius transformations
acting properly discontinuously on higher-dimensional spheres. However, a
theorem of Liouville [Ric] asserts that any conformal map in dimensions ≥ 3
is the restriction of a Möbius transformation. Thus, there is no nonlinear
classical theory of iterated conformal maps in higher dimensions.

Two different generalizations of conformal dynamical systems have been
studied. One of these retains the Euclidean metric structure of the underlying
space and keeps some regularity of the iterates or group elements, but replaces
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2 CHAPTER 1. INTRODUCTION

their conformality with uniform quasiregularity. Roughly, this means that
they are differentiable almost everywhere, and they distort the roundness of
balls in the tangent space by a uniformly bounded amount. In dimension
two, Sullivan showed that the Measurable Riemann Mapping Theorem and
an averaging process imply that each such example is obtained from a ra-
tional map or a Kleinian group by a quasiconformal deformation [Sul1]. In
higher dimensions, Tukia gave an example to show that this fails [Tuk1]. The
systematic study of uniformly quasiconformal groups of homeomorphisms on
Rn was begun by Gehring and Martin [GM]. They singled out a special class
of such groups, the convergence groups, which are characterized by topolog-
ical properties. The subsequent theory of such quasiconformal groups turns
out to be quite rich. The study of iteration of uniformly quasiregular maps
on manifolds is somewhat more recent; see e.g. [IM]. At present, examples
of chaotic sets of such maps are either spheres or Cantor sets, and it is not
yet clear how rich this subject will be in comparison with that of classical
rational maps.

A second route to generalizing classical conformal dynamical systems is
to replace the underlying Euclidean space with some other metric space, and
to replace the condition of conformality with respect to a Riemannian metric
with one which makes sense for metrics given as distance functions. Techni-
cally, there are many distinct such reformulations–some local, some global,
some infinitesimal (quasimöbius, quasisymmetric, quasiconformal). An im-
portant source of examples with ties to many other areas of mathematics is
the following. A convex compact Kleinian group acting on its limit set in
the Riemann sphere generalizes to a negatively curved group (in the sense
of Gromov) acting on its boundary at infinity. This boundary carries a nat-
ural topology and a natural quasisymmetry class of metrics [GdlH], [BS].
With respect to such a metric, the elements of the group act by uniformly
quasimöbius maps. Negatively curved groups acting on their boundaries thus
provide a wealth of examples of generalized “conformal” dynamical systems.

Tukia [Tuk3] generalized Gehring and Martin’s notion of a convergence
group from spheres to compact Hausdorff spaces, and Bowditch [Bow1] then
characterized negatively curved groups acting on their boundaries by purely
topological conditions:

Theorem 1.0.1 (Characterization of boundary actions) Let Γ be a group
acting on a perfect metrizable compactum M by homeomorphisms. If the ac-
tion on the space of triples is properly discontinuous and cocompact, then Γ
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is hyperbolic, and there is a Γ-equivariant homeomorphism of M onto ∂Γ.

Following Bowditch [Bow2] and abusing terminology, we refer to such ac-
tions as uniform convergence groups. In addition to providing a topological
characterization, the above theorem may be viewed as a uniformization-type
result. Since the metric on the boundary is well-defined up to quasisymme-
try, it follows that associated to any uniform convergence group action of Γ
on M , there is a preferred class of metrics on M in which the dynamics is
conformal in a suitable sense: the action is uniformly quasimöbius.

Sullivan referred to convex cocompact Kleinian groups and their map
analogs, hyperbolic rational maps, as expanding conformal dynamical sys-
tems. Their characteristic feature is the following principle which we may
refer to as the conformal elevator:

Arbitrarily small balls can be blown up via the dynamics to nearly
round sets of definite size with uniformly bounded distortion, and
vice-versa.

This property is also enjoyed by negatively curved groups acting on their
boundaries, and is the basis for many rigidity arguments in dynamics and
geometry. Recalling the dictionary, we have then the following table:

Group actions Iterated maps
Kleinian group rational map
convex cocompact Kleinian group hyperbolic rational map
uniform convergence group ?

The principal goal of this work is to fill in the missing entry in the above
table. To do this, we introduce topological and metric coarse expanding
conformal (cxc) dynamical systems. We emphasize that topologically cxc
systems may be locally non-injective, i.e. branched, on their chaotic sets.
Metric cxc systems are topologically cxc by definition. Hyperbolic rational
maps on their Julia sets and uniformly quasiregular maps on manifolds with
good expanding properties are metric cxc. Thus, our notion includes both
the classical and generalized Riemannian examples of expanding conformal
dynamical systems mentioned above. As an analog of Bowditch’s charac-
terization, viewed as a uniformization result, we have the following result:
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Theorem 1.0.2 (Characterization of metric cxc actions) Suppose f :
X → X is a continuous map of a compact metrizable space to itself. If f is
topologically cxc, then there exists a metric d on X, unique up to quasisym-
metry, such that with respect to this metric, f is essentially metric cxc.

(See Corollary 3.5.3). In many cases (e.g. when X is locally connected) we
may drop the qualifier “essentially” from the conclusion of the above theo-
rem. In general, we cannot. It is unclear to us whether this is a shortcoming
of our methods, or reflects some key difference between group actions and
iterated maps; see §3.5. The naturality of the metric d implies that qua-
sisymmetry invariants of (X, d) then become topological invariants of the
dynamical system. Hence, tools from the theory of analysis on metric spaces
may be employed. In particular, the conformal dimension (see §3.5) becomes
a numerical topological invariant, distinct from the entropy. The existence
of the metric d may be viewed as a generalization of the well-known fact
that given a positively expansive map of a compact set to itself, there ex-
ists a canonical Hölder class of metrics in which the dynamics is uniformly
expanding.

Our class of metric cxc systems f : (X, d) → (X, d) includes a large
number of previously studied types of dynamical systems. A rational map is
cxc on its Julia set with respect to the standard spherical metric if and only
if it is a so-called semihyperbolic map (Theorem 4.2.3). A metric cxc map on
the standard two-sphere is quasisymmetrically conjugate to a semihyperbolic
rational map with Julia set the sphere 4.2.7. Using elementary Lie theory,
we construct by hand the metric d in the case when X is a smooth manifold
and f is a smooth expanding map, and show that in this metric f becomes
locally a homothety (§4.5). Theorems 4.4.4 and 4.4.3 imply that uniformly
quasiregular maps on Riemannian manifolds of dimension greater or equal
to 3 which are metric cxc are precisely the generalized Lattès examples of
Mayer [May].

Just as negatively curved groups provide a wealth of examples of non-
classical “conformal” group actions, so our class of metric cxc maps provides
a wealth of examples of non-classical “conformal” iterated maps as dynamical
systems. The case of the two-sphere is of particular interest. Postcritically
finite branched coverings of the two-sphere to itself arising from rational
maps were characterized combinatorially by Thurston [DH]. Among such
branched coverings, those which are expanding with respect to a suitable
orbifold metric give examples of topologically cxc systems on the two-sphere.
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Hence by our results, they are uniformized by a metric such that the dy-
namics becomes conformal. This metric, which is a distance function on the
sphere, need not be quasisymmetrically equivalent to the standard one. A
special class of such examples are produced from the finite subdivision rules
on the sphere considered by Cannon, Floyd and Parry [CFP2], [CFKP]; cf.
[Mey]. These provide another source of examples of dynamics on the sphere
which are conformal with respect to non-standard metrics. Conjecturally,
given a negatively curved group with two-sphere boundary, the visual met-
ric is always quasisymmetrically equivalent to the standard one, hence (by
Sullivan’s averaging argument and the Measurable Riemann mapping theo-
rem) the action is isomorphic to that of a cocompact Kleinian group acting
on the two-sphere. This is Bonk and Kleiner’s reformulation of Cannon’s
Conjecture [BK1].

In Theorem 4.2.11 below, we characterize in several ways when a topolog-
ically cxc map on the two-sphere, in its natural metric, is quasisymmetrically
conjugate to a rational map. This result was our original motivation. The
natural metrics associated to a topologically cxc map f : S2 → S2 are always
linearly locally connected (Cor. 2.6.9). If f is not quasisymmetrically con-
jugate to a rational map, e.g. if f is postcritically finite and has a Thurston
obstruction, then Bonk and Kleiner’s characterization of the quasisymmetry
class of the standard two-sphere [BK1] allows us to conclude indirectly that
these natural metrics are never Ahlfors 2-regular. Recent results of Bonk and
Meyer [BM], [Bon] suggest that in general, Thurston obstructions manifest
themselves directly as metric obstructions to Ahlfors 2-regularity in a spe-
cific and natural way. Differences with the group theory emerge: we give an
example of a metric cxc map on a Q-regular two-sphere of Ahlfors regular
conformal dimension Q which is nonetheless not Q-Loewner. In contrast,
for hyperbolic groups, Bonk and Kleiner ([BK3], Theorem 1.3) have shown
that if the Ahlfors regular conformal dimension is attained, then the metric
is Loewner.

As mentioned above, the dictionary is rather loose in places. From the
point of view of combinatorics and finiteness principles, a postcritically fi-
nite subhyperbolic rational map f is a reasonable analog of a cocompact
Kleinian group G. By Mostow rigidity, G is determined up to Möbius conju-
gacy by the homotopy type of the associated quotient three-manifold. This
is turn is determined by the isomorphism type of G. Since G as a group is
finitely presented, a finite amount of combinatorial data determines the ge-
ometry of Kleinian group G. For the analogous rational maps, Thurston [DH]
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showed that they are determined up to Möbius conjugacy by their homotopy
type, suitably defined. Recently, Nekrashevych [Nek] introduced tools from
the theory of automaton groups that show that these homotopy types are
again determined by a finite amount of group-theoretical data. In a forth-
coming work [HP], we introduce a special class of metric cxc systems that
enjoy similar finiteness principles. From the point of view of analytic prop-
erties, however, our results suggest that another candidate for the analog of
a convex cocompact Kleinian group is a so-called semi-hyperbolic rational
map, which is somewhat more general (§4.2) and which allows non-recurrent
branch points with infinite orbits in the chaotic set.

Our construction of a natural metric associated to a topologically cxc
system f proceeds via identifying the chaotic set X of the system as the
boundary at infinity of a locally finite, negatively curved graph Γ with a pre-
ferred basepoint. By metrizing Γ suitably and using the Floyd completion to
obtain the metric on the boundary, the dynamics becomes quite regular. The
map f behaves somewhat like a homothety: there exists a constant λ > 1
such that if f is injective on a ball B, then on the smaller ball 1

4
B it multi-

plies distances by λ. In particular, f is Lipschitz, and (Theorem 3.2.1 and
3.5.7) X becomes a BPI-space in the sense of David and Semmes [DaSe]. By
imitating the Patterson-Sullivan construction of conformal measures [Pat] as
generalized by Coornaert [Coo], we construct a natural measure µf on the
boundary with a perhaps remarkable coincidence of properties. The measure
µf is quasiconformal with constant Jacobian, is the unique measure of max-
imal entropy log deg(f), describes the distribution both of backwards orbits
and of periodic points, and satisfies Manning’s formula relating Hausdorff
dimension, entropy, and Lyapunov exponents (§§3.4 and 3.5). Thus, all vari-
ation in the distortion of f is ironed out to produce a metric in which the map
is in some sense a piecewise homothety, much like a piecewise linear map of
the interval to itself with constant absolute value of slope. In this regard, our
results may be viewed as an analog of the Milnor-Thurston theorem asserting
that a unimodal map with positive topological entropy is semiconjugate to a
tent map whose slope is the exponential of the entropy [MT]. Our estimates
generalize those of Misiurewicz-Przytycki [MP] and Gromov [Gro2].

By way of contrast, Zdunik [Zdu] shows that among rational maps, only
the usual family of exceptions (critically finite maps with parabolic orbifold)
has the property that the measure of maximal entropy is equivalent to the
Hausdorff measure in the dimension of the Julia set. Our construction, how-
ever, yields a metric with this coincidence for any rational map which is
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suitably expanding.
It turns out (Theorem 4.2.3) that f is semihyperbolic if and only if Γ is

quasi-isometric to the convex hull of the Julia set of f in hyperbolic three-
space. Lyubich and Minsky [LM] give a similar three-dimensional character-
ization of this family of maps using hyperbolic three-manifold laminations.
Analogously, convex cocompact Kleinian groups are characterised by the
property that their Cayley graphs are quasi-isometric to the convex hull of
their limit sets in H3.

In summary, we suggest the following enlargement of the above dictionary:

Group actions Iterated maps

Kleinian group rational map

convex cocompact Kleinian group (semi) hyperbolic rational map

uniform convergence group topologically cxc map

uniform quasimöbius convergence group metric cxc map

Cayley graph Γ graph Γ

visual metric visual metric

quasiconformal measure µ canonical measure µf

Cannon Conjecture
on groups with sphere boundary

Thurston’s Theorem
characterizing rational maps

Cannon’s, Bonk-Kleiner’s
Characterization Theorems
of cocompact Kleinian groups

Characterization Theorem
for cxc maps
on the standard S2

Our basic method is the following. Since we are dealing with nonin-
vertible mappings whose chaotic sets are possibly disconnected, we imagine
the repellor X embedded in a larger, nice space X0 and we suppose that
f : X1 → X0 where X1 ⊂ X0. We require some regularity on f : it should be
a finite branched covering. Our analysis proceeds as follows:
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We suppose that the repellor X is covered by a finite collection U0

of open, connected subsets. We pull back this covering by iterates
of f to obtain a sequence U0,U1,U2, . . . of coverings of X. We
then examine the combinatorics and geometry of this sequence.

The collection of coverings {Un} may be viewed as a discretization of Pansu’s
quasiconformal structures [Pan1]. This motivates our use of the adjective
“coarse” to describe our metric dynamical systems.

Contents. In Chapter 2, we begin with the topological foundations needed
to define topologically cxc mappings. We give the definitions of topologically
and metric cxc mappings, prove metric and dynamical regularity properties
of the repellor, and prove that topological conjugacies between metric cxc
systems are quasisymmetric.

In Chapter 3, we construct the graph Γ associated to topologically cxc
maps (and to more general maps as well) and discuss its geometry and the
relation of its boundary with the repellor. We construct the natural measure
and study its relation to equidistribution, entropy, and Hausdorff dimension.
The chapter closes with those properties enjoyed specifically by metric cxc
mappings.

Chapter 4 is devoted to a discussion of examples, and contains a proof of
the topological characterization of semihyperbolic rational maps among cxc
mappings on the two-sphere (Theorem 4.2.11).

Acknowledgements. We are grateful for the many opportunities given to
present our results while this manuscript was in preparation. We benefited
from many helpful discussions and encouragment. In particular we thank M.
Bonk, J.-Y. Briend, G. Havard, M. Lyubich, V. Mayer and M. Misiurewicz.

The first author thanks Indiana University for its hospitality. The sec-
ond author was supported by U.S. National Science Foundation, Division of
Mathematical Sciences grant #0400852; he thanks the Université de Provence
and the LATP for its hospitality where part of the research took place. Both
authors are also grateful to the IHP which hosted them during the trimester
on Dynamical systems Sept.-Nov. 2003.



Chapter 2

Coarse expanding conformal
dynamics

The following setup is quite common in the dynamics of noninvertible maps.
One is given a nice, many-to-one map

f : X1 → X0

where X0 and X1 are nice spaces and X1 ⊂ X0. One studies the typically
complicated set X of nonescaping points, i.e. points x ∈ X1 for which fn(x) ∈
X1 for all n ≥ 0. We are particularly interested in maps for which the
restriction of f to X need not be locally injective. For those readers unused
to noninvertible dynamics, we suggest assuming that X0 = X1 = X upon a
first reading.

A basic method for analyzing such systems is to consider the behavior of
small open connected sets of X0 under backward, instead of forward, itera-
tion. For this reason, it is important to have some control on restrictions of
iterates of the form fk : Ũ → U , where U is a small open connected subset
of X0, and Ũ is a connected component of f−k(U). Hence it is reasonable
to assume that X0,X1 are at least locally connected. The nonescaping set
X itself, however, may be disconnected and non-locally connected. To rule
out topological pathology in taking preimages, we impose some tameness
restrictions on f by assuming that f : X1 → X0 is a so-called branched cov-
ering between suitable topological spaces. When X0 is a metric space it is
tempting to ask for control over inverses images of metric balls instead of
connected open sets. However, this can be awkward since balls in X0 might
not be connected.

9



10 CHAPTER 2. COARSE EXPANDING CONFORMAL DYNAMICS

We focus on those topological dynamical systems with good expanding
properties. However, a map f : X → X which is not locally injective is
never positively expansive, and neither is the induced map on the natural
extension. Thus, notions of expansiveness in this category need to be defined
with some care.

2.1 Finite branched coverings

There are have been many different definitions of ramified coverings and
branched coverings, most of which coincide in the context of manifolds (cf.
e.g. [Fox, Edm, DiSi]. We define here the notion of finite branched coverings
which suits our purpose: it generalises the topological properties of rational
maps of the Riemann sphere, and behaves well for their dynamical study
(e.g. pull-backs of Radon measures are well-defined).

Suppose X, Y are locally compact Hausdorff spaces, and let f : X → Y
be a finite-to-one continuous map. The degree of f is

deg(f) = sup{#f−1(y) : y ∈ Y }.

For x ∈ X, the local degree of f at x is

deg(f ; x) = inf
U

sup{#f−1({z}) ∩ U : z ∈ f(U)}

where U ranges over all neighborhoods of x.

Definition 2.1.1 (finite branched covering) The map f is a finite branched
covering (abbrev. fbc) provided deg(f) <∞ and

(i) ∑

x∈f−1(y)

deg(f ; x) = deg f

holds for each y ∈ Y ;

(ii) for every x0 ∈ X and any neighborhoodW of x0 in X, there is a smaller
neighborhood U ⊂W of x0 in X such that

∑

x∈U,f(x)=y

deg(f ; x) = deg(f ; x0)

for all y ∈ f(U).
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The composition of fbc’s is an fbc, and the degrees of fbc’s multiply under
compositions. In particular, local degrees of fbc’s multiply under composi-
tions.

Given an fbc f : X → Y , a point y ∈ Y is a principal value if #f−1(y) =
deg(f). Condition (ii) implies that if xn → x0, then deg(f ; xn) ≤ deg(f ; x0).
It follows that the branch set Bf = {x ∈ X : deg(f ; x) > 1} is closed. The
set of branch values is defined as Vf = f(Bf). Thus Y − Vf is the set of
principal values.

Lemma 2.1.2 Let X, Y be Hausdorff locally compact topological spaces. An
fbc f : X → Y of degree d is open, onto and proper: the inverse image of a
compact subset is compact and the image of an open set is open. Furthermore,
Bf and Vf are nowhere dense.

Since the spaces involved are not assumed to be metrizable, we are led to
use filters instead of sequences in the proof [Bou].

Proof: The map is onto by definition.
Since points have finitely many preimages under f and X is Hausdorff

and locally compact, for any x ∈ X, there is some relatively compact neigh-
borhood N(x) of x such that N(x) ∩ f−1{f(x)} = {x}. If x /∈ Bf , then we

may assume that N(x) ∩Bf = ∅.
Claim. For any x ∈ X, a relatively compact neighborhood V (x) ⊂ Y of f(x)
exist such that, if F denotes the set of neighborhoods of f(x) contained in
V (x), then f−1(F) ∩ N(x) is a filterbase converging to x. Furthermore, for
any V ∈ F , the restriction f : f−1(V (x)) ∩N(x)→ V is proper.

Proof of claim. Let y ∈ Y and let us consider the neighborhoods
(N(x))x∈f−1({y}) defined above. Fix x ∈ f−1({y}) and let F1 be the set
of neighborhoods of y. Since x is accumulated by f−1(F1) ∩ N(x), it fol-
lows that if f−1(F1) ∩ N(x) is not convergent to x, then there is another
accumulation point x′ of f−1(F1) ∩ N(x) in N(x) since N(x) is relatively
compact. By continuity of f , this implies that f(x′) = y, so that x′ = x since
f−1({y}) ∩N(x) = {x}.

This implies that f−1(F1) ∩N(x) is a filterbase converging to x. There-
fore there is some relatively compact neighborhood V (x) of y such that
f−1(V (x)) ∩ N(x) ⊂ N ′(x) where N ′(x) ⊂ N(x) is a compact neighbor-
hood of x. It follows that f−1(F) ∩N(x) is also a filterbase converging to x
where F denotes the set of neighborhoods of y contained in V (x).
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Let K ⊂ V (x) be compact and set L = f−1(K)∩N(x). Then L ⊂ N ′(x)
so that L = f−1(K) ∩N ′(x) is compact.

This ends the proof of the claim.

Let Ω ⊂ X be an open set, and let us consider x ∈ Ω and y = f(x). We
choose a neighborhood N ′(x) ⊂ N(x)∩Ω as above. It follows from the claim
that a neighborhood V ′(y) ⊂ V (y) exists such that f−1(V ′(y)) ∩ N(x) ⊂
N ′(x). So, for any y′ ∈ V ′(y), by (ii)

∑

x′∈f−1({y′})∩N(x)

deg(f ; x′) = deg(f ; x) ≥ 1.

Hence, y′ = f(x′) for some x′ ∈ N(x) ∩ Ω. Thus V ′(y) ⊂ f(Ω). This
establishes that f is open.

Let us fix y ∈ Y and let us consider y′ ∈ V (y). Then

d =
∑

f(x)=y

deg(f ; x) =
∑

f(x)=y


 ∑

x′∈f−1({y′})∩N(x)

deg(f ; x′)




=
∑

x′∈f−1({y′})∩(∪f(x)=yN(x))

deg(f ; x′) .

This implies that f−1({y′}) ⊂ ∪f(x)=yN(x). Using the relative compactness
and the continuity of f , it follows that the filterbase f−1(F) is equivalent to
the set of neighborhoods of f−1({y}), where F is any filterbase converging
to y.

Let K ⊂ Y be a compact set and set L = f−1(K). Let F be a filterbase in
L. Since f(L) is compact, there is some accumulation point y in K of f(F).
We claim that at least one preimage of y is accumulated by F . If it was not
the case, then, for any x ∈ f−1({y}), there would be some Fx ∈ F with x /∈
Fx. Since the fibers are finite, ∩f(x)=yFx ∈ F and f−1({y})∩(∩f(x)=yFx) = ∅.

Therefore, there is some neighborhood V ′(y) ⊂ V (y) such that f−1(V ′(y))∩
(∩f(x)=yFx) = ∅. Hence V ′(y) ∩ f(∩f(x)=yFx) = ∅, which contradicts that y
was an accumulation point. Therefore f is proper.

The set Vf cannot have interior since f has bounded multiplicity. Indeed,
if Vf had interior, we could construct a decreasing sequence of open sets
W (yn) ⊂ V (yn)∩V (yn−1) ⊂ Vf , so we would have p(yn+1) ≥ p(yn)+1 ≥ n+1,
where p : Y → N\{0} denotes the map that counts the number of preimages
of points in Y .
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Therefore, Bf cannot have interior either since f is an open mapping.

Many arguments are done using pull-backs of sets and restricting to con-
nected components. It is therefore necessary to work with fbc’s defined on
sets X and Y enjoying more properties. When X and Y , in addition to being
locally compact and Hausdorff, are assumed locally connected, the following
fundamental facts are known (cf. [Edm]).

• If V ⊂ Y is open and connected, and U ⊂ X is a connected component
of f−1(V ), then f |U : U → V is an fbc as well.

• If y ∈ Y , and f−1(y) = {x1, x2, . . . , xk}, then there exist arbitrarily
small connected open neighborhoods V of y such that

f−1(V ) = U1 ⊔ U2 ⊔ . . . ⊔ Uk

is a disjoint union of connected open neighborhoods Ui of xi such that
f |Ui : Ui → V is an fbc of degree deg(f ; xi), i = 1, 2, . . . , k.

• if f(x) = y, {Vn} is sequence of nested open connected sets with ∩nVn =

{y}, and if Ṽn is the component of f−n(Vn) containing x, then ∩nṼn =
{x}.

2.2 Topological cxc systems

In this section, we state the topological axioms underlying the definition of
a cxc system.

Let X0,X1 be Hausdorff locally compact, locally connected topological
spaces, each with finitely many connected components. We further assume
that X1 is an open subset of X0 and that X1 is compact in X0. Note that
this latter condition implies that if X0 = X1, then X0 is compact.

Let f : X1 → X0 be a finite branched covering map of degree d ≥ 2, and
for n ≥ 0 put

Xn+1 = f−1(Xn).

Then f : Xn+1 → Xn is again an fbc of degree d and since f is proper, Xn+1

is compact in Xn, hence in X0.
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The nonescaping set, or repellor, of f : X1 → X0 is

X = {x ∈ X1|fn(x) ∈ X1 ∀n > 0} =
⋂

n

Xn.

We make the technical assumption that the restriction f |X : X → X is
also an fbc of degree equal to d. This implies that #X ≥ 2. Also, X is
totally invariant: f−1(X) = X = f(X). The definition of the nonescaping
set and the compactness of X1 implies that given any open set Y containing
X, Xn ⊂ Y for all n sufficiently large.

The following is the essential ingredient in this work. Let U0 be a finite
cover of X by open, connected subsets of X1 whose intersection with X
is nonempty. A preimage of a connected set A is defined as a connected
component of f−1(A). Inductively, set Un+1 to be the open cover whose

elements Ũ are preimages of elements of Un. We denote by U = ∪n≥0Un the
collection of all such open sets thus obtained.

We say f : (X1, X)→ (X0, X) is topologically coarse expanding conformal
with repellor X provided there exists a finite covering U0 as above, such that
the following axioms hold.

1. [Expansion] The mesh of the coverings Un tends to zero as n → ∞.
That is, for any finite open cover Y of X by open sets of X0, there
exists N such that for all n ≥ N and all U ∈ Un, there exists Y ∈ Y
with U ⊂ Y .

2. [Irreducibility] The map f : X1 → X0 is locally eventually onto near
X: for any x ∈ X and any neighborhood W of x in X0, there is some
n with fn(W ) ⊃ X

3. [Degree] The set of degrees of maps of the form fk|Ũ : Ũ → U , where

U ∈ Un, Ũ ∈ Un+k, and n and k are arbitrary, has a finite maximum,
denoted p.

Axiom [Expansion] is equivalent to saying that, when X0 is a metric
space, the diameters of the elements of Un tend to zero as n → ∞. Axiom
[Irreducibility] implies that f : X → X is topologically exact; we give a
useful, alternative characterization below.

These axioms are reminiscent of the following properties of a group G
acting on a compact Hausdorff space X; see [Bow2]. [Irreducibility] is anal-
ogous to G acting minimally on X. [Expansion] is analogous to G acting
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properly discontinuously on triples, i.e. that G is a convergence group. Ax-
iom [Degree] is analogous to G acting cocompactly on triples; we will see
later that this condition implies good regularity properties of metrics and
measures associated to cxc systems.

Together, a topologically cxc system we view as the analog, for iterated
maps, of a uniform convergence group.

The elements of U0 will be referred to as level zero good open sets. While
as subsets of X0 they are assumed connected, their intersections with the
repellor X need not be. Also, the elements of U, while connected, might
nonetheless be quite complicated topologically–in particular they need not
be contractible.

If X0 = X1 = X, then the elements of U are connected subsets of X.

2.3 Examples of topological cxc maps

2.3.1 Rational maps

Let f : Ĉ → Ĉ be a rational function of degree d ≥ 2 for which the criti-
cal points either converge under iteration to attracting cycles, or land on a
repelling periodic cycle (such a function is called subhyperbolic). For such
maps, every point on the sphere belongs either to the Fatou set and con-
verges to an attracting cycle, or belongs to the Julia set Jf . One may find
a small closed neighborhood V0 of the attracting periodic cycles such that
f(V0) ⊂ int(V0). Set X0 = Ĉ − V0 and X1 = f−1(X0). Then f : X1 → X0

is an fbc of degree d, the repellor X = Jf , and f |X : X → X is an fbc of
degree d.

Let U0 be a finite cover of Jf by open spherical balls contained in X1,
chosen so small that each ball contains at most one forward iterated image
of a critical point. The absence of periodic critical points in Jf easily implies
that the local degrees of iterates of f are uniformly bounded at such points,
and so Axiom [Degree] holds. Since Jf can be characterized as the locus
of points on which the iterates fail to be locally a normal family, Montel’s
theorem implies that Axiom [Irreducibility] holds. Finally, f is uniformly
expanding near X with respect to a suitable orbifold metric, and Axiom
[Expansion] holds; see [SL], Thm. 1.1(b).
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2.3.2 Smooth expanding partial self-covers

Let X0 be a connected complete Riemannian manifold, X1 ⊂ X0 an open
submanifold with finitely many components which is compactly contained in
X0. Let f : X1 → X0 be a C1 covering map which is expanding, i.e. there
are constants c > 0, λ > 1 such that whenever fn(x) is defined, ||Dfn

x (v)|| >
cλn||v||. If X denotes the set of nonescaping points, then f : X1 → X0 is
topologically cxc with repellor X–we may take U0 to be a finite collection of
small balls centered at points of X.

One may argue as follows. Since X is compact, there is a uniform lower
bound r on the injectivity radius of X1 at points x ∈ X. Thus, for each
x ∈ X, the ball B(x, r) is homeomorphic to an open Euclidean ball; in
particular, it is contractible. Let U0 be a finite open cover of X by such
balls. Since f : X1 → X0 is a covering map, all iterated preimages Ũ of
elements U ∈ U0 map homeomorphically onto their images, so the [Degree]
Axiom holds with p = 1. Since f is expanding, the diameters of the elements
of Un tend to zero exponentially in n, so the [Expansion] Axiom holds. The
restriction f |X : X → X is clearly an f.b.c. To verify the [Irreducibility]
Axiom, we use an alternative characterization given as Proposition 2.4.1(2)
below. Suppose x ∈ X and x0 ∈ X0. Since X ∪ {x0} is compact, there exists
L > 0 such that for all n, there exists a path γn of length at most L joining
fn(x) and x0. Let γ̃n denote the lift of γn based at x. The other endpoint
x̃n of γ̃n lies in f−n(x0). By expansion, the length of γ̃n tends to zero. Hence
x̃n → x and so x ∈ A(x0).

Following [Nek], we will refer to the topologically cxc system f : X1 → X0

a smooth expanding partial self-covering. A common special case is when
X1,X0 are connected and the homomorphism ι∗ : π1(X1) → π1(X0) induced
by the inclusion map ι : X1 →֒ X0 induces a surjection on the fundamental
groups. In this case, the preimages of X0 under f−n are all connected, and
the repellor X itself is connected.

One can generalize the above example so as to allow branching, by e.g.
working in the category of orbifolds; see [Nek].

2.4 Elementary properties

Conjugacy. Suppose f : X1 → X0 and g : Y1 → Y0 are f.b.c.’s with
repellors X, Y as in the definition of topologically cxc. A homeomorphism
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h : X0 → Y0 is called a conjugacy if it makes the diagram

(X1, X)
h−→ (Y1, Y )

f ↓ ↓ g

(X0, X)
h−→ (Y0, Y )

commute. (Strictly speaking, we should require only that h is defined near
X; however, we will not need this more general point of view here.)

It is clear that the property of being topologically cxc is closed under
conjugation: if U0 is a set of good open sets at level zero for f , then V0 =
{V = h(U)|U ∈ U0} is a set of good open sets at level zero for g.

Suppose X1,X0 are Hausdorff, locally compact, locally connected topo-
logical spaces, each with finitely many connected components, X1 ⊂ X0 is
open, and X1 ⊂ X0.

The proofs of the following assertions are straightforward consequences
of the definitions.

Proposition 2.4.1 Suppose f : X1 → X0 is an fbc of degree d ≥ 2 with
nonescaping set X and let U0 be a finite open cover of X.

1. The condition that f |X : X → X is an fbc of degree d implies that the
set Vf ∩X is nowhere dense in X.

2. Axiom [Expansion] implies

(a) U is a basis for the subspace topology on X. In particular, if U∩X
is connected for all U ∈ U, then X is locally connected.

(b) For distinct x, y ∈ X, there is an N such that for all n > N , and
all U ∈ Un, {x, y} 6⊂ U .

(c) There exists N0 such that for all U ′
1, U

′
2 ∈ UN0, U

′
1 ∩ U ′

2 6= ∅ ⇒
∃U ∈ U0 with U ′

1 ∪ U ′
2 ⊂ U .

(d) Periodic points are dense in X.

3. Axiom [Irreducibility]

(a) holds if and only if for each x0 ∈ X0, the set A(x0) of limit points
of ∪n≥0f

−n(x0) equals the nonescaping set X.
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(b) implies that either X = X0 = X1, or X is nowhere dense in X0.

(c) together with f |X : X → X is an fbc of degree d, implies that X
is perfect, i.e. contains no isolated points.

4. The class of topologically cxc systems is closed under taking Cartesian
products.

In the remainder of this section, we assume f : X1 → X0 is topologically
cxc with repellor X and level zero good open sets U0.

To set up the next statement, given U ∈ Un mapping to U ∈ U0 under
fn, denote by d(U) = deg(fn|U) if n ≥ 1 and d(U) = 1 if n = 0.

Proposition 2.4.2 (Repellors are fractal) For every x ∈ X, every neigh-
borhood W of x, every n0 ∈ N, and every U ∈ Un0, there exists a preimage

Ũ ⊂ f−k(U) with Ũ ⊂ W and deg(fk : Ũ → U) ≤ p
d(U)

where p is the

maximal degree obtained in the [Degree] Axiom.

Proof: Let Y be an open cover of X with the property that (i) W ∈ Y and
(ii) there exists a neighborhood W ′ ⊂W of x such that for all Y 6= W in Y ,
Y ∩W ′ = ∅. Axiom [Expansion] then implies that there exists n1 ∈ N such
that for all n ≥ n1, any element of Un1+n0 containing x is contained in W .
Axiom [Irreducibility] implies that there exists n2 such that fn(W ′) = X ⊃ U

for all n ≥ n2. Hence for k = max{n1, n2}, there is a preimage Ũ of U under
f−k contained in W . The assertion regarding degrees follows immediately
from the multiplicativity of degrees under compositions.

Post-branch set. The post-branch set is defined by

Pf = X ∩
⋃

n>0

Vfn .

Proposition 2.4.3 1. A point x ∈ X belongs to X − Pf if there exists
U ∈ U such that all preimages of U under iterates of f map by degree
one onto U .

2. The post-branch set is a possibly empty, closed, forward-invariant, nowhere
dense subset of X.
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Without further finiteness hypotheses on the local topology of X0, we do
not know if the converse of (1) holds, i.e. if every point in the complement of
the post-branch set has a neighborhood over which all preimages under all
iterates map by degree one, as is the case for e.g. rational maps.

Proof: 1. If such a U exists, then U ∩ Vfn = ∅ for all n and so x 6∈ Pf .
2. All but the last assertion are clear. To show Pf is nowhere dense, let

x ∈ X and let W be any neighborhood of x in X0. Let Ũ ⊂W be the element
of U given by Proposition 2.4.2 applied with a U chosen so that d(U) = p.

Then all further preimages of Ũ map by degree one and so Ũ ∩ Vfn = ∅
for all n. Hence Ũ ∩ Pf = ∅. Finally, since Ũ ∩ X 6= ∅ we conclude that
W ∩ (X − Pf) 6= ∅ and so Pf is nowhere dense in X.

2.5 Metric cxc systems

In this section, we state the definition of metric cxc systems; we will hence-
forth drop the adjective, metric.

Roundness. Let Z be a metric space and let A be a bounded, proper subset
of Z with nonempty interior. Given a ∈ int(A), let

L(A, a) = sup{|a− b| : b ∈ A}

and
l(A, a) = sup{r : r ≤ L(A, a) and B(a, r) ⊂ A}

denote, respectively, the outradius and inradius of A about a. While the
outradius is intrinsic, the inradius depends on how A sits in Z. The condition
r ≤ L(A, a) is necessary to guarantee that the outradius is at least the
inradius. The roundness of A about a is defined as

Round(A, a) = L(A, a)/l(A, a) ∈ [1,∞).

One says A is K-almost-round if Round(A, a) ≤ K for some a ∈ A, and this
implies that for some s > 0,

B(a, s) ⊂ A ⊂ B(a,Ks).
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Metric cxc systems. A key feature of many conformal dynamical systems
is the fact that small balls can be blown up using the dynamics to sets of
definite size which are uniformly K-almost-round and such that ratios of
diameters are distorted by controlled amounts. Below, we abstract these
properties so as to apply in general metric space settings.

Suppose we are given a topological cxc system f : X1 → X0 with level zero
good neighborhoods U0, and that X0 is now endowed with a metric compatible
with its topology. The resulting metric dynamical system equipped with the
covering U0 is called coarse expanding conformal, abbreviated cxc, provided
there exist

• continuous, increasing embeddings ρ± : [1,∞) → [1,∞), the forward
and backward roundness distortion functions, and

• increasing homeomorphisms δ± : [0, 1] → [0, 1], the forward and back-
ward relative diameter distortion functions

satisfying the following axioms:

4. [Roundness distortion] (∀n, k) and for all

U ∈ Un, Ũ ∈ Un+k, ỹ ∈ Ũ , y ∈ U

if

f ◦k(Ũ) = U, f ◦k(ỹ) = y

then the backward roundness bound

Round(Ũ , ỹ) < ρ−(Round(U, y)) (2.1)

and the forward roundness bound

Round(U, y) < ρ+(Round(Ũ , ỹ)). (2.2)

hold.

In other words: for a given element of U, iterates of f both forward
and backward distorts its roundness by an amount independent of the
iterate.
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5. [Diameter distortion] (∀n0, n1, k) and for all

U ∈ Un0 , U ′ ∈ Un1 , Ũ ∈ Un0+k, Ũ ′ ∈ Un1+k, Ũ ′ ⊂ Ũ , U ′ ⊂ U

if

fk(Ũ) = U, fk(Ũ ′) = U ′

then
diamŨ ′

diamŨ
< δ−

(
diamU ′

diamU

)

and

diamU ′

diamU
< δ+

(
diamŨ ′

diamŨ

)

In other words: given two nested elements of U, iterates of f both
forward and backward distort their relative sizes by an amount inde-
pendent of the iterate.

As a consequence, one has then also the backward upper and lower
relative diameter bounds:

δ−1
+

(
diamU ′

diamU

)
<

diamŨ ′

diamŨ
< δ−

(
diamU ′

diamU

)
(2.3)

and the forward upper and lower relative diameter bounds:

δ−1
−

(
diamŨ ′

diamŨ

)
<

diamU ′

diamU
< δ+

(
diamŨ ′

diamŨ

)
. (2.4)

The [Expansion] Axiom implies that the maximum diameters of the el-
ements of Un tend to zero uniformly in n. Since U0 is assumed finite, each
covering Un is finite, so for each n there is a minimum diameter of an element
of Un. Since X is perfect and, by assumption, each U ∈ U contains a point
of X, each U contains many points of X and so has positive diameter. Hence
there exist decreasing positive sequences cn, dn → 0 such that the diameter
bounds hold:

0 < cn ≤ inf
U∈Un

diamU ≤ sup
U∈Un

diamU ≤ dn. (2.5)
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2.6 Metric regularity of cxc systems

Suppose now X0,X1 are metric spaces. Let f : X1 → X0 be an f.b.c. as in
the previous section with repellor X and level zero good neighborhoods U0.
Throughout this subsection, we assume that the topological axiom [Expan-
sion] and the metric axioms [Roundness distortion] and [Relative diameter
distortion] are satisfied. We assume neither axiom [Irreducibility] nor [De-
gree].

In this section, we derive metric regularity properties of the elements of
the coverings Un and the repellor X.

A word regarding notation: In this and the following section, U will

always denote an element of U = ∪nUn. Generally, (̃·) denotes an inverse
image of (·) under some iterate of f . Often, but not always, U ′ denotes
an element of U which is contained in U . Many of the statements of the
propositions below make reference to an element U of U. The typical proof
consists of renaming U as Ũ , mapping Ũ forward via some iterate to an
element U of definite size, making estimates, and then transporting these
estimates to Ũ via the distortion functions.

We first resolve a technicality.

Proposition 2.6.1 Let D0 denote the minimum diameter of a connected
component of X0. Then for any ball B(a, r) in X0 where r ≤ D0/2, we have
diamB(a, r) ≥ r.

Proof: Fix ǫ > 0, and let C denote the component of X0 containing a. Pick
p, q ∈ C with |p− q| > D − ǫ. Then at least one of |a− p|, |a− q| is at least
(D− ǫ)/2, say |a− p|. Since C is connected, the function y 7→ |a− y| has an
image which contains [0, (D− ǫ)/2]. Thus for any s ≤ (D− ǫ)/2, there exists
y ∈ C with |a − y| = s. Letting ǫ → 0 proves that B(a, r) has diameter at
least r.

When dealing with balls below, we shall always assume that r < D0/2.

Lebesgue number. Let U be a finite covering of a metric compact space
X by open sets. The Lebesgue number δ of the covering is the supremum
over all radii r such that, for any point x ∈ X, there is some element U ∈ U
which contains B(x, r). Since the covering is finite, δ is positive.
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Proposition 2.6.2 (Uniform roundness) There exists K > 1 such that

1. (∀x̃ ∈ X)(∀n)(∃U ∈ Un) such that U is K-almost round with respect to
x̃, i.e. (∃r > 0)

B(x̃, r) ⊂ U ⊂ B(x̃, Kr).

2. (∀n)(∀U ∈ Un)(∃x̃ ∈ X) such that Round(U, x̃) < K.

Proof: 1. Denote the set we are looking for by Ũ instead of U . Let δ be the
Lebesgue number of the covering U0 and ∆ = supU∈U0

diamU . Then given
any x ∈ X, there exists U ∈ U0 such that

B(x, δ) ⊂ U ⊂ B(x,∆)⇒ Round(U, x) < K1 :=
∆

δ
.

Now let x̃ ∈ X and n ∈ N be arbitrary. Set x = fn(x̃) and let U ∈ U0 be

the element constructed as in the previous paragraph. Let Ũ ∈ Un be the
component of f−n(U) containing x̃. By the backward roundness bound (2.1),

Round(Ũ , x̃) < ρ−(K1).

2. Denote the given element of Un by Ũ instead of U . For each U ∈ U0,
choose xU ∈ U arbitrarily. Let

K2 = max
U∈U0

Round(U, xU).

Given Ũ ∈ Un arbitrary, let U = fn(Ũ), and let x̃U ∈ f−n(xU) ∩ Ũ . By the
backward roundness bound,

Round(Ũ , x̃U) < ρ−(K2).

Thus the conclusions of the lemma are satisfied with

K = max {ρ−(K1), ρ−(K2)} .

In the lemma below, let K denote the constant in Proposition 2.6.2 and
cn the constants giving the lower bound on the diameters of the elements of
Un (2.5).
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Proposition 2.6.3 (Lebesgue numbers) (∀n)(∀x ∈ X)(∀r < cn

2K
) there

exists U ∈ Un and s > r such that

B(x, r) ⊂ B(x, s) ⊂ U ⊂ B(x,Ks).

In particular, the Lebesgue number of the covering Un is at least δn = cn

2K
.

Proof: Given n and x, by Proposition 2.6.2 there is s > 0 and U ∈ Un with

B(x, s) ⊂ U ⊂ B(x,Ks).

Thus cn < diamU < 2Ks so that cn

2K
< s, whence r < s.

The next statement says that two elements of covers which intersect over
X have roughly the same diameter as soon as their levels are close.

Proposition 2.6.4 (Local comparability) There exists a constant C > 1
such that (∀x ∈ X)(∀n)(∀U ∈ Un)(∀U ′ ∈ Un+1) we have: if U ∩ U ′ ∩X 6= ∅
then

1

C
<

diamU ′

diamU
< C.

That is, two elements of U at consecutive levels which intersect at a point of
X are nearly the same size.

Proof: By Axiom [Expansion] there exists n0 ∈ N such that 2(dn0 + dn0+1)
is less than the Lebesgue number of the covering U0. Thus there exist r > 0
and n0 such that whenever U ∈ Un0 and U ′ ∈ Un0+1 contain a common point
x ∈ X, there exists V ∈ U0 depending on the pair U,U ′ such that

U ∪ U ′ ⊂ B(x, r) ⊂ V.

By renaming as usual, let Ũ ∈ Un0+n, Ũ
′ ∈ Un0+n+1 denote respectively the

sets U,U ′ as in the statement of the lemma, and suppose x̃ ∈ Ũ ∩ Ũ ′ ∩ X.
Set U = f ◦n(Ũ), U ′ = f ◦n(Ũ ′), x = f ◦n(x̃) and let

S = sup
U∈Un0 ,U ′∈Un0+1

max

{
diamU

diamV
,
diamU ′

diamV

}
.
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Note that S depends only on the integer n0. If Ṽ denotes the preimage of V
under f−n containing Ũ ∪ Ũ ′, then the backwards relative diameter bounds
(2.3) imply

δ−1
+ (S) ≤ diamŨ ′

diamṼ
≤ δ−(S)

and

δ−1
+ (S) ≤ diamŨ

diamṼ
≤ δ−(S).

Dividing yields,

δ−1
+ (S)

δ−(S)
<

diamŨ ′

diamŨ
<

δ−(S)

δ−1
+ (S)

.

Since S and n0 are independent of n, property [Local comparability] follows
with

C = max

{(
δ−1
+ (S)

δ−(S)

)±1

,
sup{diamU | U ∈ ∪n0

0 Un}
inf{diamU | U ∈ ∪n0

0 Un}

}
.

The following lemma shows that cxc systems are truly metrically expand-
ing in a natural metric sense, and that the δ− function depends essentially
on the relative levels of the sets involved.

Proposition 2.6.5 (Contraction implies exponential contraction) Constants
C ′ > 0 and θ ∈ (0, 1) exist such that, for any n, k ≥ 0, any U ′ ∈ Un+k and
any U ∈ Un, if U ′ ∩ U ∩X 6= ∅, then

diamU ′

diamU
≤ C ′θk .

In particular, in the upper diameter bounds, one may assume dn = C ′d0θ
n.

Proof: The diameters of the elements of U0 are bounded from below by the
constant c0. Since the diameters of the elements of Un tend uniformly to zero
(by the [Expansion] Axiom), and the backwards relative diameter distortion
function δ− is a homeomorphism, there exists N0 ∈ N with the following
property:

(∀U ′ ∈ UN0)(∃U ∈ U0) such that U ′ ⊂ U and δ−

(
diamU ′

diamU

)
<

1

2
.
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Now let k ∈ N be arbitrary and let Ũ ′ ∈ Uk+N0 . Let U ′ = fk(Ũ ′), let U ⊃ U ′

be as above, and let Ũ be the component of f−N0(U) containing Ũ ′. Then
by the backwards relative diameter bounds (2.3),

diamŨ ′ <
1

2
diamŨ .

Thus, for any k ∈ N, for any U ′ ∈ UN0+k, there exists U ∈ Uk such that
U ′ ⊂ U and diamU ′ ≤ (1/2)diamU .

Let us set θ = 2−1/N0 and C ′ = 2CN0−1 where C is given by Proposition
2.6.4.

Let n, k ≥ 0, and let us fix U ′ ∈ Un+k and U ∈ Un such that U∩U ′∩X 6= ∅.
There are integers a ≥ 0, b ∈ {0, . . . , N0 − 1} such that k = a ·N0 + b.

Define inductively Uj ∈ UjN0+b, j = 0, . . . , a, such that Ua = U ′, Uj+1 ⊂
Uj and diamUj+1 ≤ (1/2)diamUj . It follows that

diamU ′ ≤
(

1

2

)a

diamU0 ≤ Cb

(
1

2

)a

diamU

by Proposition 2.6.4. But

2−a = θk2b/N0 ≤ 2θk

so the proposition follows.

The lemma below shows that in X0, a possibly disconnected ball B(x, r)
with x ∈ X can be both enlarged and shrunk to obtain a pair of elements U,U ′

of U whose levels are comparable and whose diameters in X0 are comparable
to the diameter of U .

Proposition 2.6.6 (Balls are like connected sets (BLC)) There exist con-
stants L > 1 and n0 ∈ N such that for all x ∈ X and r < δ0, there exist
levels m and n and sets U ∈ Un, U

′ ∈ Um such that |m− n| ≤ n0 and

B(x, r/L) ⊂ U ′ ⊂ B(x, r) ⊂ U ⊂ B(x, Lr).

Proof: We will first find U and L so that B(x, r) ⊂ U ⊂ B(x, Lr), where
L = 4KC, K is the roundness constant from Proposition 2.6.2, and C is the
constant from Proposition 2.6.4.
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Let δ0 denote the Lebesgue number of U0. Given x and r < δ0, the
number

n = sup{i : ∃U, ∃i with B(x, r) ⊂ U ∈ Ui and Round(U, x) < K}

exists. (The set is nonempty by Proposition 2.6.3 and finite by the [Expan-
sion] Axiom.) Suppose U ∈ Un and B(x, r) ⊂ U . We must bound diamU
from above.

By Proposition [2.6.2, Uniform roundness], there exists V ∈ Un+1 for
which Round(V, x) < K. Thus, B(x, s) ⊂ V ⊂ B(x,Ks) for some s. Since
n is maximal, s < r, and so diamV < 2Ks < 2Kr. By Proposition [2.6.4,
Local comparability], diamU < CdiamV < C2Ks < 2KCr and so U ⊂
B(x, 4KCr) as required. Thus, we have found U .

The same argument applied toB(x, r/L) produces U ′ such thatB(x, r/L) ⊂
U ′ ⊂ B(x, r). We assume that the level of U ′ is n + k.

Assume U ′ ∈ Um and U ∈ Un. If m = n + k where k ≥ 0, Proposition
2.6.5 implies k ≤ − log(2L2C ′)/ log θ. If n = m + k where k ≥ 0, then
another application of the proposition (with the roles of U and U ′ reversed)
yields k ≤ − log(2C ′/ log θ). The factors of two arise since the diameter of a
ball of radius r is bounded below by r, not 2r (Proposition 2.6.1).

Recall that a metric space is uniformly perfect if there is a positive con-
stant λ < 1 such that B \ (λB) is non-empty for every ball B of radius at
most the diameter of the space.

Proposition 2.6.7 We have diam(U ∩ X) ≍ diamU for all U ∈ U. As a
consequence, the repellor X is uniformly perfect.

Proof: Recall that X is perfect, i.e. contains no isolated points. By Propo-
sition [2.6.6, BLC] it suffices to prove that

diamŨ ≍ diam(Ũ ∩X)

where Ũ ranges over any element of U.
There exists n0 large enough such that for each U ∈ U0, we can choose

points a, b ∈ U ∩X and neighborhoods U ′
a, U

′
b ∈ Un0 of a and b, respectively,

which are disjoint and contained in U . We now assume such a choice has
been fixed.
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Given Ũ ∈ Uk, let U = fk(Ũ) and let a, b, U ′
a, U

′
b be as in the previous

paragraph. Choose arbitrarily ã ∈ Ũ ∩ f−k(a) and let Ũ ′
ã ∈ Un0+k be the

unique component of f−k(U ′
a) containing ã. Similarly, define b̃ and Ũ ′

b̃
. Then

Ũ ′
ã and Ũ ′

b̃
are disjoint and are contained in Ũ . Each contains an element

of X, since X is totally invariant. Thus, diamŨ ∩ X is at least as large as
the radius r of the largest ball centered at ã and contained in Ũ ′

ã. By the
definition of roundness

r >
1

2
diamŨ ′

ã · Round(Ũ ′
ã, ã)−1.

The backward relative diameter distortion bounds (2.3) imply

diamŨ ′
ã > diamŨ · δ−1

+

(
diamU ′

a

diamU

)
.

The backward roundness distortion bound (2.1) implies

Round(Ũ ′
ã, ã) < ρ−(Round(Ua, a)).

Since U0 is finite, r/diamŨ is therefore bounded from below by a constant
independent of k.

Definition 2.6.8 (Linear local connectivity) Let λ ≥ 1. A metric space
Z is λ-linearly locally connected if the following two conditions hold:

1. if B(a, r) is a ball in Z and x, y ∈ B(a, r), then there exists a continuum
E ⊂ B(a, λr) containing x and y;

2. if B(a, r) is a ball in Z and x, y ∈ Z − B(a, r), then there exists a
continuum E ⊂ Z − B(a, r/λ) containing x and y.

Propositions 2.6.6 and 2.6.7 imply immediately that (i) if U ∩X is con-
nected for all U ∈ U, then condition (1) above holds, and (ii) if X \ (U ∩X)
is connected for all U ∈ U, then condition (2) holds. We obtain immediately

Corollary 2.6.9 If, for all U ∈ U, the sets U ∩ X and X \ (U ∩ X) are
connected, then X is linearly locally connected.
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Unlike the preceding results in this section, the following lemma uses the
[Degree] Axiom. Recall that a metric space is doubling if there is a positive
constant Cd such that any set of finite diameter can be covered by Cd sets of
at most half its diameter (cf. [Hei], § 10.13).

Proposition 2.6.10 (cxc implies doubling) If axiom [Degree] is satis-
fied, then X is a doubling metric space.

Proof: It follows from Proposition 2.6.5 that an integer k0 exists such that,
for any n ≥ 0, any U ∈ Un, and any U ′ ∈ Un+k0 , diamU ′ ≤ (1/4L)diamU as
soon as U ′ ∩ U ∩X 6= ∅.

From the finiteness of U0, it follows that any U ∈ U0 can be covered by
N sets of level k0.

Let E ⊂ X, and x ∈ E. If its diameter is larger than the Lebesgue
number of U0, then it can be covered by a uniform number of sets of half its
diameter. Otherwise, one can find a level n and a set Ũ ∈ Un such that

E ⊂ B(x, diamE) ⊂ Ũ ⊂ B(x, LdiamE)

by Proposition 2.6.6.
Let us cover fn(Ũ) by N sets U ′

1, . . . , U
′
N of level k0. Axiom [Degree]

implies that Ũ , so E as well, is covered by at most pN sets (Ũ ′
j) of level

n + k0. Thus,

diamŨ ′
j ≤

1

4L
diamŨ ≤ 2L

4L
diamE,

and Cd ≤ pN .

From Assouad’s theorem (see [Hei], Thm. 12.1) we obtain

Corollary 2.6.11 If axiom [Degree] is satisfied, then X is quasisymmet-
rically embeddable in the Euclidean space Rn. In particular, X has finite
topological dimension.

2.7 Dynamical regularity

Suppose again that X0,X1 are metric spaces. Let f : X1 → X0 be an f.b.c.
as in the previous section with repellor X and level zero good neighborhoods
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U0. Throughout this subsection, we again assume that the topological ax-
iom [Expansion] and the metric axioms [Roundness distortion] and [Relative
diameter distortion] are satisfied. We assume neither axiom [Irreducibility]
nor [Degree].

Recall that a subset A of a metric space Z is c-porous when every ball
of radius r < diamZ contains a ball of radius cr which does not meet A. A
subset is porous if it is c-porous for some c > 0.

Proposition 2.7.1 If axiom [Degree] is satisfied, then the post-branch set
Pf = ∪n>0f

n(Bf ) is porous, and the sets Bfn ∩X, n = 1, 2, 3, . . . are porous
with porosity constants independent of n.

Proof: Axiom [Degree] implies there exists n0 and Un0 ∈ Un0 so that the
degree deg(fn0|U) = p, i.e. is maximal (cf. Proposition 2.4.2). Then all

iterated preimages Ũn0 of Un0 map by degree one onto Un0 . So Un0 and

any iterated preimage Ũn0 lie in the complement of the post-branch set. By
Proposition 2.4.2, for every element U of U0, there is a k(U) ∈ N and a
preimage U ′ of Un0 under f−k(U) which is contained in U . Let

c0 = min
U∈U0

diamU ′

diamU
.

Let B(x, r) be a small ball in X0 centered at a point x ∈ Pf . By Propo-

sition [2.6.6, BLC] there exists some n and Ũ ∈ Un such that B(x, r/L) ⊂
Ũ ⊂ B(x, r). Let U = fn(Ũ) ∈ U0. Then by the previous paragraph, U ⊃ U ′

where U ′ ⊂ X − Pf . If Ũ ′ is any preimage of U ′ under fn which is con-

tained in Ũ , then the forward invariance of Pf implies Ũ ′ ⊂ X − Pf . By the
backward lower relative diameter distortion bounds (2.3),

diamŨ ′ > δ−1
+ (c0)diamŨ > δ−1

+ (c0)r/L = c1r.

Since good open sets are uniformly K-almost round (Proposition 2.6.2), Ũ ′ ⊃
B(y, c1r/K) for some y ∈ X and so X − Pf is c-porous where c = c1/K.

We merely sketch the second assertion. Suppose B(x, r) is a small ball

centered at a point x ∈ Bfk ∩ X. Then for some n, r ≍ diamŨ where

Ũ ∈ Un+k. Let U = fk(Ũ). Since fk(x) ∈ Pf and Pf is porous, there is some

U ′ ⊂ U with diamU ′ ≍ diamU and U ′ ⊂ X −Pf . If Ũ ′ is any preimage of U ′

under fk which is contained in Ũ ′, then Ũ ′ ⊂ X−Bfk∩X, and the backwards
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relative diameter distortion bounds again imply diamŨ ′ ≍ diamŨ ≍ r. Since
Ũ ′ is K-almost round this implies that X − Bfk ∩X is uniformly porous as
a subset of X.

The next lemma shows that the roundness distortion control of f , which
was assumed only for the sets in U, in fact extends to any iterate of f and
any ball of small enough radius.

Proposition 2.7.2 (cxc is uniformly weakly quasiregular) There is a
constant H < ∞ and a sequence of radii {rn}∞n=1 decreasing to 0 such that,
for any iterate n, for any x ∈ X, and any r ∈ (0, rn),

Round(fn(B(x, r)), fn(x)) ≤ H.

Proof: Let rn = cn

2L
and fix r < rn and x̃ ∈ X. By Proposition 2.6.6, there

exist Ũ ∈ Um and Ũ ′ ∈ Um+n0 such that

B(x̃, r/L) ⊂ Ũ ′ ⊂ B(x̃, r) ⊂ Ũ ⊂ B(x̃, Lr).

Thus diamŨ ≤ 2Lr < cn and so the level m > n since the sequence (ck) is

decreasing. Set as usual U = fn(Ũ), U ′ = fn(Ũ ′), and x = fn(x̃). Now,

Round(Ũ ′, x̃),Round(Ũ , x̃) < L

and
1

2L2
<

diamŨ ′

diamŨ
≤ 1.

By the forward roundness and relative diameter distortion bounds,

Round(U ′, x),Round(U, x) < ρ+(L)

and

δ+

(
1

2L2

)
<

diamU ′

diamU
≤ 1.

Moreover,
U ′ ⊂ fn(B(x̃, r)) ⊂ U.

It follows easily that Round(fn(B(x̃, r)), x) is bounded by a constant inde-
pendent of x, n, and r.
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2.8 Quasisymmetric and topological conjuga-

cies of cxc systems

Recall that a homeomorphism h between metric spaces is weakly quasisym-
metric if it distorts the roundness of balls by a uniform factor, i.e.

Round(h(B(x, r)), h(x)) ≤ H

for all x ∈ X and r ≤ diamX.
We start with a result which will enable us to promote weak quasisym-

metry to the usual strong quasisymmetry.

Theorem 2.8.1 Let X, Y be two uniformly perfect doubling metric compact
spaces. Let h : X → Y be a homeomorphism. If both h and h−1 are weakly
quasisymmetric, then h and h−1 are both quantitatively quasisymmetric.

In the proof, we adapt the argument of Theorem 10.19 of [Hei].

Proof: The assumptions imply

1. there is a constant λ > 1 such that, for any ball B in X or Y with
non-empty complement, B \ (1/λ)B 6= ∅;

2. there are constants C, β > 0 such that any set of diameter d in X or Y
can be covered by at most Cǫ−β sets of diameter at most ǫd;

3. there is a constant H such that




if a, b, x ∈ X, |a− x| ≤ |b− x| then |h(a)− h(x)| ≤ H|h(b)− h(x)|

if c, d, y ∈ Y, |c− y| ≤ |d− y| then |h−1(c)− h−1(y)| ≤ H|h−1(d)− h−1(y)|.

Choose tǫ ∈ (0, 1) small enough so that tǫλ ≤ 1/3. Let a, b, x ∈ X and
set

t =
|a− x|
|b− x| and t′ =

|h(a)− h(x)|
|h(b)− h(x)| .

Let us assume that t < tǫ. Since X is u.p., there are points b0, . . . , bs such
that bj ∈ B(x, tjǫ |b−x|) \B(x, (tjǫ/λ)|b−x|), where s is the least integer such
that tsǫ < t by 1.
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It follows that if i < j then

|bi − bj |
|b− x| ≥

|bi − x|
|b− x| −

|x− bj |
|b− x|

so that
|bi − bj |
|b− x| ≥ (tiǫ/λ)− tjǫ ≥ (tiǫ/λ)(1− λtǫ) > 0

and these points are all pairwise disjoint.
Furthermore, it follows from the definition of s that

log(1/t)

log(1/tǫ)
≤ s .

Let 0 ≤ i < j ≤ s− 1; then |a− bj | ≤ 2|x− bj | and

|bi − bj | ≥ (tj−1
ǫ /λ)(1− λtǫ)|b− x| ≥ 2|x− bj | .

Hence |a− bj | ≤ |bi − bj | and it follows that

|h(a)− h(bj)| ≤ H|h(bi)− h(bj)|

by 3. Similarly, |x− bj | ≤ |bi − bj | implies that

|h(x)− h(bj)| ≤ H|h(bi)− h(bj)| .

Therefore
|h(a)− h(x)| ≤ 2H|h(bi)− h(bj)|.

It follows that the balls B(h(bj), (1/5H)|h(a)−h(x)|) are pairwise disjoint.
Indeed, if y ∈ B(h(bj), (1/5H)|h(a)− h(x)|), then

|y − h(bi)| ≥ |h(bi)− h(bj)| − |y − h(bj)| ≥ (3/5H)|h(a)− h(x)|

so that y /∈ B(h(bi), (1/5H)|h(a)− h(x)|) . Furthermore they are contained
in B(h(x), 2H|h(x)− h(b)|), so the doubling property 2. implies

s ≤ C

(
t′

5H

)−β

from which we deduce that t′ is bounded by a function of t which decreases
to 0 with t.
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It follows that there is a homeomorphism η : [0, 1] → [0, η(1)] such that
η(1) ≥ 1 and if |a− x| ≤ |b− x| then

|h(a)− h(x)| ≤ η

( |a− x|
|b− x|

)
|h(b)− h(x)| .

Similarly, if |c− y| ≤ |d− y| then

|h−1(c)− h−1(y)| ≤ η

( |c− y|
|d− y|

)
|h−1(d)− h−1(y)| .

Let us assume now that t ≥ 1/η−1(1). It follows that

|h(b)− h(x)| ≤ η(1/t)|h(a)− h(x)| ≤ |h(a)− h(x)|,

whence

|b− x| ≤ η

( |h(b)− h(x)|
|h(a)− h(x)|

)
|a− x| .

It follows that
t′ ≤ 1/η−1(1/t).

This establishes that f is quasisymmetric, and f−1 as well.

The main result of this section is

Theorem 2.8.2 (Invariance of cxc) Suppose f : (X1, X) → (X0, X) and
g : (Y1, Y ) → (Y0, Y ) are two topological cxc systems which are conjugate
via a homeomorphism h : X0 → Y0, where X0 and Y0 are metric spaces.

1. If f is metrically cxc and h is quasisymmetric, then g is metrically cxc,
quantitatively.

2. If X is connected and f, g are both metrically cxc, then h|X : X → Y
is quasisymmetric, quantitatively.

In the proof below, we use subscripts to indicate the dependence of the
metric regularity constants on the system, e.g. δ±f , δ±g, etc.

Proof: 1. Suppose first that h is η-quasisymmetric. Then
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• [Roundness quasi-invariant] h sends K-almost-round sets with re-
spect to x to η(K)-almost-round sets with respect to h(x);

• [Relative distance distortion] for all A,B ⊂ X with A ⊂ B,

1

2η
(

diamB

diamA

) ≤ diamh(A)

diamh(B)
≤ η

(
2

diamA

diamB

)

(see [Hei], Prop. 10.8).

The topological axioms ([Expansion], [Irreducibility], [Degree]) are invariant
under topological conjugacies. Axiom [4, Roundness distortion] follows im-
mediately from property [Roundness quasi-invariant] above. Thus, it suffices
to check Axiom [5, Diameter distortion]. Let us use small letters and drop
“diam” for ease of readability. Let η(t) = 1/(η−1)(1/t), and notice that h−1

is η-quasisymmetric.
We have

ṽ′

ṽ
< η(2 ũ′

ũ
) rel. dist. distortion

ũ′

ũ
< δ−,f(u′

u
) def. δ−

ṽ′

ṽ
< η(2δ−,f(u′

u
)) η increasing

u′

u
< η(2v′

v
) rel. dist. distortion

Thus,
ṽ′

ṽ
< η

(
2δ−

(
η

(
2
v′

v

)))
.

Now define
δ−g(t) = η(2δ−,f(η(2t))).

This is a composition of homeomorphisms, hence a homeomorphism, and so
it satisfies the requirements. Finding δ+g is accomplished similarly :

v′

v
< η(2u′

u
)

< η(2δ+,f( ũ′

ũ
))

< η(2δ+,f(η(2 ṽ′

ṽ
))).
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2. Now suppose g is metrically cxc. By Propositions 2.6.10 and 2.6.7, X
and Y are doubling and uniformly perfect. Therefore, it suffices to show h
and h−1 are weakly quasisymmetric (cf. Theorem 2.8.1). Since the setting
is symmetric with respect to f and g, it is enough to prove that h is weakly
quasisymmetric. To show this, it suffices to show (since h and its inverse are
uniformly continuous) that if B = B(x̃, r) is a sufficiently small ball, then
its image h(B) is almost round with respect to ỹ = h(x̃), with roundness
constant independent of B. Our proof below follows the usual method (see
[Sul2]): given a small ball B, we use the dynamics and the distortion axioms
to blow it up to a ball of definite size and bounded roundness. By compact-
ness, moving over to Y via h distorts roundness by a bounded amount. We
then pull back by the dynamics and apply the distortion axioms again.

Our argument is slightly tricky, since we must trap balls, which are pos-
sibly disconnected, inside connected sets in order to apply the pullback step
and make sense of the “lift” of a ball. We will accomplish this as follows. Let
U = {Un}∞n=0,V = {Vn}∞n=0 be the sequences of good open sets for f and g,
respectively. We are aiming for the following diagram:

Ũ ′ ⊂ B ⊂ Ũ
h→ Ṽ ′ ⊂ h(Ũ ′) ⊂ h(B) ⊂ h(Ũ ) ⊂ Ṽ

fn ↓ ↓ gn

U ′ ⊂ fn(B) ⊂ U
h→ V ′ ⊂ h(U ′) ⊂ h(fn(B)) = gn(h(B)) ⊂ h(U) ⊂ V

(2.6)

Below, we indicate the dependence on the map of the metric regularity con-
stants K,C, L, cn, dn, etc. defined in the previous two sections by subscripts.

The diameters of elements of V0 are bounded from below. Since X1 is
relatively compact, h|X1

: X1 → Y1 is uniformly continuous. Hence there
exists δ0 > 0 such that

diamE < δ0 ⇒ diam(h(E)) < ǫ0 = Lebesgue # of V0. (2.7)

Finding Ũ , Ũ ′. The [Expansion] Axiom implies that there exists N0 such
that dN0,f < δ0. Let B = B(x̃, r) where r < cN0,f/(2Lf). By Proposition

2.6.6, there exists n0,f and m ∈ N, Ũ ∈ Um, and Ũ ′ ∈ Um+n0,f
such that

B(x̃, r/Lf) ⊂ Ũ ′ ⊂ B ⊂ Ũ ⊂ B(x̃, Lfr).

Thus diamŨ ≤ 2Lfr ≤ cN0,f and so m = N0 + n where n ≥ 0.
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Finding U ′, U . Let as usual U = fn(Ũ), U ′ = fn(Ũ ′), x = fn(x̃). Then
U ∈ UN0 and U ′ ∈ UN0+n0,f

.

Finding V . Let y = h(x). Since U ∈ UN0 and dN0,f < δ0, (2.7) implies
diam(h(U)) < ǫ0 and so there exists V ∈ V0 with h(U) ⊂ V .

Finding V ′. The forward roundness bound (2.2) implies that

Round(U ′, x) < ρ+,f(Lf ).

Hence
U ′ ⊃ B(x, s′), where s′ =

cN0+n0,f

2ρ+,f(Lf )
.

Since X is compact, h(B(x, s′)) ⊃ B(y, t′) where

t′ = inf{|h(x)− h(a)| : x ∈ X, |a− x| = s′}.
The [Expansion] Axiom implies that there exists k0 such that dk0,g < t′/2.
Proposition 2.6.2 implies that there exists V ′ ∈ Vk0 such that Round(V ′, y) <
Kg. Then

V ′ ⊂ h(U ′) ⊂ h(fn(B)) ⊂ h(U) ⊂ V

where

Round(V ′, y),Round(V, y) ≤ min

{
d0,g

t′
, Kg

}
=: R

and
diamV ′

diamV
<
ck0,g

d0,g
=: D.

Finding Ṽ , Ṽ ′. Let Ṽ , Ṽ ′ denote the preimages of V and V ′, respectively,
containing ỹ = h(x̃). We have now achieved the situation summarized in
(2.6).

Conclusion. The backwards roundness bound (2.1) and backwards relative
diameter distortion bound (2.3) imply

Round(Ṽ , ỹ),Round(Ṽ ′, ỹ) < R̃ = ρ−,g(R)

and
diamṼ ′

diamṼ
> D̃ = δ+,g(D).

Hence Round(h(B), h(x̃)) < 2R̃2/D̃ and the proof is complete.
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Chapter 3

Geometrization

In this chapter, we assume we are given an fbc (X1, X)
f−→ (X0, X) and

a finite cover U which satisfy [Expansion]. To this data we will associate
a canonical conformal structure on X, thus promoting our topological dy-
namical system to a conformal one. This structure appears as the conformal
structure at infinity induced by a hyperbolic space upon which f acts by
local isometry. Assuming in addition Axiom [Irreducibility], we study the
distribution of preimages of points and of cycles.

When the map is actually cxc, then the conformal structure belongs to
the same conformal gauge as the original one, and we prove that there is a
unique measure of maximal entropy log d.

This approach follows not only Thurston’s philosophy that Topology im-
plies a natural Geometry, but also apply Gromov’s point of view that coarse
notions capture enough information to determine Geometry.

This chapter is organized as follows. In the first section, we review the
basic geometric theory of unbounded metric spaces, emphasizing hyperbol-
icity and compactifications. Section 2 is devoted to the construction of the
hyperbolic space Γ, and we establish its first properties. In section 3, the hy-
perbolicity of Γ is proved, and its naturality is established. Then, we use the
hyperbolicity to study measure-theoretic properties: the Patterson-Sullivan
procedure produces a geometric measure which describes the distribution of
preimages and of cycles. We also estimate the Hausdorff dimension of the
repellor with respect to this canonical conformal structure. Finally, in the
last section this theory is applied to topological and metric cxc maps.

39
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3.1 Compactifications of quasi-starlike spaces

A metric space (X, d) is said to be proper if, for all x ∈ X, the function
y 7→ d(x, y) is proper, meaning that closed balls of finite radius are compact.
A geodesic curve is a continuous function γ : I → X such that d(γ(t), γ(t′)) =
|t−t′| for all t, t′ ∈ I and where I is an interval. We will often not distinguish
between the function γ and its image in X. The space X is said to be geodesic
if any pair of points can be joined by a geodesic.

Fix a base point o ∈ X. A ray (based at o) is a geodesic curve γ : R+ → X
such that γ(0) = o. Let R be the set of geodesic curves starting at o, and
let R∞ be the set of rays based at o. The space (X, o) is K-quasi-starlike
(about o) if, for any x ∈ X, there is a ray γ ∈ R∞ such that d(x, γ) ≤ K.

In this section, we assume that (X, d) is a geodesic proper K-quasi-starlike
space about a point o. For convenience, we write d(x, y) = |x − y| and
|x| = |x− o|.
Hyperbolic spaces. The Gromov product of two points x, y ∈ X is defined
by (x|y) = (1/2)(|x|+ |y|−|x−y|). The metric space X is Gromov hyperbolic
if there is some constant δ ≥ 0 such that

(x|z) ≥ min{(x|y), (y|z)} − δ

for any points x, y, z ∈ X. (By Proposition 1.2 of [CDP], this definition
agrees with the more common one in which the above inequality is required
to hold for all x, y, z and o instead of just at a single basepoint o.) Let us note
that in such a space, (x|y) ∼ d(o, [x, y]) where [x, y] is any geodesic segment
joining x to y. We refer to [CDP] and to [GdlH] for more information on
Gromov hyperbolic spaces.

Compactification. Here, we do not assume X to be hyperbolic. We propose
to compactify X using the method of W. Floyd [Flo]. Let ε > 0, and, for
x ∈ X, define ρε(x) = exp(−ε|x|).

For x, y ∈ X, define

dε(x, y) = |x− y|ε = inf
γ

∫

γ

ρε

where the infimum is taken over all rectifiable curves which join x to y. Thus,
|x− y|ε ≤ |x− y|.
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The space (X, | · |ε) is not complete since if γ ∈ R∞ and if t′ > t then

|γ(t)− γ(t′)|ε ≤
∫ t′

t

e−εsds ≤ e−εt/ε .

Therefore {γ(n)} is a non convergent dε-Cauchy sequence.

Definition. Let Xε be the completion of (X, dε), ∂Xε = ∂εX = Xε \ X.
Thus, Xε is also a length space.

Remark. If X is Gromov hyperbolic, then, for ε small enough, ∂Xε coincides
with the Gromov boundary ofX and dε is a visual distance (cf. [CDP, BHK]).
That is, we may extend the definition of the Gromov product to the boundary
∂Xε and then, |x − y|ε ≍ e−ε(x|y) holds if 0 < ε ≤ ε0(δ) for some constant
ε0(δ) > 0 which depends only on δ. When dealing with a hyperbolic space
X, we will write indifferently

∂εX, ∂∞X, ∂X

to denote its boundary. In any case and unless specified, metrics on the
boundary will always be visual metrics dε as above for some fixed parameter
ε > 0 small enough.

Topology on R. If γ ∈ R then γ is geodesic for dε. Indeed, let γ be a curve
starting from o that is parameterised by arclength. It follows that |γ(t)| ≤ t
for all t ∈ [o, ℓ(γ)]. Therefore,

ℓε(γ) =

∫ ℓ(γ)

0

e−ε|γ(t)|dt ≥
∫ ℓ(γ)

0

e−εtdt ≥ 1

ε

(
1− e−εℓ(γ)

)
.

We have equality when γ is geodesic for d0.

For γ ∈ R, the limit in Xε of γ(t) at ℓ(γ) exists since any sequence (γ(tn))
with tn → ℓ(γ) is a dε-Cauchy sequence. Let us define

π(γ) = lim
t→ℓ(γ)

γ(t).

The closure of each element γ ∈ R is thus compact in Xε. Therefore, we
may endow R with the Hausdorff topology of non-empty compact subsets of
Xε with respect to dε.
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Lemma 3.1.1 The set R is compact and the map π : R→ Xε is continuous
and surjective. Furthermore, R∞ is closed in R and π|R∞

: R∞ → ∂Xε is
also surjective.

Proof: Let (γn) be a sequence in R. If lim inf ℓ(γn) < ∞, then we may
extract a subsequence which converges on any compact subset of X in the
d0 topology. Therefore, it also converges for the dε metric.

We might as well assume that each γn has infinite length. Then (R+
γn−→

X)n is equicontinuous and for any t ≥ 0, |γn(t)| remains in a compact set
of X (|γn(t)| = |t|), so we may apply the Arzela-Ascoli theorem and extract
a convergent subsequence to a continuous function γ : R+ → X. It follows
that the convergence is uniform on compact subsets of X and that γ ∈ R∞.
It remains to prove that γ is also the limit in the dε topology.

Let t0 > 0 be large; if t > t0, then

|γn(t)− γ(t)|ε ≤ |γn(t0)− γn(t)|ε + |γn(t0)− γ(t0)|ε + |γ(t0)− γ(t)|ε

≤ |γn(t0)− γ(t0)|ε + (2/ε) exp(−εt0) .

Therefore, if η > 0, there is t0 such that (2/ε) exp(−εt0) < η/2, there is
n0 such that, for n ≥ n0, |γ(t) − γn(t)| ≤ η/2 for all t ∈ [0, t0], and so, for
these t,

|γn(t)− γ(t)|ε ≤ |γn(t)− γ(t)| ≤ η/2

and for t ≥ t0,

|γn(t)− γ(t)|ε ≤ |γn(t0)− γ(t0)|+
2

ε
e−εt0 ≤ η/2 + η/2 ≤ η .

The continuity of π is straightforward. Let us prove that π is surjective.
If x ∈ ∂Xε, then there is a sequence (xn) in Xε which converges to x. Let
γn be geodesic segments joining o to xn. It follows as above that (γn) is a
normal family and sub-converges to a geodesic ray γ ∈ R∞. One obtains,
for t ≤ |xn|,

|x− π(γ)|ε ≤ |π(γ)− γ(t)|ε + |γ(t)− γn(t)|ε + |γn(t)− xn|ε + |xn − x|ε

≤ (2/ε) exp(−εt) + |γ(t)− γn(t)|ε + |xn − x|ε.
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Let η > 0; if t ≥ t0 then (2/ε) exp(−εt) ≤ η/3. If n is large enough, then
|x − xn|ε < η/3, and |γ(t0) − γn(t0)|ε < η/3 so that |x − π(γ)|ε ≤ η and
x = π(γ).

Lemma 3.1.2 The following hold

Xε = Bε(o, 1/ε), ∂Xε = {x, |x|ε = (1/ε)} and B(o, R) = Bε(o, (1/ε)(1−e−εR)) .

Proof: Let x ∈ X and γ ∈ R be a geodesic segment joining o to x. It follows
that

|x|ε ≤
∫

γ

ρε =

∫ |x|

0

e−εsds =
1

ε
(1− e−ε|x|) <

1

ε
.

This implies that B(o, R) = Bε(o, (1/ε)(1− e−εR)) and Xε ⊂ B(o, 1/ε).

Let x ∈ ∂Xε. There is a sequence (xn) of X such that xn converges to x.
Since X is a proper space, it follows that |xn| → ∞. Furthermore,

|xn|ε ≥ (1/ε)(1− e−ε|xn|)

so that |x|ε = 1/ε. This establishes the lemma.

Shadows. Let x ∈ X, R > 0. The shadow ℧(x,R) of B(x,R) is the set of
points y in Xε for which there is a d0-geodesic curve joining o to y which
intersects B(x,R). Let ℧∞(x,R) = ℧(x,R)∩∂Xε be its trace on ∂Xε. When
R = 1 we employ the notation ℧(x) for ℧(x, 1).

Lemma 3.1.3 For any x,R, there is a constant CR > 0 such that

diamε℧(x,R) ≤ CRe
−ε|x| .

Proof: Let y ∈ ℧(x,R). There is a geodesic segment [o, y] and a point
p ∈ B(x,R) ∩ [o, y]. Therefore,

|y − x|ε ≤ |y − p|ε + |x− p|ε.
Since |x|−R ≤ |p| ≤ |x|+R, it follows that |x−p|ε ≤ ReεRe−ε|x|. Moreover,

|p− y|ε ≤ eεR

∫ |y|

|p|

e−εtdt ≤ eεR

ε
e−ε|p| ≤ e2εR

ε
e−ε|x| .

This establishes the estimate.
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Remark. Shadows are almost round subsets of the boundary. More pre-
cisely: if X is Gromov hyperbolic and K-quasi-starlike, then, for a fixed R
which is chosen large enough, there is a constant C = C(ε, R,K) such that,
for any x ∈ X, there is a boundary point a ∈ ∂X such that

B(a, (1/C)e−ε|x|) ⊂ ℧∞(x,R) ⊂ B(a, Ce−ε|x|) .

A proof of this fact can be found in [Coo]. Furthermore, the family {int(℧(x,R))}
defines a basis of neighborhoods in Xε for points at infinity.

Distance to the boundary. If x ∈ Xε, we let δε(x) = distε(x, ∂Xε).

Lemma 3.1.4 If X is K-quasi-starlike, then for all x ∈ X,

e−ε|x|

ε
≤ δε(x) ≤ CK,ε

e−ε|x|

ε
.

Proof: Let x ∈ X. We start with a first coarse estimate :

δε(x) ≥
∫ ∞

|x|

e−εtdt =
1

ε
e−ε|x| .

If there is a ray γ ∈ R∞ such that x ∈ γ, then

δε(x) =

∫ ∞

|x|

e−εtdt =
e−ε|x|

ε
=
ρε(x)

ε
.

In general, since X is K-quasi-starlike, there is a ray γ ∈ R∞ and a point p ∈
B(x,K)∩γ. Therefore, |x|−K ≤ |p| ≤ |x|+K and |x−p|ε ≤ CKe

−ε|x||x−p|.
Then

δε(x) ≤ |x− p|ε + δε(p) ≤ CKe
−ε|x| +

e−ε(|x|−K)

ε
≤ CK,εe

−ε|x| .

Quasi-isometries versus quasisymmetries. A quasi-isometry f : X → Y
between two metric spaces is a map for which there are constants λ ≥ 1 and
c > 0 such that
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1. [bi-Lipschitz in the large] for any x, x′ ∈ X,

1

λ
|x− x′| − c ≤ |f(x)− f(x′)| ≤ λ|x− x′|+ c,

2. [nearly surjective] for any y ∈ Y , there is some x ∈ X such that
|f(x)− y| ≤ c.

We note that if f : X → Y is a quasi-isometry, then there exists a quasi-
isometry g : Y → X such that |g ◦ f(x)− x| ≤ C for some constant C <∞.

It is well-known that if Φ : X → Y is a quasi-isometry between two
hyperbolic spaces, then it extends as a quasisymmetric homeomorphism ϕ :
∂X → ∂Y , if we endow the boundaries with visual metrics. For the converse,
we have

Theorem 3.1.5 (M. Bonk & O. Schramm) Let X, Y be two quasi-starlike
hyperbolic space. For any quasisymmetric homeomorphism ϕ : ∂X → ∂Y ,
there is a quasi-isometric map Φ : X → Y which extends ϕ.

For a proof, see Theorem 7.4 and Theorem 8.2 in [BS].

3.2 Spaces associated to finite branched cov-

erings

Suppose f : X1 → X0 is an f.b.c. with repellor X, and all the conditions
on X0,X1, f , and X stated at the beginning of §2.2 are satisfied. We as-
sume furthermore that we are given a finite open covering U = U0 of X by
connected subsets of X0 which satisfies axiom [Expansion] in the definition
of topologically cxc. We assume neither axiom [Irreducibility] nor axiom
[Degree].

Under these assumptions, we prove

Theorem 3.2.1 The pair (f,U) defines a proper, geodesic, unbounded, quasi-
starlike, metric space Γ together with a continuous map F : Γ → Γ with the
following property. There is a constant ε0 > 0 such that, for any ε ∈ (0, ε0),
there exists a homeomorphism

φε : X → ∂εΓ
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such that φε ◦ f = F ◦ φε.
The map F extends as a Lipschitz map F : Γε → Γε sending the boundary

to the boundary, and, F (B(ξ, re−ε)) = B(F (ξ), r) holds for any ξ ∈ Γ \ {o}
and any r ∈ (0, |F (ξ))|ε).

In the above theorem, Γε and ∂εΓ are defined as in the previous section,
and B(ζ, r) denotes the ball of radius r about ζ in Γε.

Note the similarity of this statement with the case of hyperbolic groups.
In the next section, we investigate more closely the geometry of Γε.

Definition of Γ. From the map f : X1 → X0 and the cover U , we construct a
topological space Γ which is a graph equipped with a distinguished basepoint
and which we define as follows.

The set V (Γ) of vertices is the union of the elements of U = ∪n≥0Un,
together with a base vertex o = {X}. It will be convenient to reindex the
levels as follows. For n ∈ N set

S(n) =





Un−1 if n ≥ 1,

{o} if n = 0.

For n ∈ N and a vertex W ∈ S(n), we set |W | = n. Thus, V (Γ) = ∪n≥0S(n).
Two vertices W1,W2 are joined by an edge if

||W1| − |W2|| ≤ 1 and W1 ∩W2 ∩X 6= ∅.

This definition forbids loops from a vertex to itself and multiple edges be-
tween vertices, so Γ is indeed a graph as claimed. The graph Γ is turned into
a geodesic metric space in the usual way by decreeing that each closed edge
is isometric to the Euclidean unit interval [0, 1]. Since each S(n) is finite,
the valence at each vertex is bounded (though not necessarily uniformly so)
and so Γ is proper. Since as subsets of X0, any vertex W ∈ S(n) intersects
a set W ′ ∈ S(n − 1), any vertex W can be joined to the basepoint o by a
geodesic ray in Γ. Hence Γ is connected. It is also 1/2-quasi-starlike, since
the midpoint of edges joining vertices at the same level lies at distance 1/2
from every geodesic ray emanating from o. By construction, S(n) is the
sphere of radius n about the origin o.

Action of the finite branched covering. If n ≥ 2 and W ∈ S(n) =
Un−1, then as subsets of X0, f(W ) ∈ S(n − 1) = Un−2, so f induces a map
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F : ∪n≥2S(n) → ∪n≥2S(n − 1). Define F (W ) = o for all W ∈ S(1) ∪ S(0);
thus F is defined on the vertex set V (Γ). To extend F over edges, observe

that if n ≥ 1 and if (as subsets of X0) W̃ , W̃ ′ are distinct inverse images

of W , then W̃ , W̃ ′, being distinct components of the inverse image, cannot
intersect. Thus, if W1,W2 are joined by an edge, the definition of edges given
above then implies that either

1. F (W1) 6= F (W2) and F (W1), F (W2) are joined by an edge, or

2. |W1|, |W2| ≤ 1 and F (W1) = F (W2).

Letting E be the union of edges joining pairs of elements of S(1), properties
(1) and (2) above imply that F extends naturally to a continuous map F :
Γ→ Γ which collapses B(o, 1)∪ S(0)∪E → {o}, and which otherwise sends
all edges homeomorphically onto their images.

Properties of F .

– F is 1-Lipschitz.

– F decreases levels by one: |F (ξ)| = |ξ| − 1 for all |ξ| ≥ 1.

– F sends rays to rays: F : (R,R∞)→ (R,R∞)

– F has the path lifting property for paths which avoid the base point o:
any path γ in Γ \ {o} can be lifted by F−1.

Once a basepoint has been chosen, the only ambiguity in defining the
lift arises from vertices corresponding to a component on which f is
non-injective. In the sequel of the paper, we will use this property
without mentioning it explicitly.

Lifts preserve lengths: if γ′ is a lift of a curve γ, then ℓ(γ) = ℓ(γ′).

– F maps shadows onto shadows: for any |ξ| ≥ 2, F (℧(ξ)) = ℧(F (ξ)).

To see this, note that since F maps rays to rays, it follows that F (℧(ξ)) ⊂
℧(F (ξ)). For the converse, let ζ ∈ ℧(F (ξ)) and let us consider a
geodesic curve γ joining F (ξ) to ζ . The function t 7→ |γ(t)| is strictly
monotone. Since F has the lifting property, there is a strictly mono-
tonic geodesic curve γ′ starting from ξ such that F (γ′) = γ. This
curve can be extended geodesically to the base point o. It follows that
℧(F (ξ)) ⊂ F (℧(ξ)), which proves the claim.
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Let ξ, ζ ∈ Γ\B(o, 1) and let γ be a geodesic segment joining these points.
Then

dε(F (ξ), F (ζ)) ≤
∫

F (γ)

e−ε|F (γ(t))|dF ≤
∫

γ

e−ε(|γ(t)|−1)dt ≤ eεdε(ξ, ζ) .

Therefore F is uniformly continuous so it extends to an eε-Lipschitz map
F : Γε → Γε.

Proposition 3.2.2 For any ξ ∈ Γε, and r < |F (ξ)|ε, F (Bε(ξ, re
−ε)) =

Bε(F (ξ), r).

Hence F is an open mapping.

Proof: We already know that F (Bε(ξ, re
−ε)) ⊂ Bε(F (ξ), r). Let us consider

ζ ′ ∈ Bε(F (ξ), r) and γ′ a dε-geodesic curve joining F (ξ) to ζ ′. Since r <
|F (ξ)|ε, it follows that γ′ avoids o. We let γ be a lift of γ′ which joins ξ to a
point ζ ∈ Γε. It follows that

|ξ − ζ |ε ≤ ℓε(γ) =

∫

γ

ρε(ξ)ds(ξ) = e−ε

∫

γ

ρε(F (ξ))ds(ξ) = e−ε

∫

γ′

ρε(ξ)ds(ξ)

so |ξ − ζ |ε ≤ e−ε|F (ξ)− ζ ′|ε ≤ e−εr and ζ ∈ Bε(ξ, e
−εr).

The following proposition says that if F n is injective on a ball, then it is
a similarity on the ball of one-fourth the size.

Proposition 3.2.3 Suppose B = B(ξ, r) ⊂ Γε and F n|B : B → B(F (ξ), enεr)
is a homeomorphism. Then for all ζ1, ζ2 ∈ B(ξ, r/4),

|F n(ζ1)− F n(ζ2)|ε = enε|ζ1 − ζ2|ε.

Proof: We first claim that the above equality holds when ζ1 = ξ and ζ = ζ2
is an arbitrary point in B. The upper bound is clear. To show the lower
bound, notice that F−n : B(F n(ξ), reεn) → B(ξ, r) is well defined, and let
γ ⊂ B(F n(ξ), reεn) be a curve joining F n(ξ) to F n(ζ). It follows that F−n(γ)
is a curve joining ξ to ζ inside B, so the proof of Proposition 3.2.2 shows
that

ℓε(F
−n(γ)) = e−εnℓε(γ) .
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Since F n|B is a homeomorphism, the claim follows.
The proposition follows immediately by applying the claim to the ball

centred at ζ1 of radius |ζ1 − ζ2|ε, which by hypothesis is contained in B and
hence maps homeomorphically onto its image under F n.

Comparison of X and ∂Γ. For any x ∈ X and n ∈ N, let Wn ∈ S(n)
contain x. The sequence (Wn) defines a ray γx in R∞ such that γx(n) = Wn.
There is a natural map φf : X → ∂εΓ defined by φf(x) = π(γx). In other
words: the sequence (Wn) is a Cauchy sequence in Γε, and we let φf(x) be
its limit. This map is well defined : if (W ′

n) is another sequence contained
in a ray γ′x, then d(Wn,W

′
n) ≤ 1 since x ∈ Wn ∩W ′

n ∩X, so π(γx) = π(γ′x).
Furthermore, F ◦ φf = φf ◦ f on X.

Proposition 3.2.4 The map φf : X → ∂εΓ is continuous and onto.

Proof: To prove surjectivity, suppose ξ ∈ ∂Γε. By Lemma 3.1.1, there
exists a ray γ ∈ R∞ such that π(γ) = ξ. For k ∈ N let Wk = γ(k), so that
Wk ∈ S(k). Then Wk ∈ Γε and ξ = limWk. But each Wk is also a subset of
X0 whose intersection with the repellor X contains some point wk. Since X
is compact, there exists a limit point x of (wk).

We claim φf(x) = ξ. By definition φf (x) = limVn, where Vn is an
arbitrary element of S(n) which as a subset of X contains x and where the
limit is in Γε. Then for each n ∈ N, since Vn is open and wk → x, there exists
k(n) ∈ N such that Wk ∩ Vn ∩ X 6= ∅ for all k ≥ k(n). By the definition
of shadows, Wk ⊂ ℧(Vn). By Lemma 3.1.3, |Wk(n) − Vn|ǫ → 0 as k → ∞.
Hence ξ = limWk = limWk(n) = limVn = φf(x) as required.

To prove continuity, suppose xk → x ∈ X. For all n ∈ N choose Wn ∈
S(n) containing x, so that ξ = φf(x) = limWn ∈ ℧∞(Wn). Then for all
n ∈ N there exists k(n) such that xk ∈Wn for all k ≥ k(n). By the definition
of φf , φf(xk) ∈ ℧∞(Wn). By Lemma 3.1.3, |φf(xk) − ξ|ε ≤ Ce−εn → 0 as
n→∞ and so φf(xk)→ ξ = φf(x).

We now turn to the proof of Theorem 3.2.1. We first prove the existence
of a preliminary metric in which the diameters of the sets φf(U), U ∈ Un

tend to zero exponentially fast in n.
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Theorem 3.2.5 Suppose Axiom [Expansion] holds. Then there exists a met-
ric on the repellor X and constants C > 1, θ < 1 such that for all n ≥ 0,

sup
U∈Un

diamU ≤ Cθn.

The proof is standard and mimics the proof of a preferred Hölder structure
given a uniform structure; see [Bou].

Proof: Let N0 be given by Proposition 2.4.1, 2(c) and put g = fN0 , V0 =
∪N0−1

j=0 Uj , Y1 = f−N0X0, Y0 = X0, and Vn = g−nV0. Then g is a finite
branched covering, the repellor of g is X (by total invariance), and the mesh
of Vn tends to zero. The conclusion of the above proposition (applied U ′

1 =
U ′

2 = V ′) and the definition of g implies

∀V ′ ∈ Vn, ∃V ∈ Vn−1 with V ′ ⊂ V. (3.1)

This and conclusion 2(b) of Proposition 2.4.1 imply immediately that for any
distinct x, y ∈ X, the quantity

[x|y] = max{n : ∀1 ≤ i ≤ n, ∃Vi ∈ Vi with {x, y} ⊂ Vi}

is finite. For x = y set [x, y] = ∞. The statement (3.1), Proposition 2.4.1
(c) and the definition of g imply for any triple x, y, z ∈ X,

[x|z] ≥ min{[x|y], [y|z]} − 1.

Fix ǫ > 0 small, and define

̺ǫ(x, y) = exp(−ǫ[x|y]).

Then ̺ǫ(x, y) = 0 if and only if x = y, and indeed ̺ǫ satisfies all properties
of a metric save the triangle inequality. Instead, we have

̺ǫ(x, z) ≤ eǫ max{(̺ǫ(x, y), ̺ǫ(y, z)}.

There is a standard way to extract a metric bilipschitz equivalent to ̺ε.
If ǫ < 1

2
log 2 then Proposition 7.3.10 of [GdlH] implies that there is a metric

dǫ on X satisfying

(1− 2
√

2)̺ǫ(x, y) ≤ dǫ(x, y) ≤ ̺ǫ(x, y).
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Letting diamǫ denote diameter with respect to dǫ, it is clear from the defi-
nitions that V ∈ Vn ⇒ diamǫV ≤ exp(−nǫ). It is then easy to check that
taking θ = exp(−ǫ) and

C = max{diamǫU : U ∈ ∪N0−1
i=0 Ui}

will do.

We may now prove Theorem 3.2.1.

Proof: (Theorem 3.2.1) It follows from Theorem 3.2.5 that there is a metric
and constants C > 0 and θ ∈ (0, 1) such that, for any W ∈ S(n), diamW ≤
Cθn. Let x, y ∈ X and let us consider a curve γ = (Wn)n∈Z joining φf(x) to
φf(y). It follows that

ℓε(γ) ≍
∑

e−ε|Wn| =
∑ e−ε|Wn|

diamWn

diamWn .

If ε > 0 is small enough, then e−ε|Wn| ≥ (1/C)θ|Wn| ≥ (1/C)diamWn. Fur-
thermore, there are points (zn) such that zn ∈Wn ∩Wn+1. For all k ∈ N, we
let γk be the subcurve of γ joining W−k to Wk. Then

ℓε(γk) ≥ (1/C)
∑

|n|≤k

diamWn

≥ (1/C)
∑

|n|≤k

dX(zn, zn+1)

≥ (1/C)dX(z−k, zk) .

Since γk is a subset of γ, {z−k, zk} tends to {x, y}, this implies that ℓε(γ) ≥
(1/C)dX(x, y), where C is independent of γ. Therefore, dε(φf(x), φf(y)) ≥
(1/C)dX(x, y).

The fact that F is Lipschitz and maps balls to balls is the content of
Proposition 3.2.2.
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3.3 Geometry of Γ

Let f : X1 → X0 and U satisfy the conditions listed at the beginning of §3.2.
The main result of this section is

Theorem 3.3.1 If (f,U) satisfies [Expansion], then Γ is Gromov hyperbolic.
If (f,V) also satisfies [Expansion], then Γ(f,U) is quasi-isometric to Γ(f,V).
If g = fn : Xn−1 → X0, then Γ(g,U) is quasi-isometric to Γ(f,U).

Hence, as long as the expansion axiom is satisfied, the quasi-isometry
class of Γ is an invariant of the conjugacy class of f : X1 → X0.

The proof of Thm 3.3.1 will follow from both Proposition 3.3.10 and
Proposition 3.3.12.

The naturality results given above are analogous to those enjoyed by
Cayley graphs of finitely generated groups.

3.3.1 Metric estimates

We start by gathering information on the geometry of balls, and how they
interact with the coverings.

Our main estimates are the following, which assert that the elements
φf(W ) enjoy geometric properties with respect to the metric dε similar to
those enjoyed by the sets U with respect to a metric for a cxc map; compare
Propositions 2.6.2 (Uniform roundness) and 2.6.6 (Balls are like connected
sets).

Notation. For an element W ∈ S(n), regarded as a subset of X1, we denote
by φf(W ) the set φf(W ∩X).

Proposition 3.3.2 1. There is some constant C > 1 such that, for all
W ∈ V \ {o}, there is a point ξ ∈ φf(W ) so that

Bε(ξ, (1/C)e−ε|W |) ⊂ φf(W ) ⊂ ℧∞(W ) ⊂ Bε(ξ, Ce
−ε|W |).

2. There is a radius r1 > 0 such that, for any n ≥ 1 and for any ξ ∈ ∂εΓ,
there is some W ∈ S(n) so that Bε(ξ, r1e

−εn) ⊂ φf(W ).

3. A maximal radius r0 > 0 exists such that, for any r ∈ (0, r0) and any
ξ ∈ ∂εΓ, there exist W and W ′ in U such that |W −W ′| = O(1),

φf(W ′) ⊂ Bε(ξ, r) ⊂ φf(W ),
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and
max{Round(φf(W ), ξ),Round(φf(W ′), ξ)} = O(1).

Since the set X0 is not assumed to be endowed with a metric, we shall
use uniform structures [Bou].

Since X1 has compact closure in X0, there is a unique uniform structure
on X1 compatible with its topology. We consider the uniform structure on X1

induced by the one on X1. Let us recall that an entourage Ω is a neighborhood
of the diagonal of X1×X1. If x ∈ X1, then Ω(x) = {y ∈ X1, (x, y) ∈ Ω} and

Ω ◦ Ω = Ω2 = {(x, z) ∈ X1 × X1, ∃ y ∈ X1, (x, y) ∈ Ω, (y, z) ∈ Ω}.

Proposition 3.3.3 Given an entourage Ω, there is some constant r = r(Ω) >
0 such that, whenever U ∈ S(1), u ∈ U ∩ X and Ω(u) ⊂ U , then, for

any n ≥ 1, any Ũ ∈ S(n) such that fn−1(Ũ) = U , and any preimage

ũ ∈ Ũ ∩ f−(n−1)({u}), the ball Bε(φf(ũ), re−εn) is contained in φf(Ũ).

Let us first prove some lemmata.

Lemma 3.3.4 Let γ : R→ Γ be a curve such that γ(Z) ⊂ V \{o} and which
connects two points u and v from the boundary. Let r ∈ (0, 1/ε). If ℓε(γ) < r
then

∪n∈Zφf(γ(n)) ⊂ Bε(u, r).

Proof: For any fixed n and any z ∈ φf(γ(n)),

|z − u|ε ≤ |z − γ(n)|ε + |γ(n)− u|ε .

But Lemma 3.1.4 implies that

|z − γ(n)|ε = distε(γ(n), ∂εΓ) ≤ |γ(n)− v|ε ≤ ℓε(γ|[n,∞[)

and |γ(n) − u|ε ≤ ℓε(γ|]−∞,n]) so that |z − u|ε ≤ ℓε(γ) < r. Therefore

z ∈ Bε(u, ℓε(γ)) and φf(γ(n)) ⊂ Bε(u, ℓε(γ)) for all n ∈ Z. Hence

∪n∈Zφf(γ(n)) ⊂ Bε(u, r).
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Definition. Given u ∈ ∂εΓ and r ∈ (0, 1/ε), we let V (u, r) be the set of all
vertices of Γ contained in curves of dε-length less than r joining u to another
boundary point.

It follows from the lemma above that φf(U) ⊂ Bε(u, r) for any U ∈
V (u, r).

Lemma 3.3.5 There is a function n : (0, 1/ε)→ N tending to infinity as r
goes to 0 such that, the level of any U ∈ V (u, r) is at least n(r).

Proof: Let U ∈ V (u, r) and denote by γ a curve defining U . One has

1

ε
e−ε|U | = distε(U, ∂Γ) ≤ ℓε(γ) < r

so that |U | ≥ (1/ε) log 1/(εr).

Lemma 3.3.6 Let Ω be an entourage of X1. There is a radius r > 0 which
depends only on Ω such that, for any u ∈ ∂Γ, W ⊂ Ω(φ−1

f (u)) whenever
W ∈ V (u, r).

Proof: Let us consider an entourage Ω0 such that Ω2
0 ⊂ Ω.

Since [Expansion] holds, an integer n0 exists so that, given any n ≥ n0,
any x ∈ X and any W ∈ S(n) with x ∈W , the inclusion W ⊂ Ω0(x) holds.

The uniform continuity of φ−1
f provides us with a first radius r1 > 0

(independent from u) such that, for any u ∈ ∂Γ, φ−1
f (Bε(u, r1)) ⊂ Ω0(φ−1

f (u)).
We choose r ∈ (0, r1) as large as possible so that n(r) ≥ n0. Note that

r depends only on Ω. Thus, if W ∈ V (u, r) and v ∈ φf(W ) then φ−1
f (v) ∈

Ω0(φ−1
f (u)) by Lemma 3.3.4. Besides, |W | ≥ n0, so that W ⊂ Ω0(φ−1

f (v)).

Therefore, W ⊂ Ω2
0(φ−1

f (u)) ⊂ Ω(φ−1
f (u)).

We are now ready for the proofs of the Propositions.

Proof: (Proposition 3.3.3). Let Ω be an entourage of X1, U ∈ S(1), u ∈
U ∩ X, satisfy Ω(u) ⊂ U . Let us choose another entourage Ω0 such that
Ω0 ⊂ Ω.
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Choose n ≥ 1, Ũ ∈ S(n) and ũ ∈ f−(n−1)({u})∩Ũ such that fn−1(Ũ) = U .
Let us also consider the constant r > 0 given by Lemma 3.3.6 applied to Ω0.

Let ṽ ∈ φ−1
f (Bε(φf(ũ), re−ε(n−1))) and γ be a curve joining φf(ũ) to φf(ṽ)

of dε-length less than re−ε(n−1). Set

K = ∪n∈Zγ(n) ⊂ X0.

Then K is a continuum by definition which joins ũ to ṽ. Therefore, fn−1(K)
joins u to fn−1(ṽ) = v, and F n−1(φf(K)) ⊂ Bε(φf(u), r). By Lemma 3.3.6,
fn−1(γ(k)) is in Ω0(φ−1

f (u)) for any k ∈ Z, so that fn−1(K) ⊂ U . It follows

that K ⊂ Ũ since fn−1 : Ũ → U is proper and K is connected.

Proof: (Proposition 3.3.2) Let Ω be an entourage such that, for any x ∈ X,
there is some U ∈ S(1) such that Ω(x) ⊂ U .

1. Let n be the level of W and pick some x′ ∈ (X ∩ fn−1(W )).

Let x ∈ f−(n−1)({x′})∩W ; it follows from Proposition 3.3.3 that φf(W )
will contain the ball Bε(ξ, re

−εn) where r = r(Ω) and ξ = φf(x).

Furthermore, Lemma 3.1.3 implies that diamεφf(W ) ≍ diamε℧(W ) ≍
e−ε|W |. It follows that there is some constant C > 1 such that, for all
W ∈ V , there is a point ξ ∈ φf(W ) so that

Bε(ξ, (1/C)e−ε|W |) ⊂ φf(W ) ⊂ ℧∞(W ) ⊂ Bε(ξ, Ce
−ε|W |).

2. Similarly, Proposition 3.3.3 implies that, for any n ≥ 1, there is some
W ∈ S(n) such that φf(W ) will contain the ball Bε(ξ, r1e

−εn) where
r1 = r(Ω) is given by the proposition.

3. Fix r ∈ (0, δ) and ξ ∈ ∂Γ, where δ is the Lebesgue number of S(1) in
∂εΓ.

It follows from point 1. above that, for any n and any W ∈ S(n),
diamεφf(W ) ≍ e−εn.

Moreover, from point 2., there is some W such that Round(φf(W ), ξ) =
O(1) and Bε(ξ, r1e

−εn) ⊂ φf(W ). Let m ≥ n be so that the diameter of
any element of S(m) is at most r. It follows from the diameter control
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above that m may be chosen so that |m−n| = O(1). Point 2. provides
us with an element W ′ ∈ S(m) so that Round(φf(W ′), ξ) = O(1) and
φf(W ′) ⊂ Bε(ξ, r).

As a consequence of Proposition 3.3.2 and its proof, we obtain the fol-
lowing. For n ∈ N, let Vn = {φf(U) : U ∈ Un}. Thus for each n, Vn is a
covering of ∂εΓ by open sets which, in general, need not be connected.

Proposition 3.3.7 The map F : ∂εΓ → ∂εΓ and the sequence of cover-
ings Vn, n = 0, 1, 2, . . . together satisfy Axioms [Roundness distortion] and
[Relative diameter distortion].

Remark: If in addition axiom [Degree] is satisfied, it would be tempting to
assert that F : ∂εΓ→ ∂εΓ is also metrically cxc . However, even though Γ is
locally connected (since shadows define connected neighborhoods of points at
infinity), the boundary ∂εΓ need not be (locally) connected. Our definition
of metrically cxc is not purely intrinsic to the dynamics on the repellor X
since we require that the covering U0 consists of connected sets which are
contained in an a priori larger space X1. Unfortunately, in general we do
not know how to modify the definition of Γ so that F : Γε → Γε becomes a
finite branched covering map on an open connected neighborhood of ∂εΓ. If
this were possible, it seems likely that one could then establish a variant of
Proposition 3.3.7 in which the conclusion asserted that the model dynamics
was indeed metrically cxc.

Proof: The forward and backward relative diameter distortion bounds follow
immediately from Proposition 3.3.2. Since F maps round balls in the metric
dε to round balls, the forward roundness function ρ+ may be taken to be
the identity. We claim that we may take the backward roundness distortion
function to be linear.

First, suppose F n : (Ṽ , ξ̃) → (V, ξ) where V = φf(W ) and W ∈ S(k).
Suppose B(ξ, r) ⊂ V ⊂ B(ξ,Kr). Then Kr ≍ e−εk. Proposition 3.3.3 shows

that B(ξ̃, ce−εnr) ⊂ Ṽ for some uniform constant c > 0. By Proposition

3.3.2, diamε(Ṽ ) ≍ e−(n+k)ε. Hence

Round(Ṽ , ξ̃) .
e−(n+k)ε

e−nεr
≍ K ≍ Round(V, ξ).
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Proposition 3.3.8 Suppose axiom [Expansion] holds. Let Y denote the set
of points y in X such that there exists an element U ′ of U containing y such
that all iterated preimages Ũ ′ of U ′ map by degree one onto U ′.

If Axiom [Degree] fails, and if Y ∩X is dense in X, then ∂εΓ fails to be
doubling.

Remarks:

1. We have always f−1(Y ) ⊂ Y . If Axiom [Irreducibility] holds and Y is
nonempty then Y is dense in X, so the above proposition implies that
∂εΓ fails to be doubling.

2. It is reasonable to surmise that Y = X − Pf–this is the case e.g. for
rational maps. However, we are neither able prove this assertion nor
find counterexamples.

Proof: Suppose Axiom [Degree] fails. It follows easily that then there exists
some U ∈ U0 such that for all p ∈ N, there exists n ∈ N and a preimage
Ũ ∈ Un of U such that fn : Ũ → U has degree ≥ p. The assumption and
axiom [Expansion] imply that there exists U ′ ⊂ U , U ′ ∈ UN independent of

p and of Ũ such that Ũ contains at least p disjoint preimages Ũ ′ of Ũ .

By Proposition 3.3.2, φf(Ũ) and φf(Ũ ′) are uniformly almost round,

diamε(φf(Ũ)) ≍ exp(−εn), and diamε(φf(Ũ)) ≍ exp(−ε(n + N)). So at
least p balls of radius C ′ ·exp(−ε(n+N)) are needed to cover a ball of radius
C exp(−εn), where C ′, C are independent of n. Therefore ∂εΓ fails to be
doubling.

We close this section with the following consequence of Proposition 3.3.2
which will be useful in our characterization rational maps; cf. Definition
2.6.8 and Corollary 2.6.9.

Corollary 3.3.9 If for each W ∈ ∪S(n), the sets φ(W ∩X) and X \φ(W ∩
X) are connected, then ∂Γ is linearly locally connected.
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Proof: Let us fix Bε(ξ, r). Proposition 3.3.2, point 3, implies the existence
of vertices W,W ′ such that ||W |− |W ′|| ≤ C1 for some universal constant C1

and such that
φ(W ) ⊂ Bε(ξ, r) ⊂ φ(W ′).

Therefore, diamεφ(W ) ≍ diamεBε(ξ, r) ≍ diamεφ(W ′).
If ζ, ζ ′ ∈ Bε(ξ, r), then they are connected by φ(W ′) which is connected

by assumption. Similarly, if ζ, ζ ′ /∈ Bε(ξ, r) then they are joined within
X \ φ(W ).

3.3.2 Hyperbolicity

We are now ready to prove the first part of Theorem 3.3.1.

Proposition 3.3.10 If φf : X → Γ is a homeomorphism, then Γ is hyper-
bolic.

The proof is an adaptation of Proposition 2.1 in [BP] and its main step
is given by the following lemma.

Lemma 3.3.11 For any W,W ′ ∈ V ,

diamε(φf(W ) ∪ φf(W ′)) ≍ e−ε(W |W ′) .

Proof: We assume that |W ′| ≥ |W |. We let n ∈ N ∪ {∞} be the smallest
integer such that

distε(φf(W ), φf(W ′)) ≥ r1e
−εn

where r1 is the constant given by Proposition 3.3.2. Let (ξ, ξ′) ∈ φf(W ) ×
φf(W ′) satisfy distε(φf(W ), φf(W ′)) = |ξ − ξ′|ε. Let m = min{|W |, n} − 1;
there is some C ∈ S(m) such that Bε(ξ, r1e

−εn) ⊂ φf(C), so that W,W ′ ∈
℧(C) and

diamε(φf(W ) ∪ φf(W ′)) ≥ max{distε(φf(W ), φf(W ′)), diamεφf(W )}.

The maximum of distε(φf(W ), φf(W ′)) and of diamεφf(W ) is at least of
order e−εm. Hence

diamε(φf(W ) ∪ φf(W ′)) & e−ε|C| .
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Since (W |W ′) ≥ |C|, it follows that

diamε(φf(W ) ∪ φf(W ′)) & e−ε(W |W ′) .

For the other inequality, we let {Wj}0≤j≤|W−W ′| be a geodesic chain which
joins W to W ′. For convenience, set m = |W |, m′ = |W ′| and D = |W−W ′|.
Then

diamε(φf(W ) ∪ φf(W ′)) ≤
∑

0≤j≤D

diamε(φf(Wj))

≤
∑

0≤j≤k

diamε(φf(Wj)) +
∑

k+1≤j≤D

diamε(φf(Wj))

.
∑

0≤j≤k

e−ε(m−j) +
∑

0≤j≤D−(k+1)

e−ε(m′−j)

. e−ε(m−k−1) + e−ε(m′−D+k))

Choosing k = (1/2)(D +m−m′), one gets

diamε(φf(W ) ∪ φf(W ′)) . e−ε(1/2)(m′+m−D) . e−ε(W |W ′) .

The lemma is established.

Proof: It follows from Lemma 3.3.11 that if W1,W2,W3 are three vertices,
then

e−ε(W1|W3) . diamε(φf(W1) ∪ φf (W3))

. diamε(φf(W1) ∪ φf (W2)) + diamε(φf(W2) ∪ φf(W3))

. e−ε(W1|W2) + e−ε(W1|W3)

. max{e−ε(W1|W2), e−ε(W2|W3)}
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so that there is a constant c such that

(W1|W3) ≥ min{(W1|W2), (W2|W3)} − c .

This proves the hyperbolicity of X.

The hyperbolicity of Γ implies that the homeomorphism and quasisym-
metry type of ∂Γ does not depend on an ε > 0 provided that ε is small
enough, and that, for such a parameter,

|ξ − ζ |ε ≍ e−ε(ξ|ζ)

for points on the boundary.

We turn now to the second part of Theorem 3.3.1–the uniqueness of the
quasi-isometry type of Γ = Γ(f,U).

Proposition 3.3.12 Assume that f : (X1, X)→ (X0, X) is a finite branched
covering of degree d. Let Sj(1), j = 1, 2, be finite coverings. We denote by
Γj, Fj, εj and φj : X → ∂Γj the graph, dynamics, weight and projection map
associated to Sj(1). If both coverings satisfy [Expansion] and if φ1 are φ2 are
both homeomorphisms, then Γ1 is quasi-isometric to Γ2.

By Theorem 3.1.5, it is enough to show that ∂Γj , j = 1, 2 are quasisym-
metrically equivalent, and this is what we actually prove. Without further
combinatorial finiteness or uniformity properties, it seems difficult to work
directly with the graphs Γj to show that they are quasi-isometric.

We start with some lemmata.

Axiom [Expansion] and Proposition 2.4.1(2)(a) imply the following result.

Lemma 3.3.13 For j = 1, 2, integers nj exist such that

1. for any Uj ∈ Sj(nj), there is U3−j ∈ S3−j(1) which contains Uj.

2. for any U3−j ∈ S3−j(1), there is Uj ∈ Sj(nj) contained in U3−j.
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Proof: The finiteness of S1(1) ∪ S2(1) implies that there is some entourage
Ω of X1 such that any U ∈ S1(1)∪S2(1) contains Ω(x) for some x ∈ X, and,
for any x ∈ X, Ω(x) is contained in some element of S1(1) and of S2(1).

We treat the case j = 1. Since [Expansion] holds, there is some n1 so
that any W ∈ S1(n1) is contained in Ω(x) for any x ∈W ∩X.

1. If U1 ∈ S1(n1), then consider x ∈ U1 so that U1 ⊂ Ω(x). There is some
U2 ∈ S2(1) such that Ω(x) ⊂ U2. Therefore U1 ⊂ U2.

2. If U2 ∈ S2(1), let x ∈ U2 such that Ω(x) ⊂ U2. Let U1 ∈ S1(n1) contain
x. Thus,

U1 ⊂ Ω(x) ⊂ U2.

Lemma 3.3.14 A constant K ≥ 1 exists such that, for j = 1, 2, for any
x ∈ X and any n ≥ nj, there are some U ∈ Sj(n), W ′ ∈ S3−j(n + n3−j − 1)
and W ∈ S3−j(n− nj + 1) such that

1. x ∈W ′ ⊂ U ⊂W .

2. Roundεj
(φj(U), φj(x)) ≤ K, Roundε3−j

(φ3−j(W
′), φ3−j(x)) ≤ K and

Roundε3−j
(φ3−j(W ), φ3−j(x)) ≤ K.

It follows that

diamε3−j
φ3−j(W

′) ≍ diamε3−j
φ3−j(U) ≍ diamε3−j

φ3−j(W ) .

Proof: We let j = 1. Proceeding as usual, let us rename x = x̃.
Let x̃ ∈ X. Using the fact that S1(n1) is finite, there is some U ∈ S1(n1)

such that Roundε1(φ1(U), φ1(fn−n1(x̃))) ≤ K ′
1 for some constant K ′

1 ≥ 1.

Let Ũ be the component of f−(n−n1)(U) which contains x̃. Then Ũ ∈ S1(n)

and Propositions 3.3.3 and 3.3.2(1) imply Roundε1(φ1(Ũ), φ1(x̃)) ≤ K1 for
some constant K1 ≥ 1.

By Lemma 3.3.13, there is some W ∈ S2(1) which contains U . It follows
from compactness that there exists a constant K ′

2 independent of x̃ such that

Roundε2(φ2(W ), φ2(f
n−n1(x̃))) ≤ K ′

2;
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see the proof of Proposition 2.6.2(1).

Let W̃ be the component of f−(n−n1)(W ) which contains x̃. Then W̃ ∈
S1(n − n1 + 1) and Proposition 3.3.3 implies Roundε2(φ2(W̃ ), φ2(x̃)) ≤ K2

for some constant K2 ≥ 1.

By Lemma 3.3.13, the point fn−1(x̃) belongs to some W ′ ∈ S2(n2) con-

tained in fn−1(Ũ). Since S2(n2) is finite, one can assume that

Roundε2(φ2(W
′), φ2(f

n−1(x̃))) ≤ K ′
3

for some constant K ′
3 ≥ 1.

Let W̃ ′ be the component of f−(n−1)(W ′) which contains x̃. Then W̃ ′ ∈
S1(n + n2 − 1) and Proposition 3.3.3 implies Roundε2(φ2(W̃

′), φ2(x̃)) ≤ K3

for some constant K3 ≥ 1.

Let K = max{K1, K2, K3}. The lemma follows from Proposition 3.3.2
once we have noticed that |W −W ′| = n1 + n2.

We now give the proof of Proposition 3.3.12.

Proof: (Proposition 3.3.12)
Let Uj , j = 1, 2 denote the corresponding collections of open sets defined

by two different coverings at level zero. For j = 1, 2 let | · |j denote the
metric on the repellor X of f : X1 → X0 obtained by pulling back the metric
dεj

on ∂εj
Γ via the homeomorphism φj . Roundness and diameters in these

metrics will be denoted with subscripts. We will show that the identity map
is quasisymmetric: we want to find a homeomorphism η : R+ → R+ such
that, given any x, y, z ∈ X,

|x− z|2
|x− y|2

≤ η

( |x− z|1
|x− y|1

)
.

Let Ω be an entourage such that, for any x ∈ X any j = 1, 2, there is
some Uj ∈ Sj(1), such that Ω(x) ⊂ Uj .

By the uniform continuity of φ1, φ2 and their inverses, it is enough to
consider x, y, z ∈ X such that y, z ∈ Ω(x).

The strategy is the following. Let us assume that z is closer to x than y.
Then, we may find neighborhoods Uy, Ux ∈ U of x and y respectively such
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that the “ring” Uy \Ux separates the set {x, z} from y. The 3-point condition
will follow from a straightforward argument using what is known about the
sizes of the neighborhoods in each of the two metrics.

By Proposition 3.3.2, there exists a neighborhood Uy ∈ U1 of x not
containing y such that |x− y|1 ≍ diam1(Uy), and Round1(Uy, x) ≤ K, where
K is a uniform constant.

Again by Proposition 3.3.2, there exists a neighborhood Uz ∈ U1 of x
containing z such that |x− z|1 ≍ diam1(Uz) and Round1(Uz, z) ≤ K.

Therefore, Lemma 3.3.14 implies the existence of W ′
y ∈ S2(|Uy|1 +n2−1)

which contains x but is contained in Uy such that Round2(W
′
y, x) ≤ K and

diam2(W ′
y) ≍ diam2(Uy).

Similarly, a vertex Wz ∈ S2(|Uz|1 + n1 + 1) which contains Uz exists such
that Round2(Wz, x) ≤ K and diam2(Wz) ≍ diam2(Uz).

Since Round2(W ′
y, x) ≤ K, it follows that

|x− z|2
|x− y|2

.
diam2(Wz)

diam2(W ′
y)
≍ e−ε2(|Wz |2−|W ′

y|2)

But since x ∈Wz ∩W ′
y,

|Wz|2 − |W ′
y|2 = (|Uz|1 − |Uy|1) + (n2 − n1)

one obtains

|x− z|2
|x− y|2

.

(
diam1(Uz)

diam1(Uy)

)ε2/ε1

.

( |x− z|1
|x− y|1

)ε2/ε1

and so the identity map is a quasisymmetry.

This concludes the proof of the second conclusion of Theorem 3.3.1.

The last conclusion of Theorem 3.3.1 is easily proved along the following
lines. There is a canonical inclusion ι from the vertices of Γ(fn,U) to those
of Γ(f,U) which sends a vertex of Γ(fn,U), say V ∈ Unk with |V | = k, to
the vertex in Γ(f,U) called again V ∈ Unk with now |V | = nk. The image
of ι is clearly n-cobounded, an isometry on horizontal paths, and multiplies
the lengths of vertical paths by a factor of n. Hence ι is n-Lipschitz. Using
these facts one proves easily that ι is in fact a quasi-isometry, and the proof
of Theorem 3.3.1 is complete.
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3.4 Measure theory

In this section, we assume that f : X1 → X0 is a degree d fbc with repellor
X as in §3.2. As in the previous section, we assume that we are given a
covering U of X by connected open subsets of X1 which satisfies [Expansion].
Let Γ = Γ(f,U) be the Gromov hyperbolic graph associated to f and U as
in the previous section. Fix ε > 0 small enough so that φf : X → ∂εΓ is a
homeomorphism.

We now assume that axiom [Irreducibility] holds as well.
The main result of this section is the following result.

Theorem 3.4.1 Assume that Axioms [Expansion] and [Irreducibility] hold.
Then there is a unique invariant mixing and ergodic measure µf which is
quasiconformal of dimension (1/ε) log d on (∂Γ, dε). This measure describes
the distribution of preimages of points and of periodic points. Furthermore,
the metric entropy and topological entropy satisfy the following bounds

log d−
∫

log dF dµf ≤ hµ(F ) ≤ htop(F ) ≤ v ≤ log d

and
hµ(F )

ε
≤ dimµf ≤ dim ∂εΓ ≤

v

ε
≤ log d

ε
,

where

v = lim
1

n
log |S(n)|.

Precise statements and definitions are given in the next few subsections.
In the top chain of inequalities, the first one is a consequence of Rokhlin’s

formula, which we will show applies. The second follows from the Variational
Principle, the third from generalities since F is Lipschitz, and the last since
F is a degree d fbc.

In the remainder of this section, we dispense completely with the topo-
logical spaces X,X0,X1 and deal exclusively with F : Γε → Γε.

3.4.1 Quasiconformal measures

Recall that f induces a continuous surjective Lipschitz map F : Γε → Γε

which maps vertices to vertices and edges (outside Bε(o, 2)) homeomorphi-
cally onto edges.
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Multiplicity function for F . Let df(x) denote the local degree of f at a
point x ∈ X.

– If ξ ∈ ∂εΓ, let dF (ξ) = df(φ−1
f (ξ)).

– If W ∈ V , |W | ≥ 2, let dF (W ) = deg(f |W ).

– For each (open) edge e = (W,W ′) with |W |, |W ′| ≥ 1, choose a point
xe ∈W ∩W ′ ∩X.

If e ⊂ Γε \B(o, 2), set, for all ξ ∈ e,

dF (ξ) =
∑

y∈(W∩W ′∩f−1(xF (e)))

df(y) .

Remarks:

1. The definition depends on the choices of points xe, but this is irrelevant
for our purposes.

2. The function dF may vanish on certain edges. For example, let X =
X1 = X+0 = R/Z, let f(x) = 2x modulo 1, and let U0 = {U, V } where
U = X −{1/4 + Z} and v = X −{3/4 + Z}. Note that 0 + Z ⊂ U ∩ V
but that U ∩ V is not connected. S(1) consists of the two vertices
U, V joined by a single edge e. Choose xe = 0 + Z. The four elements
of S(2) are the two preimages of U given by the intervals (mod Z)
(−3/8, 1/8) and (1/8, 5/8) and the two preimages of V are (−1/8, 3/8)
and (3/8, 7/8). According to the definition, the edge joining (1/8, 5/8)
and (−1/8, 3/8) is given weight zero by dF since the intersection of
these two intervals contains neither 0 nor 1/2, the preimages of the
origin.

3. If dF (ξ) ≥ 2 at a point ξ in the interior of an edge e (such as when
the chosen point xe ∈ ∂εΓ is a branch point of F on the boundary),
then F is never a branched covering with degree function dF , since dF

is constant on interiors of edges, and an honest f.b.c. is unramified on
a dense open set. Conversely, if dF ≡ 1 on ∂Γε, then F is an fbc in a
neighborhood of ∂εΓ.

The following properties hold.
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Lemma 3.4.2 The multiplicity function behaves as a local degree function.
More precisely,

(i) for any ξ ∈ Γε \B(o, 1),

∑

F (ζ)=ξ

dF (ζ) = d ;

(ii) for any ξ ∈ Γε \ B(o, 2), there is a neighborhood N such that, for any
ζ ∈ N ,

dF (ξ) =
∑

ζ′∈F−1({F (ζ)})∩N

dF (ζ ′).

Proof:

(i) The statement is clear for vertices and points from the boundary. Let

e = (W,W ′) be an edge, and let us denote by W̃1, . . . , W̃k the compo-

nents of f−1(W ), and by W̃ ′
1, . . . , W̃

′
k′ the components of f−1(W ′).

If f(y) = xe, then y there exists a unique edge ẽ = (W̃y, W̃y′) such that

y ∈ W̃y ∩ W̃ ′
y. Therefore

∑

F (ẽ)=e

dF (ẽ) =
∑

F (ẽ)=e

∑

y∈(W̃y∩W̃ ′
y)∩f−1(xe)

df(y) =
∑

f(y)=xe

df(y) = d .

(ii) The statement is clear on Γ \ B(o, 2). Let ξ ∈ ∂Γ. There is some
vertex W0 such that φf(W0) ∋ ξ, and dF (W0) = dF (ξ). Let W1 ⊂ W0

small enough so that ℧∞(F (W1)) ⊂ φf (F (W0)). Thus, for any U ∈
int(℧(F (W1))), U ⊂ F (W0), so that

∑

F (Ũ)=U,Ũ⊂W0

dF (Ũ) = df(W0) = dF (ξ) .

Note that if we set dF n(ξ) = dF (ξ) . . . dF (F n−1(ξ)), then the lemma re-
mains true for dF n as well.
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Action of F on measures. If ϕ is a continuous test function defined on Γε\
Bǫ(o, 1), then its pullback under F , given by the formula F ∗ϕ(ξ) = ϕ ◦ F (ξ),
defines a continuous function on Γε \B(o, 2). By duality, one may define for
Borel probability measures ν with support in Γε \B(o, 2) its pushforward by
〈F∗ν, ϕ〉 = 〈ν, F ∗ϕ〉. Thus in particular, (F∗ν)(E) = ν(F−1(E)) for all Borel
sets E.

The point of the construction of the multiplicity function dF is the fol-
lowing. If ϕ is a continuous test function on Γε \ Bǫ(o, 1), its push-forward
under F

F∗ϕ(ξ) =
∑

F (ζ)=ξ

dF (ζ)ϕ(ζ)

is again a continuous function on Γ \ B(o, 1). By duality, we define the
pullback of a Borel measure ν by the formula 〈F ∗ν, ϕ〉 = 〈ν, F∗ϕ〉 (cf. [DiSi],
§2).

Quasiconformal measures. If µ, ν are measures we write µ << ν if ν
is absolutely continuous with respect to µ. Let µ be a regular Borel prob-
ability measure on ∂εΓ. Inspired by the group setting [Coo], we say µ is
quasiconformal measure of dimension α if, for all n ≥ 1, (F n)∗µ ≪ µ and
the Radon-Nikodym derivative satisfies

d(F n)∗µ

dµ
≍ (enε)α µ− a.e. .

The quantity enε stands for the derivative of F n (cf. Proposition 3.2.2).

Let µ be a quasiconformal measure on ∂εΓ. Fix n ∈ N. Suppose E ⊂ ∂εΓ
is a Borel subset of positive measure, F n|E is injective, and the local degree
of F n is constant on E, i.e. for all ξ ∈ E, dF n(ξ) = dE. Then, it follows from
the regularity of the measure that

〈(F n)∗µ, χE〉 = 〈µ, (F n)∗χE〉 =

∫ ∑

F n(ζ)=ξ

dF (ζ)χE(ζ)dµ(ξ) = dEµ(F n(E)) ,

and quasiconformality of the measure implies 〈(F n)∗µ, χE〉 ≍ enαεµ(E).
Hence

µ(F n(E)) ≍ enαε

dE
µ(E). (3.2)

Axiom [Irreducibility] implies that the support of a quasiconformal mea-
sure is the whole set ∂εΓ. Therefore, there is some m > 0 such that, for all
x ∈ S(1), µ(φf(W (x))) ≥ m.
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We let d(W ) be the degree of fn−1|W for W ∈ S(n). Since µ is a quasi-
conformal measure, it follows that

0 < m ≤ µ(φf(fn−1(W ))) = µ(F n−1φf(W )) ≍ enαε

d(W )
µ(φf(W )) .

This proves

Lemma 3.4.3 of the shadow. For any W ∈ V ,

µ(φf(W )) ≍ d(W )e−αε|W | .

We use this lemma for the classification of quasiconformal measures.

Theorem 3.4.4 Let µ be a quasiconformal measure of dimension α. The
following are equivalent.

(i) µ is atomic.

(ii) α = 0.

(iii) ∂εΓ is a point.

If α > 0 then α = 1
ε

log d, and any two such quasiconformal measures are
equivalent.

Proof: Consider first the constant function ϕ = 1 on ∂εΓ. Then F∗ϕ = dϕ
so that

〈(F n)∗µ, ϕ〉 = 〈µ, F n
∗ ϕ〉 = 〈µ, dnϕ〉 = dn ≍ enαε.

Thus,

α =
1

ε
log d.

It follows that α = 0 if and only if d = 1, so that ∂εΓ is a point since f
satisfies [Expansion]. Hence (ii) implies (iii).

If µ is atomic, then there is some ξ ∈ ∂εΓ such that µ{ξ} > 0. By
definition, for all n ≥ 0 and any x ∈ ∂εΓ,

((F n)∗µ)({x}) = dF n(x)µ{F n(x)}

and since µ is quasiconformal then by Equation (3.2)

dF n(ξ)µ{F n(ξ)} ≍ enαεµ{ξ} = dnµ{ξ}
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But dF n(ξ) ≤ dn so µ{F n(ξ)} & µ{ξ}. Since the total mass of µ is finite,
the orbit of ξ has to be finite. Let ζ = F ℓ(ξ) be periodic and let k be its
period. Then µ{ζ} > 0 and

(dF k(ζ))nµ{ζ} = ((F kn)∗µ)({ζ}) ≍ dnkµ{ζ}
from which we deduce that dF k(ζ) = dk. This means that the local degree
at every point in its orbit is maximal, so that its grand orbit is finite. Since
f satisfies [Irreducibility], the grand orbit of any point is dense in X (Propo-
sition 2.4.13(a)) and so ∂εΓ is a point, d = 1 and α = 0. So (i) implies (ii)
and (iii).

The last implication (iii) implies (i) is obvious.

The Lemma of the Shadow (Lemma 3.4.3) and the assumption that qua-
siconformal measures are regular imply that two measures of the same di-
mension are equivalent.

We will now construct a quasiconformal measure using the Patterson-
Sullivan procedure [Coo]. It turns out that this measure will be invariant.

Poincaré series. In this part, we construct an invariant quasiconformal
measure. Let

P (s) = |S(1)|
∑

n≥1

dn−1e−ns = |S(1)| 1

es − d .

It follows that P (s) <∞ if and only if s > log d. Let, for s > log d,

µs =
1

P (s)

∑

n≥1

∑

ξ∈S(n)

e−nsd(ξ)δξ .

For every n ≥ 1, F n : S(n + 1) → S(1) has degree dn. Recall that for
ξ ∈ S(n), we denoted by d(ξ) = dF n−1(ξ). So

|S(n+ 1)| = dn|S(1)| −
∑

ξ∈S(n+1)

[d(ξ)− 1]

and
∑

ξ∈S(n+1) d(ξ) = dn|S(1)|. Therefore

µs(Γε) =
1

P (s)

∑

n≥1

e−ns
∑

ξ∈S(n)

d(ξ) =
1

P (s)

∑

n≥1

e−nsdn−1|S(1)| = 1 .
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Hence {µs}s>log d is a family of probability measures on Γε. Let µf be any
weak limit of this family as s decreases to log d. Since the Poincaré series
diverges at log d, it follows that its support is contained in ∂Γ.

If ϕ is a continuous function with support close to ∂Γ, then

〈F ∗µs, ϕ〉 =
1

P (s)

∑

n≥1

e−ns
∑

ξ∈S(n)

d(ξ)(F∗ϕ)(ξ)

=
1

P (s)

∑

n≥1

e−ns
∑

ξ∈S(n)

d(ξ)
∑

F (ζ)=ξ

dF (ζ)ϕ(ζ)

=
1

P (s)

∑

n≥1

e−ns
∑

ζ∈S(n+1)

d(ζ)ϕ(ζ)

= es〈µs, ϕ〉+ O(1/P (s))

where we have used that d(ζ) = d(F (ζ))dF (ζ).
It follows that, as s decreases to log d,

〈F ∗µf , ϕ〉 = 〈dµf , ϕ〉

and so F ∗µf = dµf . In other words, µf is a quasiconformal measure of
dimension (1/ε) log d.

Let us look at F∗µf :

〈F∗µf , ϕ〉 = 〈µf , F
∗ϕ〉 = (1/d)〈F ∗µf , F

∗ϕ〉 = (1/d)〈µf , F∗(F
∗ϕ)〉.

But

F∗(F
∗ϕ)(ξ) =


 ∑

F (ζ)=ξ

dF (ζ)(F ∗ϕ)(ζ)


 = dϕ(ξ) .

Therefore, F∗µf = µf so µf is an invariant measure.

Let us prove that µf is ergodic. Let E be an invariant subset of ∂εΓ with
positive measure. Let ν = µf |E/µf(E). It follows that ν is also an invariant
quasiconformal measure. The Lemma of the shadow (Lemma 3.4.3) implies
that µf (W ) ≍ ν(W ) for allW ∈ V . This implies that µf and ν are equivalent.
Hence µf(E) = 1.
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Since µf is an ergodic invariant measure, it follows that µs converges to
µf in the weak-∗ topology when s decreases to log d.

Remark. On ∂εΓ, the local degree function dF is multiplicative: dF n(ξ) =∏n−1
i=0 dF (f i(ξ)). From the Birkhoff Ergodic theorem and the ergodicity of F

with respect to µf , it follows that for µf -almost any ξ ∈ ∂εΓ,

lim
n→∞

1

n
log dF n(ξ) =

∫
log dF dµf .

Thus, either the critical set has measure 0 and the Jacobian of F with re-
spect to µf is constant and equal to d almost everywhere, or almost every
point visits the branch set so frequently that the local degrees increase ex-
ponentially fast. Unfortunately, given the assumptions under which we are
currently working, we have neither a proof that this latter possibility cannot
occur, nor an example showing that it can occur.

3.4.2 Entropy

We refer to [KH], [Mañ] and [PU], chap. 1, for background on entropy.

Topological entropy. Let T : Z → Z be a continuous map of a com-
pact metric space to itself. The dynamical distance and the corresponding
dynamical balls at level n are defined as

dn(ξ, ζ) = max
0≤j≤n

{dε(T
j(ξ), T j(ζ))} and S(ξ, n, r) = {ζ ∈ Z, dn(ξ, ζ) ≤ r} .

Let cn(r) be the minimal number of dynamical balls S(·, n, r) at level n
needed to cover Z and sn(r) the maximal number of disjoint dynamical balls
S(·, n, r). The topological entropy of T may be defined as

htop(T ) = lim
r→0

lim sup
n→∞

1

n
log cn(r) = lim

r→0
lim inf
n→∞

1

n
log sn(r) .

We now estimate htop(F ), where F denotes the restriction of F : Γε → Γε

to the boundary ∂ǫΓ.

Since F is eε-Lipschitz, we have dn(ξ, ζ) ≤ enεdε(ξ, ζ) and hence S(ξ, n, r) ⊃
Bε(ξ, re

−εn). For any n ≥ 1, {℧∞(ξ)}ξ∈S(n) is a covering of ∂Γ by at
most |S(n)| sets. For any ξ ∈ S(n), diam℧∞(ξ) ≤ Ce−ε|ξ|. So, ℧∞(ξ) ⊂
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S(ξ′, p, Ce−ε(n−p)), for any p ∈ N and for any ξ′ ∈ ℧∞(ξ). Hence cp(Ce−ε(n−p)) ≤
|S(n)|.

Recall that by definition v = lim 1
n

log |S(n)|; the limit exists since |S(n+
1)| ≤ d|S(n)|. Let η > 0 be small. For any p ≥ 1, there is some n ∈ N such
that η ≍ e−ε(n−p), meaning that n ∼ p+ (1/ε) log 1/η. The discussion above
implies that ∂εΓ ⊂ ∪ξ∈S(n)S(ξ, p, Ce−ε(n−p)). Since for any η′ > 0 and any n
large enough, log |S(n)| ≤ n(v + η′) holds, we have log cp(η) ≤ n(v + η′) and

htop(F ) ≤ lim
η→0

lim sup
p→∞

p+ (1/ε) log 1/η

p
(v + η′)

from which htop(F ) ≤ v follows. Since |S(n)| ≤ dn, one has v ≤ log d.

Measure-theoretic entropy. We recall first the definition of measure-
theoretic entropy. Suppose (Z, ν) is a probability space, T : Z → Z preserves
ν. If P is a measurable partition of Z, define its entropy with respect to ν
by

H(P, ν) =
∑

A∈P

ν(A) log(1/ν(A)) .

For n ∈ N set
Pn = P ∨ T−1(P) . . . ∨ T−n(P).

Then

h(P, ν) = lim
n→∞

1

n
H(Pn, ν)

exists. The supremum of h(P, ν) over all partitions with finite entropy defines
the metric entropy hν(T ). A partition P with finite entropy is called a
generator if it separates points i.e., for any distinct z, z′ ∈ Z, there is some
n ≥ 0, disjoint sets A,A′ ∈ Pn such that z ∈ A and z′ ∈ A′; equivalently,
there is some n ≥ 0, disjoint pieces A,A′ ∈ P such that T n(z) ∈ A and
T n(z′) ∈ A′. For a generating partition, h(P, ν) achieves the maximum of
h(P ′, µ) over all measurable partitions with finite entropy so that h(P, ν) =
hν(T ) holds.

The variational principle (see [Wal], Thm. 8.6) asserts that, when T
is continuous, then htop(T ) = supµ hµ(T ) where µ varies over all invariant
ergodic Borel measures.

Jacobian. Let T : Z → Z be a continuous map countable to 1, and ν
an invariant regular Borel probability measure on Z. A special set A is a
measurable subset of Z such that T |A is injective. A weak Jacobian is a
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measurable function Jν : Z → R+ such that there is some set Y such that
ν(Y ) = 0 and, for any special set A disjoint from Y ,

ν(T (A)) =

∫

A

Jνdν

holds. The function Jν is a (strong) Jacobian if one can choose Y = ∅. Weak
Jacobians always exist for finite branched coverings defined on a compact set
Z, and there are well-defined mod 0 sets. Let us sketch their construction in
this case.

Let A be a finite measurable partition of Z by special sets. Let us first
fix A ∈ A. Since T |A is injective, the formula νA(B) = ν(TB) defined on
measurable subsets B ⊂ A defines a measure on A. By the invariance of ν,
it follows that ν|A is absolutely continuous with respect to νA so that the
Radon-Nikodym theorem implies the existence of a measurable non-negative
function hA defined on A such that dν = hAdνA.

Let YA = {hA = 0}, and let us define Jν on A by

Jν =





0 on YA

1/hA on A \ YA

It follows that ν(YA) = 0 and that for any special set B ⊂ A disjoint from
YA,

ν(TB) =

∫

B

dνA =

∫

B

Jν(hAdνA) =

∫

B

Jνdν .

Let us define Y = ∪AYA; it follows that ν(Y ) = 0 and for any special set
B disjoint from Y ,

ν(TB) =
∑

A

ν(T (B ∩ A)) =
∑

A

∫

B∩A

Jνdν =

∫

B

Jνdν .

If ν is ergodic, and if it admits a countable generator of finite entropy,
then the so-called following Rohlin formula holds:

hν(T ) =

∫
log Jνdν

where Jν is the Jacobian.
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We now estimate hµf
(F ) where F : ∂Γ→ ∂Γ and µf is the quasiconformal

measure constructed in the previous section. To do so, we first prove the
existence of a finite generator:

Proposition 3.4.5 Let (X1,X0, X, f) be a finite branched covering of degree
d ≥ 2. Let us assume that there is a finite cover U of X by open connected
sets that satisfies [Expansion]. We let Γ be the hyperbolic graph associated to
(f,U). For any n0 ≥ 1, a finite cover by Borelean sets Q of ∂Γ of diameter
at most e−εn0, a constant λ > 1 and an iterate k ≥ 1 exist such that, for any
Q ∈ Q, for ξ, ζ ∈ Q,

|F k(ξ)− F k(ζ)|ε ≥ λ|ξ − ζ |ε

holds. Furthermore, for any Q ∈ Q, there is some dQ such that, for any
ξ ∈ Q, dF k(ξ) = dQ.

The proof will be achieved in 12 steps. The first four steps use the hy-
perbolicity of the graph Γ to construct normal curves joining pair of points,
from which we can read their distance, and use the definite contraction com-
ing from path-lifting. The fifth step provides us with a first finite cover by
open sets which isolates different inverse branches. The sixth step shows
that pieces of degree 1 already satisfy the proposition. The remaining steps
are devoted to splitting further components which contain branch points.
Step 7. defines building blocks for the splitting, and some of their properties
are established in 8. and 9.. Steps 10. and 11. define the splitting of a
component with branch points and step 12. concludes the proof.

Preliminary steps.

1. For each ξ ∈ ∂Γ, fix once and for all a sequence (Wn(ξ))n ∈
∏
S(n) such

that Round(Wn, ξ) ≤ K (cf. Proposition [3.3.2, 3.]).

2. If ζ ∈ ∂Γ is another point, let c = c(ξ, ζ) be the largest level n such that
Wn(ξ)∩Wn(ζ) 6= ∅. Note that c is well-defined, since all the rays meet at o,
and since diamεWn(ξ) . e−εn.

It follows from hyperbolicity that

|c(ξ, ζ)− (ξ|ζ)| ≤ C(δ)

so that
|ξ − ζ |ε ≍ e−εc
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where the implicit constants depend only on K, δ and ε. We write ξ = φf(x)
and ζ = φf(y).

Fix k ≥ 1, which will be defined later. For each ξ ∈ ∂εΓ and n ≥ 1, let
W ′

n(ξ) ∈ S(n) be the component of f−k(Wn+k(F k(ξ))) that contains x.
It follows from Proposition 3.3.3 that

Round(W ′
n(ξ), ξ) ≤ K ′

for some universal K ′.
Let c′ = c′(ξ, ζ) be the largest level n such that W ′

n(ξ)∩W ′
n(ζ) 6= ∅. Then

|c′(ξ, ζ)− (ξ|ζ)| ≤ C ′(δ)

and
|ξ − ζ |ε ≍ e−εc′

hold, and once k has been chosen the implicit constants depend only on K ′,
δ and ε.

If F k(ξ) = F k(ζ), then either W ′
n(ξ) ∩W ′

n(ζ) = ∅ or W ′
n(ξ) = W ′

n(ζ). In
this last case, degW ′

n(ξ) > 1.

3. Let ξ, ζ ∈ ∂Γ be such that c(ξ, ζ) ≥ 1 ; let us consider the normal curve

γ(ξ, ζ) = γ = {Wn(ξ), n ≥ c(ξ, ζ)} ∪ {Wn(ζ), n ≥ c(ξ, ζ)}

which joins ξ to ζ . Similarly, we let

γ′(ξ, ζ) = γ′ = {W ′
n(ξ), n ≥ c′(ξ, ζ)} ∪ {W ′

n(ζ), n ≥ c′(ξ, ζ)} .

Let us define K(γ) = ∪n∈Zγ(n) which is a compact connected subset
of X1. It follows that f−k(K(γ)) is a disjoint union of continua which join
preimages of ξ to preimages of ζ . These continua induce a relation between
the preimages of ξ and ζ : to belong to a common component of the set
f−k(K(γ)). If ξ′, ζ ′ are in relation, F k(ξ′) = ξ and F k(ζ ′) = ζ , then the
component of F−k(K(γ)) which contains ξ′ also contains the curve γ′(ξ′, ζ ′)
joining ξ′ to ζ ′. Note that if ξ′, ζ ′ are related, then F k(γ′(ξ′, ζ ′)) = γ(ξ, ζ), so
that

ℓε(γ) = eεkℓε(γ
′) ≍ |ξ′ − ζ ′|εeεk ≍ e−ε[(ξ′|ζ′)−k] .

4. Let ξ1, . . . , ξ4 ∈ ∂Γ be such that c(ξi, ξj) ≥ 1. Define

Γ0 = ∪i6=jγ(ξi, ξj) .
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From hyperbolicity (“Approximation par les arbres” in [GdlH]), there is a
tree T and a (1, C)-quasi-isometry

ϕ : Γ0 → T .

Let Γ̃0 be a connected component of F−k(Γ0)∩Γ, so we can also define an
approximate tree T ′, and the map F k : T ′ → T is an isometry along normal
curves between endpoints with distinct images.

If we consider preimages ξ′1, . . . , ξ
′
4 of ξ1, . . . , ξ4 in Γ̃, then

c′(ξ′i, ξ
′
j) = c(ξi, ξj) + k.

Therefore, given λ > 1, for any iterate k large enough,

|ξj − ξi|ε ≥ λ · |ξ′j − ξ′i|ε .

The implicit constants are swallowed by k to keep the expansion.

We fix such an iterate k, and write G = F k.

5. Let us fix n0 ≥ 1. The facts presented at the end of §2.1 imply that
for any x ∈ X, there is some U0(x) ∈ U with |U0(x)| ≥ n0 such that the
following hold:

• for any component Ũ of f−k(U0(x)), Ũ ∩ f−k({x}) is a single point x̃,

• deg(fk, Ũ) = deg(fk, x̃), and

• if Ũ and Ũ ′ are two components of f−k(U0(x)), then distε(φf Ũ , φf Ũ
′) ≥

4 max{diamεφf Ũ , diamεφf Ũ
′}, so that each component Ũ is indepen-

dent from the other preimages.

We let U1(x) ∈ U be another neighborhood of x so that, for any ξ, ζ ∈
φf(U1(x)), K(γ(ξ, ζ)) ⊂ U0(x), where K(γ(ξ, ζ)) is defined in 3..

This forces an even better independence. It will also allow us to work
with normal curves. So, if ζ, ξ ∈ φf(U1(x)), and if ξ̃, ζ̃ are two preimages,
then some lift of a normal curve under G joins ξ̃ to ζ̃ only if ξ̃, ζ̃ belong to
the same component of G−1(φfU1(x)).

We let V be the family of sets {U1(x)},W ′ be a finite cover of X provided
by V, and we let W be the cover of ∂Γ obtained by pulling back W ′ with fk

and by mapping it into ∂Γ under φf .
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The actual proof.

6. Let W ∈ W, and let us assume that dG(W ) = 1. Then, according to 5,
for any ξ, ζ ∈ W , there is a unique pull-back of γ(G(ξ), G(ζ)) ending at ξ
and ζ , so that

|G(ξ)−G(ζ)|ε ≥ λ · |ξ − ζ |ε .
Therefore, W will be one of the pieces of the cover we are looking for.

Let W ∈ W, and let us assume that dG(W ) = p > 1. We need to split
W into finitely many pieces ; the local degree of G on each piece will be
constant. We start with degree 1, and then proceed to higher ones. Step 7.
fixes further notation.

7. If ξ ∈W , we let

C0(ξ) = {ζ ∈W, c′(ξ, ζ) > max{c′(ξ, ζ ′), ζ ′ ∈ G−1{G(ζ)} \ {ζ}} ,

C(ξ) = {ζ ∈W, c′(ξ, ζ) > max{c′(ξ, ζ ′), ζ ′ ∈ G−1{G(ζ)}\{ζ}}∩{dG = dG(ξ)} ,
Ĉ0(ξ) = {ζ ∈W, c′(ξ, ζ) ≥ max{c′(ξ, ζ ′), ζ ′ ∈ G−1{G(ζ)} \ {ζ}} .

and

Ĉ(ξ) = {ζ ∈W, c′(ξ, ζ) ≥ max{c′(ξ, ζ ′), ζ ′ ∈ G−1{G(ζ)}\{ζ}}∩{dG = dG(ξ)} .

We note that any point in Ĉ0(ξ) is related to ξ, and that points from
C0(ξ) are uniquely related to ξ, since the inequality is strict in the definition
of C0(ξ).

For any ζ, ζ ′ ∈ C0(ξ), the set

γ′(ξ, ζ) ∪ γ′(ξ, ζ ′)

is connected, and the structure of its tree is provided by both of these curves,
so that we can read from it the distance |ζ − ζ ′|ε, hence

|G(ζ)−G(ζ ′)|ε ≥ λ · |ζ − ζ ′|ε
according to 3 and 4.

We now begin the procedure of splitting W .

8. We let ξ′ ∈ G(W ) be a regular value for G|W . Therefore, ξ′ has p

distinct preimages ξ1, . . . , ξp under G in W . We note that ∪j Ĉ0(ξj) = W ,

and ∪j Ĉ(ξj) = W ∩ {dG = 1}.
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We let Q0(ξj) = C(ξj).
We need to make choices in order to split the remaining points. This will

be done inductively on the sets from V.

It follows that if ζ ∈ W and ζ /∈ ∪Q0(ξj), and if dG(ζ) = 1, then ζ belongs

to some Ĉ0(ξj) for some j ∈ {1, . . . , p}, and there is some ζ ′ ∈ Ĉ0(ξj) such
that G(ζ) = G(ζ ′) and

|ζ − ξj|ε = |ζ ′ − ξj|ε .

Roughly speaking, ζ and ζ ′ are beyond a critical point as seen from ξj.

9. Let ζ = φf(y) ∈ W with dG(ζ) = 1, then it follows from 5. and 6. that
φf(U1(y)) ⊂ C0(ζ).

10. The set G(W ) is covered by countably many pieces from V of higher level
which we may arrange into a sequence. We will first construct a finite cover
of W ∩ {dG = 1} inductively. We assume that Qn(ξj) ⊂ Ĉ(ξj), j = 1, . . . , p,
has been constructed so that for any ζ, ζ ′ ∈ Qn(ξj),

G(γ′(ζ, ζ ′)) = γ′(G(ζ), G(ζ ′))

and

|G(ζ)−G(ζ ′)|ε ≥ λ · |ζ − ζ ′|ε .

We let U ′ ∈ V be the vertex V which arises next in the sequence, which
is not contained in any G(Qn(ξj)), and such that there exists a preimage of
U ′ under G meeting W and having local degree 1. If no such U ′ exists, then
we have split W ∩ {dG = 1} into finitely sets.

Let ζ ′ ∈ U ′ \ (∩G(Qn(ξj))) be a regular value. It follows that each com-
ponent of G−1(γ(ξ′, ζ ′)) has as many points of G−1(ζ ′) than G−1(ξ′) at its
ends (recall that ξ′ has been defined in 8.). So we may consider a splitting of
G−1(ζ ′) associated to G−1(ξ′) such that, if ζ ∈ Qn(ξj), then ζ is paired with
ξj. We label G−1(ζ ′) so that ζj is paired with ξj.

Let us define

Qn+1(ξj) = Qn(ξj) ∪ (C(ζj) ∩ Ĉ(ξj)) .

Let ζ ∈ C(ζj) ∩ Ĉ(ξj)), ξ ∈ Qn(ξj), and let us consider

Γ0 = γ(G(ξ), G(ξj)) ∪ γ(G(ξj), G(ζj)) ∪ γ(G(ζj), G(ζ)).
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We note that the rays

{Wn(G(ξj)), n ≥ min{c(G(ξj), G(ξ)), c(G(ξj), G(ζj))} }

{Wn(G(ξ)), n ≥ c(G(ξ), G(ξj))}

{Wn(G(ζj)), n ≥ min{c(G(ζj), G(ζ)), c(G(ζj), G(ξj))} }

{Wn(G(ζ)), n ≥ c(G(ζ), G(ζj))}

force the structure of the tree, so that it provides an approximate value for
|ζ − ξ|ε.

The connected set

Γ̃0 = γ′(ξ, ξj) ∪ γ′(ξj, ζj) ∪ γ′(ζj, ζ)

provides the pull-back of Γ0 which contains respectively ξj, ξ, ζ and ζj since

ζj, ξ ∈ Ĉ(ξj) and ζ ∈ C(ζj). It follows from 4. that

|G(ξ)−G(ζ)|ε ≥ λ · |ξ − ζ |ε .

We may then proceed to the next vertex. We note that every non-
branched point is contained in some vertex with local degree 1. So, by
9., in the end, we have split W ∩ {dG = 1} into p Borel sets on which G is
λ-expanding.

11. We assume that we have already split W ∩ {dG < p0} into finitely many
sets on which G is λ-expanding. We proceed inductively as above : we look at
the first vertex in G−1(V) of degree p0 which contains a point ξ of local degree
p0 too. We then define Q0(ξ) = C(ξ), and similarly for the other preimages
of G(ξ) with the same local degree (if any). Inductively, we make choices
according to the natural splitting for points with local degree p0 which we
distribute so that they are associated to ξ only if it belongs to Ĉ(ξ).

In the end, we have split W ∩ {dG = p0} into finitely many Borel sets on
which G is λ-expanding.

12. Finally, steps 10. and 11. have split W into finitely many Borel sets
as required. We proceed as above for all non-injective vertices to prove the
proposition.
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Corollary 3.4.6 For any ergodic invariant probability measure,

hν(F ) =

∫
log Jνdν .

Proof: It follows from the proposition above that we can define a finite
measurable partition which separates points by taking finite intersections of
the cover Q. Therefore, since it is finite, it will have finite entropy for any
probability measure. Rohlin formula then applies.

For ν = µf , one has Jµf
(F ) = d/dF , so that

hµf
(F ) =

∫

∂εΓ

log Jµf
(F )dµf = log d−

∫

∂εΓ

log dFdµf .

The variational principle applied to F then implies

log d−
∫

log dFdµf = hµf
(F ) ≤ htop(F ) ≤ v ≤ log d .

We obtain

Proposition 3.4.7 If the branch set BF has measure zero, then µf has max-
imal entropy log d.

3.4.3 Thermodynamic formalism

In the section, we introduce a couple of notions from the thermodynamic
formalism and apply them to the study of fbc’s satisfying [Expansion].

Let (Z, T ) be a continuous finite-to-one map defined on a compact set.
Given a potential ϕ : Z → R, one can define its topological pressure via the
formula

P (ϕ) = sup

{
hν(T ) +

∫
ϕdν

}

where the supremum is taken over all ergodic invariant probability mea-
sures ν. Let us remark that the topological entropy appears as the pressure
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function of the potential 0. An ergodic invariant measure ν is called an
equilibrium measure associated to a potential ϕ if

P (ϕ) = hν(T ) +

∫
ϕdν .

In this section, we prove:

Proposition 3.4.8 Let (X1,X0, f,X) be an fbc satisfying [Expansion]. The
measure µf is the unique equilibrium measure associated to the potential
log(dF/d), the pressure of which is 0.

This will imply the following result.

Corollary 3.4.9 If there is an invariant measure ν of entropy log d, then
ν = µf . In particular, the measure µf is the unique measure of maximal
entropy as soon as the critical set carries no µf -mass.

It is known that the corollary applies at least in the following situations,
assuming [Expansion] as usual:

• X0 is a surface (the critical points form a discrete set, and µf has no
atoms according to Theorem 3.4.4 as soon as d ≥ 2);

• no critical point is recurrent (by Poincaré recurrence theorem, it then
follows that the critical set carries no µf -mass);

• the postcritical set is not dense (as above);

• the map is topological cxc (cf. Theorem 3.5.6).

Transfer operator. We are grateful to Guillaume Havard for this exposi-
tion. We specialise the definitions to our setting. Let T : Z → Z be an fbc
defined on a compact space, and let us assume that ν is an invariant Borel
probability measure.

Let L1(ν) denote the Banach space of real-valued ν-integrable functions.
In this subsection, we show the existence of an induced transfer operator

Lν : L1(ν)→ L1(ν)
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satisfying the following property: ∀ψ ∈ L∞(ν), ∀φ ∈ L1(ν),

∫
ψ · Lν(φ) dν =

∫
(ψ ◦ T ).φ dν =

∫
ψ(x)


 ∑

T (y)=x

φ(y)

Jν(y)


 dν(x) (3.3)

where Jν is the Jacobian of T . Since our transformation may be locally non-
injective, the role played by the Jacobian is crucial. We have not found a
general detailed treatment in the extant literature, so we provide full details
here.

Given a function φ ∈ L1(ν), define a signed measure νφ on the collection
of ν-measurable sets A by

νφ(A) =

∫

A

φ dν =

∫
(χA · φ) dν

where χA denotes the characteristic function of A. The pushforward of this
measure under T , which we denote here by νφ ◦ T−1, is defined by

(νφ ◦ T−1)(A) = νφ(T−1(A)) =

∫

T−1A

φ dν =

∫ (
χT−1(A) · φ

)
dν.

Since χA ◦ T = χT−1A we have

(
νφ ◦ T−1

)
(A) =

∫
((χA ◦ T ) · φ) dν.

If A is such that ν(A) = 0 then, by the invariance of ν, we have ν(T−1(A)) =
0. It follows that the pushforward measure νφ ◦ T−1 is absolutely continuous
with respect to ν. By the Radon-Nikodym theorem,the Radon-Nikodym
derivative

dνφ

dν
is an element of L1(ν), which we will denote by Lν(φ), such

that for each ν-measurable set A,

(νφ ◦ T−1(A)) =

∫
((χA ◦ T ) · φ) dν =

∫
(χA · Lν(φ)) dν.

The assignment φ 7→ dνφ

dν
yields a linear operator Lν : L1(ν) → L1(ν), and

the preceding equalities show that Lν has norm bounded by 1.
It also follows from the previous computation that for every ψ ∈ L∞(ν),

∫
(ψ · Lν(φ)) dν =

∫
((ψ ◦ T ) · φ) dν.
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In other words: the dual of Lν, acting on L∞(ν) which is the dual of L1(ν),
is the composition with T .

We derive now the expression for Lν(φ) at ν-almost every point given by
Equation (3.3). Since T is assumed to be an fbc on a compact set, there
exists a finite measurable partition A of Z such that T |A is injective for each
A ∈ A. From the definition of the Jacobian we may assume that for each
A ∈ A,

ν(T (A)) =

∫

A

Jν dν.

Let tA : T (A) → A denote the inverse of T |A : A → T (A). For B ⊂ A we
have then ∫

T (A)

χB ◦ tA dν =

∫

T (A)

χT (B) dν =

∫

A

χB · Jν dν.

We obtain that for every h ∈ L1(ν),
∫

T (A)

h ◦ tA dν =

∫

A

h · Jν dν.

Since ν is invariant, Jν ≥ 1 almost everywhere with respect to ν, hence
h
Jν
∈ L1(ν). Applying the preceding equality (with h

Jν
in place of h) shows

that ∫

T (A)

h ◦ tA
Jν ◦ tA

dν =

∫

A

h dν.

Letting ψ ∈ L∞(ν), φ ∈ L1(ν), and h = (ψ ◦T ) ·φ in the above equality then
yields

∫
ψ · Lν(φ) dν =

∫
(ψ ◦ T ) · φ dν

=
∑

A

∫

A

(ψ ◦ T ) · φ dν

=
∑

A

∫

T (A)

ψ · (φ ◦ tA)

Jν ◦ tA
dν

=

∫
ψ ·
(
∑

A

χT (A)
φ ◦ tA
Jν ◦ tA

)
dν

=

∫
ψ(x) ·


 ∑

T (y)=x

φ(y)

Jν(y)


 dν(x).
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This operator is extended to any measurable non-negative functions using
the above formula, so that the identity

∫
Lν(φ)dν =

∫
φdν

still holds (by truncation and the monotone convergence theorem).
The invariance of the measure implies that Lν(1) = 1 a.e.

Transfer operators with respect to potentials. Given a measurable
real-valued potential function ϕ : Z → R, the transfer operator with potential
ϕ is defined by

Lϕ(ψ)(z) =
∑

T (z′)=z

e−ϕ(z′)ψ(z′) .

Remark. In the case of our main interest—when (Z, T, ν) = (∂εΓ, F, µf)—
Equation 3.3 implies that

Lµf
(φ) = (1/d)F∗φ = Llog d/dF

(φ)

for every continuous function φ : ∂ε(Γ)→ R.

We will use the following result which is proved using the concavity of
the logarithm [Hav]:

Proposition 3.4.10 (G. Havard) Let ϕ > 0 be a measurable function de-
fined on a backward invariant set of ν-full measure. There is a set Z ′ ⊂ Z
of ν-full measure such that, for any z ∈ Z ′,

Lν

(
log

Jν

ϕ

)
≤ log(Llog ϕ(1)(z)) .

Moreover, if the equality holds on a set of full ν-measure, then Jν is a
strong Jacobian and Jν = ϕLlog ϕ(1) ◦ T .

Proof: (Proposition 3.4.8) We apply Proposition 3.4.10 to Z = ∂Γ, T = F
and ϕ = d/dF , and to any ergodic invariant probability measure ν on ∂Γ:
one obtains

Lν

(
log

Jν

ϕ

)
(ξ) ≤ logLlog ϕ(1)(ξ) .
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But

Llog ϕ(1)(ξ) =
∑

F (ζ)=ξ

dF (ζ)

d
= 1

so that we get

Lν

(
log Jν − log

d

dF

)
(ξ) ≤ 0 .

Integrating against ν,
∫
Lν

(
log Jν − log

d

dF

)
dν ≤ 0 .

From the definition of the transfer operator, it follows that
∫

log Jνdν −
∫

log
d

dF
dν ≤ 0 .

By Rohlin formula,

hν(F ) +

∫
log

dF

d
dν ≤ 0 .

This shows that the pressure of log(dF/d) is non-positive.
Now, if we take ν = µf , then

hµf
(F ) +

∫
log

dF

d
dµf =

∫
log Jµf

dµf −
∫

log Jµf
dµf = 0

so that µf is an equilibrium measure for log dF/d, and P (log dF/d) = 0.
Let us prove the uniqueness of the equilibrium measure. Let ν be a

measure such that
∫

log Jνdν −
∫

log
d

dF

dν = 0 .

It follows that ∫
Lν

(
log Jν − log

d

dF

)
dν = 0 ,

but since the integrand is non-positive, we can deduce that

Lν

(
log Jν − log

d

dF

)
= 0 a.e.

Therefore, the case of equality in Proposition 3.4.10 applies, so that Jν is
a strong Jacobian, equal to d/dF . This implies that ν is a quasiconformal
measure and that ν = µf .
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Proof: (Corollary 3.4.9). If the entropy of an ergodic invariant probability
measure ν is log d, then, it follows that

∫
log dFdν ≤ P (log dF/d) = 0

so that dF = 1 for ν a.e. ξ. Thus, ν is an equilibrium measure for the
potential log dF/d, and, by uniqueness, ν = µf .

If the critical set has µf -measure 0, then Jµf
= d a.e., and hµf

= log d,
so the previous argument applies.

3.4.4 Equidistribution

In this subsection, we prove that iterated preimages of points and periodic
points are equidistributed according to µf .

Let us note that since F∗F
∗ϕ = dϕ, the operator ν 7→ (1/d)F ∗ν has norm

equal to 1.

Theorem 3.4.11 (Equidistribution of preimages) For any probability
measure ν whose support is disjoint from o ∈ Γε, the sequence (1/dn)(F n)∗ν
converges to µf in the weak-∗ topology. In particular, if we set

µξ
n = (1/dn)

∑

F n(ζ)=ξ

dF n(ζ)δζ = (1/dn)(F n)∗δξ

for any ξ ∈ Γε \ {o} and n ≥ 1, then µξ
n converges to µf in the weak-∗

topology.

We may then deduce the following.

Theorem 3.4.12 (Equidistribution of periodic points) The sequence
of measures supported on ∂Γε

µ̂n =
1

dn

∑

F n(ξ)=ξ

dF n(ξ)δξ

converges to µf in the weak-∗ topology.
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Remark: Since the number of cycles of period n is not known, the measures
µ̂n need not be probability measures.

We start with a lemma (compare with the theory of primitive almost
periodic operators, e.g. Theorem 3.9 in [EL]).

Lemma 3.4.13 For any continuous function ϕ : Γ \ B(o, 1) → R, the se-
quence of functions (1/dn)(F n)∗ϕ is uniformly convergent towards the con-
stant function ∫

ϕdµf .

Proof: Let us define A(ϕ) = (1/d)F∗ϕ. Let us consider two points ξ and
ζ close enough so that there exists a curve γ joining them and avoiding o.
It follows that the points of F−n({ξ}) and F−n({ζ}) are joined together by
subcurves of F−n(γ) of length bounded by ℓε(γ) · e−εn.

If ϕ is a continuous function on Γ \B(0, 1) with modulus continuity ωϕ,
it follows that

|Anϕ(ξ)− Anϕ(ζ)|ε ≤
1

dn

∑

F n(ξ′)=ξ

dF n(ξ′)ωϕ(ℓε(γ)e−εn) ≤ ωϕ(ℓε(γ)e−εn).

This shows that the sequence (Anϕ) is uniformly equicontinuous and that
any limit is locally constant. Thus, if Γ \B(0, 1) is connected, then any limit
is constant. Furthermore, since F ∗µf = dµf , it follows that, for any n,

∫
Anϕdµf =

∫
ϕdµf

so that any constant limit has to be
∫
ϕdµf .

If Γ\B(0, 1) is not connected, one can argue as follows. Adding a constant
if necessary, we can assume that ϕ ≥ 0. Then (Anϕ) is a sequence of non-
negative functions, and

‖A(ϕ)‖∞ ≤ ‖ϕ‖∞,
so that the norms of (An(ϕ)) form a decreasing convergent sequence. Let
ϕ∞ be any limit. One knows that it is locally constant; let us assume that
it is not constant. We let k be any iterate large enough so that, for any
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maximal open set E such that ϕ∞ is constant, F k(E ∩ ∂Γ) = ∂Γ. Then, for
any ξ ∈ ∂Γ,

|(F k)∗ϕ∞(ξ)| =
∑

F k(ζ)=ξ

dF k

dk
ϕ∞(ζ) < ‖ϕ∞‖∞

since ϕ∞ is not locally constant, but non-negative. This contradicts the fact
that

‖ϕ∞‖∞ = inf
n
‖An(ϕ)‖∞ .

Thus ϕ∞ is constant.

Corollary 3.4.14 The measure µf is mixing.

Proof: For any continuous function ϕ, and almost every ξ ∈ ∂εΓ, the se-
quence (1/dn)(F n)∗ϕ(ξ) tends to the value µf(ϕ) by the above lemma. The
operator A has norm one, so for all ξ, |(1/dn)(F n)∗ϕ(ξ)| ≤ ||ϕ||∞. Hence

∣∣∣∣
1

dn
(F n)∗ϕ− µf(ϕ)

∣∣∣∣
2

≤ 4||ϕ||2∞

and the dominated convergence theorem implies that F n
∗ ϕ→ µf (ϕ) in L2(∂εΓ, µf).

It follows from Proposition 2.2.2 in [DiSi] that µf is mixing.

Proof: (Theorem 3.4.11) Let ν be a measure supported off the origin in Γ.
For any continuous function ϕ, one has

〈(1/dn)(F n)∗ν, ϕ〉 = 〈ν, (1/dn)(F n)∗ϕ〉 =

∫
Anϕdν .

It follows from dominated convergence that this sequence tends to

∫ (∫
ϕdµf

)
dν =

∫
ϕdµf = 〈µf , ϕ〉

so that (1/dn)(F n)∗ν tends to µf .
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We begin the proof of Theorem 3.4.12 by a couple of intermediate results
concerning periodic points, beginning with an index-type result.

Proposition 3.4.15 Let U be a Hausdorff connected, locally connected and
locally compact open set, U ′ a relatively compact connected subset of U , and
g : U ′ → U a finite branched covering of degree d ≥ 1 which satisfies Axiom
[Expansion] with respect to the covering U0 = {U}. Then

d =
∑

g(x)=x

dg(x) .

Proof: If, for every n, g−n(U) is connected, then Axiom [Expansion] implies
that ∩f−n(U) is a single point x, which is fixed: thus d = dg(x).

Otherwise, let k0 be the maximal integer such that g−n(U) is connected.
Then g−(k0+1)(U) is a finite union of connected open sets U0

1 , . . . , U
0
m0

where
m0 > 1. Each restriction gj : U0

j → g−k0(U) is a finite branched covering of
degree dj < d, and d =

∑
dj.

For each gj, one may repeat this procedure until it stops. The proposition
follows easily.

Lemma 3.4.16 Let U be a vertex, and let us consider open subsets W1 and
W2 of Γε \ {o} which intersect ∂εΓ such that W1 ⊂ W2 and such that W2 ∩
∂εΓ ⊂ φf(U). For n large enough,

µU
n (W1) ≤ µ̂n(W2) and µ̂n(W1) ≤ µU

n (W2).

Proof: See Figure 3.4.4.
Suppose Ũ ∈ S(n+|U |) and, as a vertex point in Γε, belongs to W1. Then

φf(Ũ) ⊂ W2 if n is large enough, since dε(Ũ , φf(Ũ)) = (1/ε)e−|Ũ| → 0. Hence

Ũ ⊂ φ−1
f (W 2 ∩ ∂εΓ) ⊂ U . So, if moreover fn(Ũ) = U then fn|Ũ : Ũ → U

satisfies the hypotheses of Proposition 3.4.15 and so

dfn(Ũ) =
∑

fn(x)=x,x∈Ũ

dfn(x).

For the periodic points x appearing in the sum, φf(x) ∈W2.
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U ∩X
φ−1

f (W 2 ∩ ∂εΓ)

Ũ ∩X

φf

Ũ

W2

W 1

X

∂εΓ

Γε

Figure 3.4.4

Therefore,

µU
n (W1) =

1

dn

∑

fn(Ũ)=U,Ũ∈W1

dfn(Ũ)

=
1

dn

∑

fn(Ũ)=U,Ũ∈W1

∑

x∈Ũ,fn(x)=x

dfn(x).

Since for each such Ũ appearing in the sum, (i) φf(Ũ) ⊂ W2, and (ii) for

fixed n, the Ũ ’s and their images under φf are pairwise disjoint, we have

µU
n (W1) ≤ 1

dn

∑

x∈W2,fn(x)=x

dfn(x) = µ̂n(W2).
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Similarly, if fn(x) = x and x ∈ W1, then there is a unique Ũ ∈ f−n(U)

such that x ∈ Ũ . Therefore, for n large enough, φf(Ũ) has compact closure

in W2 and Ũ ∈W2. Thus

µ̂n(W1) ≤
1

dn

∑

fn(Ũ)=U,Ũ∈W2

∑

fn(x)=x,φf x∈Ũ

dfn(x) ≤ 1

dn

∑

fn(Ũ)=U,Ũ∈W1

dfn(Ũ) = µn(W2).

Proof: (Theorem 3.4.12) Note that the number of cycles is unknown. Nev-
ertheless, it follows from Lemma 3.4.16 that {µ̂n}n is relatively compact in
the weak topology. Let µ̂ be an accumulation point. We will prove that
µ̂ = µf using their Borel regularity.

Let U be a vertex, and let us consider a compact subset K of ∂Γ, open
subsets W1,W2 and W3 of Γ \ {o} such that

K ⊂W1 ∩ ∂Γ ⊂W1 ⊂W2 ⊂W2 ⊂W3

and such that W3 ∩ ∂Γ ⊂ φf(U).

Let ϕ1 and ϕ2 be two continuous functions such that

χK ≤ ϕ1 ≤ χW1 ≤ χW2 ≤ ϕ2 ≤ χW3.

Let us fix η > 0; if n is large enough then





|µ̂(ϕj)− µ̂n(ϕj)| ≤ η

|µf(ϕj)− µU
n (ϕj)| ≤ η

for j = 1, 2.

Therefore, by the preceding Lemma 3.4.16 and the regularity of the mea-
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sures,

µ̂(K) ≤ µ̂(ϕ1) ≤ µ̂n(ϕ1) + η ≤ µ̂n(W1) + η

≤ µU
n (W2) + η ≤ µU

n (ϕ2) + η ≤ µf(ϕ2) + 2η

≤ µf (U) + 2η .

Since this is true for any compact subset of U , the regularity of the measures
imply µ̂(U) ≤ µf (U).

Similarly,

µf(K) ≤ µf (ϕ1) ≤ µU
n (ϕ1) + η ≤ µU

n (W1) + η

≤ µ̂n(W2) + η ≤ µ̂n(ϕ2) + η ≤ µ̂(ϕ2) + 2η

≤ µf(φf(U)) + 2η

from which we deduce µ̂(φf(U)) ≥ µf(φf(U)), so that µ̂ = µf .

3.4.5 Hausdorff dimension

For a nonempty subset U of a metric space Z let |U | denote the diameter of
U . Given δ > 0, a δ-cover of U is a covering of U by sets of diameter at most
δ. For s ≥ 0, set

Hs
δ(U) = inf

∑

i

|Ui|s

where the infimum is over all δ-coverings of U by sets Ui. As δ decreases, Hs
δ

increases and so the s-dimensional Hausdorff measure of U

Hs(U) = lim
δ→0+

Hs
δ(U) ∈ [0,∞]
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exists. The Hausdorff dimension of U is given by

dimH(U) = inf{s : Hs(U) = 0} = sup{s : Hs(U) =∞}.

Using balls instead of arbitrary sets in the definition leaves the dimension
unchanged. See for instance [Mat].

We now compute the Hausdorff dimension of the boundary ∂εΓ. Fix
s > 0. By Lemma 3.1.3, for any vertex ξ ∈ S(n), diamε℧∞(ξ) ≤ Ce−εn.
Therefore ∂εΓ is covered by at most |S(n)| sets of diameter δn = Ce−ǫn and
so

Hs
δn

(∂εΓ) ≤ |S(n)|e−εns.

Suppose now that s > v
ε
. Recall that by definition, v = lim 1

n
log |S(n)|.

There exists η > 0 with v + η − εs < 0. It follows that for all n sufficiently
large,

Hs
δn

(∂εΓ) ≤ |S(n)|e−εns < en(v+η−εs) <∞.
Hence

Hs(∂εΓ) <∞ for all s >
v

ε

and therefore dimH(∂εΓ) ≤ v
ε
.

We now investigate lower bounds by appealing to the following result,
which is similar to R. Mañé’s dimension formula [Mañ] :

Theorem 3.4.17 If µ is an ergodic invariant measure with positive entropy,
then

lim inf
log µ(Bε(ξ, r))

log r
≥ hµ(F )/ε ,

for µ-almost every ξ.

Proof: Since F is eε-Lipschitz, it follows that Bε(ξ, r) ⊂ S(ξ, n, renε). Since
µ is invariant and ergodic, it follows from a formula of Brin and Katok [BK]
that an equivalent definition of metric entropy is

hµ(F ) = lim
r→0

lim sup
n→∞

−1

n
log µ(S(ξ, n, r)) ,

for µ-a.e. ξ.
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Choose a generic point ξ for µ and let η > 0; we will write Bε(r) =
Bε(ξ, r). There are some r0 > 0 and n0 ∈ N such that, if r ≤ r0 and n ≥ n0

then ∣∣∣∣−
1

n
log µS(n, r)− hµ(F )

∣∣∣∣ ≤ 2η .

We choose rn = r0e
−εn and we obtain

log µ(Bε(rn))

log rn

≥ − log µ(S(n, r0))

n(ε− log(r0)/n)
≥ hµ(F )− 2η

ε− log(r0)/n
,

so

lim inf
logµ(Bε(rn))

log rn

≥ hµ(F )− 2η

ε
.

Given r > 0, fix n so that Bε(rn+1) ⊂ Bε(r) ⊂ Bε(rn) and

logµ(Bε(r))

log r
≥ log µ(Bε(rn))(

log rn+1

rn

)
+ log rn

.

Thus,

lim inf
logµ(Bε(r))

log r
≥ hµ(F )/ε .

It follows that for the measure we have constructed and for any η > 0
and r small enough,

µf(Bε(r)) ≤ r(1/ε)hµ(F )−η .

This implies that the local upper pointwise dimension of µ satisfies dimµf ≥
(1/ε)hµ(F ). Therefore

hµ(F )

ε
≤ dim µf ≤ dim ∂Γε ≤

v

ε
≤ 1

ε
log d .

Proof: (Theorem 3.4.1) By ergodicity and uniqueness of the class of qua-
siconformal measures of given dimension, it follows that µf is unique (cf.
Theorem 3.4.4). Theorem 3.4.11 and Theorem 3.4.12 prove the equidistribu-
tion of preimages and periodic points according to µf . The mixing property
has also been proved (Corollary 3.4.14). The claimed entropy and dimension
estimates were proven in §3.4.2 and §3.4.5, respectively.
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3.5 Properties for cxc maps following hyper-

bolicity

In this section we assume that f : X1 → X0 has repellor X and is topologi-
cally cxc with respect to some open cover U0. Thus, the topological Axioms
[Expansion], [Irreducibility], and [Degree] hold.

Let Γ = Γ(f,U0) be the associated Gromov hyperbolic graph as in Sec-
tion 3.2. Recall that by Theorem 3.2.1, for ε > 0 small enough, there is a
homeomorphism φf : X → ∂εΓ conjugating f on X to the Lipschitz map
F : ∂εΓ→ ∂εΓ.

Theorem 3.5.1 If f is topological cxc, then Γ is hyperbolic for any covering
with a mesh small enough and F : ∂Γ → ∂Γ satisfies axioms [Roundness
distortion] and [Relative diameter distortion] with respect to the covering
V0 = {φf(U0 ∩ X)}U∈U0. If f is furthermore metric cxc, then ∂εΓ is qua-
sisymmetrically equivalent to X.

So, if f is topologically cxc, dynamics on X equipped with the metric
pulled back from Γ via φf is essentially metrically cxc.

Remark: Since F : ∂εΓ → ∂εΓ is not metrically cxc, Theorem 2.8.2 does
not apply.

Proof: Since f is topological cxc, a metric exists so that the mesh of S(n)
has exponential decay (cf. Theorem 3.2.5) and φf : X → ∂εΓ is a homeomor-
phism as soon as ε is small enough. Therefore Theorem 3.3.1 implies that Γ
is hyperbolic and that its quasi-isometry is well-defined.

We let V = φf (U). Axioms [Irreducibility], [Expansion] and [Degree]
hold through the conjugation. The [Diameter distortion] and [Roundness
distortion] Axioms follow from Proposition 3.3.7.

Let us assume from now on that f is cxc. Our strategy is as follows. We
will first establish that φf is weakly quasisymmetric by the blowing up/down
argument given in the proof of Theorem 2.8.2. The proof concludes by argu-
ments similar to those given in the proof of Proposition 3.3.12.

Let δ be the Lebesgue number of U0 = S(1). Let x ∈ X and let r ∈
(0, δ/L) where L is given by Proposition 2.6.6.

It follows from Proposition 2.6.6 that we may find vertices W ′,W such
that

B(x, r/L) ⊂W ′ ⊂ B(x, r) ⊂W ⊂ B(x, Lr).
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It follows from diamW ′ ≍ diamW that |W −W ′| = ||W | − |W ′|| ≤ N
for some constant N . Let n = min{|W |, |W ′|} − 1. It follows that fn(W ′) ⊂
fn(B(x, r)) ⊂ fn(W ) and that the roundness of fn(W ′), fn(B(x, r)) and
fn(W ) at fn(x) is bounded by ρ+(L).

It follows from the uniform continuity of the conjugacy φf and its inverse,
and the fact that all these sets have a definite size, that a constant K exists
such that the roundness of φf(fn(W ′)), φf (fn(B(x, r))) and φf (fn(W )) at
φf(fn(x)) is bounded by K.

Therefore, radii r and r′ exist such that

B(F nφf(x), r′eεp) ⊂ φf(fn(W ′)) ⊂ B(F nφf(x), Kr′eεn)

and

B(F nφf(x), reεp) ⊂ φf(fn(W )) ⊂ B(F nφf(x), Kreεn)

From Proposition 3.3.3, it follows that there is some finite constant H
such that

Round(φf(B(x, r)), φf(x)) .
diamεφf(W )

diamεφf(W ′)
≍ e−ε(|W−W ′|) ≤ H.

Therefore φf is weakly quasisymmetric.

By the uniform continuity of φf and its inverse, it is enough to consider
x, y, z ∈ X such that |x− y|X, |x− z|X ≤ δ/L. We argue as for Proposition
3.3.12.

It follows from above that we may find W ′
y and Wz in Γ such that

1. y /∈ W ′
y, diamW ′

y ≍ |x− y|X and Round(W ′
y, x) ≤ K,

2. z ∈Wz, diamWz ≍ |x− z| and Round(Wz, x) ≤ K,

for some universal K.

It follows that
|φf(x)− φf(y)|ε
|φf(x)− φf(z)|ε

≍ diamεW
′
y

diamεWz
.

If |x− y|X and |x− z|X are equivalent, then Proposition 2.6.4 implies the
bounds.
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If |x− y|X is small in front of |x− z|X , then W ′
y ⊂Wz. Therefore

|x− y|X
|x− z|X

≍
diamW ′

y

diamWz
≥ δ−1

+

(
c|W ′

y|−|Wz|+1

d1

)
,

where we recall that cn denotes the smaller diameter of sets in S(n).
This implies that

|φf(x)− φf(y)|ε
|φf(x)− φf (z)|ε

is bounded by a function of
|x− y|X
|x− z|X

which goes to zero as the ratio tends to zero.

If |x− y|X is large in front of |x− z|X , then W ′
y ⊃Wz. Therefore

|x− z|X
|x− y|X

≍ diamWz

diamW ′
y

≥ δ−

(
d|Wz|−|W ′

y|+1

c1

)
.

We may conclude as above.
This proves that φf is quasisymmetric.

Remark. Theorem 2.8.2 can be recovered with Theorem 3.3.1 and Theorem
3.5.1.

As an application, we obtain the following result.

Definition 3.5.2 Let f : X1 → X0 have repellor X and be topologically cxc
with respect to some open covering U0. The associated conformal gauge G
is the set of all metrics on X which are quasisymmetrically equivalent to a
metric of the form φ∗

f(dε), where dε is the metric on ∂εΓ and φf : X → ∂εΓ
is as above.

Theorem 3.5.3 (Canonical gauge) 1. Let f : X1 → X0 have repellor
X and be topologically cxc with respect to some open covering U0. Then
the conformal gauge G is nonempty and depends only on its topological
conjugacy class.
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2. If U ∩X is connected for every U ∈ U0, then the conformal gauges of
f : X1 → X0 and f |X : X → X agree.

3. If the system is in addition metrically cxc with respect to some metric
d on X0, the conformal gauge G of f agrees with the conformal gauge
of the metric space (X, d|X).

Proof: (1) follows from the uniqueness result Theorem 3.3.12 and (3) from
the preceding Theorem 3.5.1. The graph constructed using f and U0 is
naturally identified with that constructed using f |X and V0 = {U ∩X : U ∈
U0} and the induced conjugacies respect this identification. Therefore the
metrics on X obtained by pulling back the metrics on the boundaries of the
two graphs coincide and (2) follows.

Remark. The preceding theorem implies that the gauge depends only on the
dynamics near the repellor. One may surmise that it should really depend
only on the dynamics on the repellor itself. Conclusion (2) implies that this
is true once X is locally connected. In the non-connected case, however, a
proof remains elusive.

To illustrate the subtleties, fix d ≥ 2, let X = {1, 2, . . . , d}N be equipped
with the metric |x − y| = 2−(x|y) where (x|y) = mini{xi 6= yi}, and suppose
h : X → X is a topological conjugacy, i.e. an automorphism of the one-sided
shift on d symbols. If the gauge of f depends only on the dynamics on X,
then every such h should be quasisymmetric. This is indeed the case, and a
proof may be given along the following lines.

1. Start with a round closed disk D ⊂ C. Fix 0 < λ << 1. For each
i = 1, . . . , d choose a similarity gi : C→ C such that gi(D)∩ gj(D) = ∅
whenever i 6= j. This defines a conformal iterated function system
(IFS). There is a unique nonempty compact set K ⊂ D for which
K = ∪d

i=1gi(K). Using a blowing up/down argument, one shows that
the attractor of this IFS is quasisymmetrically equivalent to X.

2. Using quasiconformal surgery, one builds a uniformly quasiregular map
G : Ĉ→ Ĉ such that G|gi(D) = g−1

i for each i, and such that G = zd +
O(zd−1) as z →∞. By Sullivan’s Theorem 4.4.1, G is quasiconformally
conjugate to a degree d polynomial p(z), and K is quasiconformally
(hence quasisymmetically) equivalent to the Julia set J of p.
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3. By results of Blanchard, Devaney, and Keen [BDK], every automor-
phism of the shift on d symbols is realized as monodromy in the shift
locus of degree d polynomials. (The proof depends on the existence of
a nice set of generators.)

4. As a polynomial varies in the shift locus, its Julia sets varies holo-
morphically [MS]. Hence the induced monodromy is quasiconformal,
hence quasisymmetric. In conclusion, we see that every automorphism
is realized by a quasisymmetric map.

There seems to be a combinatorial obstacle to promoting topological con-
jugacies to quasisymmetric conjugacies for noninvertible expanding confor-
mal dynamical systems with disconnected repellors. Even for hyperbolic ra-
tional maps f, g with disconnected Julia sets Jf , Jg, it is not known if every
topological conjugacy h : Jf → Jg is quasisymmetric.

This is known in the following special cases. First, if h extends to a
conjugacy on a neighborhood of Jf , Jg then Theorem 2.8.2 applies and h
is quasisymmetric. However, even for maps with connected Julia set, such
an extension need not exist. Second, if f and g are merely combinatorially
equivalent in the sense of McMullen [McM4] on a neighborhood of their Julia
sets, then there is a quasiconformal conjugacy between f and g near their
Julia sets. In both cases, conditions on the dynamics near, not just on, the
Julia sets are assumed.

In contrast, we have the following result in the setting of hyperbolic
groups. Suppose G1, G2 are two hyperbolic groups, and suppose h : ∂G1 →
∂G2 conjugates the action of G1 to the action of G2. By definition, this
implies that there is some isomorphism Φ : G1 → G2 for which h(g(x)) =
Φ(g)(h(x)) for all x ∈ ∂G1 and all g ∈ G1. One has necessarily that h arises
as the boundary values of Φ. To see this, note that it is enough to verify
that h = ∂Φ on the dense set of fixed points of hyperbolic elements. Sup-
pose g1 ∈ G1 is hyperbolic with attracting fixed point ω1 and g2 = Φ(g1)
has attracting fixed point ω2. Since h is a continuous conjugacy we have
h(ω1) = ω2. But ωi = limn g

n
i and this forces ∂Φ(ω1) = ω2 = h(ω1). Thus,

every topological conjugacy on the boundary is induced from a combinatorial
equivalence, i.e. from an isomorphism of the groups.

This suggests that perhaps there is yet another essential difference be-
tween the setting of noninvertible cxc maps and of hyperbolic groups.
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Corollary 3.5.4 If f : X → X is a topological cxc map, where X1 = X0 =
X, then F : ∂Γ→ ∂Γ is metrically cxc. Therefore X admits a metric, unique
up to quasisymmetry, for which the dynamics is metrically cxc.

Proof: The assumptions imply that X is locally connected, and that (S(n))n

is a basis of the topology by connected open sets. Proposition 3.3.2 implies
the cxc property.

Corollary 3.5.5 If f : (X1, X) → (X0, X) is a topological cxc map with
f a non ramified covering, then there is some R > 0, such that, if we set
Y0 = Γε \Bε(o, R) and Y1 = F−1(Y0), then F : (Y1, ∂Γ)→ (Y0,Γ) is cxc.

Proof: Since f is a cover, there is some level n0 such that, for any n ≥ n0,
any U ∈ S(n), the restriction of f to U is injective. This implies that the
local degree function for F is 1 at any point close enough to ∂Γ.

Furthermore, if n0 is large enough, then F−1(℧(U)) will be a disjoint
union of d shadows based at F−1({U}).

Therefore, if we set Y0 = Γε \ Bε(o, e
−εn0) and Y1 = F−1(Y0), then

F : Y1 → Y0 is a degree d covering.
For any ξ ∈ ∂Γ, let V (ξ) be the connected component of the interior of

℧(W ) for some W ∈ S(n0) containing φ−1
f (ξ). Note that the interior of ℧(W )

is not empty since it contains φf(W ). Since Γ is locally connected, V (ξ) is
open, and we may extract a finite subcover V. Proposition 3.3.2 implies that
F is cxc.

We may now state and prove the following theorem.

Theorem 3.5.6 Let f : (X1, X) → (X0, X) be a topological cxc map. Then
the measure µf is the unique measure of maximal entropy log d, and is Ahlfors
regular of dimension α = (1/ε) log d.

Proof: Ahlfors regularity follows from Axiom [Degree] and the Lemma of
the shadow. Let us fix a ball Bε(ξ, r) ⊂ ∂Γ. First, Proposition 3.3.2 implies
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that we may find two vertices W1,W2 such that φf(W1) ⊂ Bε(ξ, r) ⊂ φf (W2)
and

r ≍ e−ε|W1| ≍ e−ε|W2| .

From the Lemma of the shadow and Axiom [Degree] follows

rα ≍ e−εα|W1| . µf(Bε(ξ, r)) . e−εα|W2| ≍ rα .

The fact that the entropy is log d follows from Theorem 3.4.1 and Axiom
[Degree]: since the degree is bounded along any pull-back, it follows that, for
any ξ ∈ ∂Γ,

lim
1

n
log dF n(ξ) = 0.

Hence Birkhoff’s ergodic theorem implies that

∫
log dFdµf = 0

so that dF (ξ) = 1 for µf -a.e. every ξ.
The uniqueness of µf follows from Corollary 3.4.9.

Remark. Since φf is a homeomorphism, on can choose to see µf on X rather
than on ∂Γ. In that case, the measure is just doubling (there is some constant
C > 0 such that µf(2B) ≤ Cµf(B)), since this property is preserved under
quasisymmetric mappings (cf. [Hei]), and since any Ahlfors regular measure
is doubling.

BPI-spaces. Following David and Semmes [DaSe], a bounded space (X, d, µ)
is called BPI (“Big pieces of itself”) if X is Ahlfors regular of dimension
α, and if the following homogeneity condition holds. There are constants
θ < 1 and C > 1 such that, given any balls B(x1, r1) and B(x2, r2) with
r1, r2 ≤ diamX, there exists a closed set A ⊂ B(x1, r1) with µ(A) ≥ θrα

1 and a
homeomorphism h : A→ B(x2, r2) such that h is a (C, r2/r1)-quasisimilarity,
i.e.

C−1 ≤ |h(a)− h(b)|
(r2/r1)|a− b|

≤ C

for all a, b ∈ A.
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Theorem 3.5.7 Suppose f : X1 → X0 has repellor X and is topologically
cxc with respect to some open cover U0. Let Γ be the hyperbolic graph and ε0

the constant given by Theorem 3.2.1. Then for all ε < ε0, the metric space
∂εΓ is BPI.

Proof: We start with a preliminary step.
Suppose φf : X → ∂εΓ is the conjugacy given by Theorem 3.2.1 and dε is

the metric on ∂εX. Let dε,X = φ∗
f(dε). For convenience of notation, we will

show (X, dε,X) is BPI.
Recall that since f is topologically cxc, there is a uniform (in n) upper

bound p on the degree m(U) by which an element of U ∈ Un maps under
fn. Choose W ∈ Un0 arbitrarily so that the multiplicity m(W ) is maximal,

so that any further preimages W̃ of W map onto W by degree one i.e., are
homeomorphisms. It follows from Proposition 3.3.2 that its image under φf

contains some ball Bε(ξ, 4r), such that, for any iterate n, any ξ̃ ∈ F−n(ξ),
F n : Bε(ξ̃, 4re

−εn)→ Bε(ξ, 4r) is a homeomorphism. Therefore, Proposition
3.2.3 shows that F n : Bε(ξ̃, re

−εn)→ Bε(ξ, r) is a (1, eεn) quasisimilarity.

By Proposition 2.4.2, for each U0 ∈ U0, there exists k ∈ N and some
W̃ ∈ Uk such that

• W̃ ⊂ U0,

• W̃ is a preimage of W under fk, and

• deg(fk : W̃ → W ) = 1.

Since U0 is finite, the W̃ ’s considered above have a level bounded by some
n0 + k0.

Furthermore, for any n and any U ∈ Un, one has fn(U) ∈ U0, so one may
find a preimage WU of W so that WU ⊂ U , and |WU | = n+O(1). Thus, one
can find a ball B(ξ′, re−ε(n+k)) ⊂WU so that fn+k : B(ξ′, re−ε(n+k))→ B(ξ, r)
is a (1, e−ε(n+k)) quasisimilarity. Let us note that re−ε(n+k) ≍ diamεU .

Now suppose we are given dε,X balls Bi = B(ξi, ri) ⊂ X, i = 1, 2. By
Proposition 3.3.2, there exist U ′

i , Ui ∈ U with

U ′
i ∩X ⊂ Bi ⊂ Ui ∩X

such that ni = |U ′
i | = 1

ε
log 1

ri
+ O(1). For each i = 1, 2, let Wi be a

preimage of W so that Wi ⊂ U ′
i , and |Wi| = ni + ki as in the previous
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paragraph. Moreover, we consider balls B(ξ′i, re
−ε(ni+ki)) ⊂ Wi as above.

It follows from Ahlfors-regularity that µf(B(ξ′i, re
−ε(ni+ki))) ≍ µf(Bi). Let

hi = fni+ki|B(ξ′i,re−ε(ni+ki)), for i = 1, 2; the map h = h−1
2 ◦ h1 is a quasisimi-

larity between big pieces of B1 and B2.
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Chapter 4

Examples of cxc systems

4.1 No exotic cxc systems on S1

Metric cxc systems on the Euclidean circle include the covering maps z 7→ zd,
|d| ≥ 2, and essentially nothing else.

Theorem 4.1.1 (Cxc on S1 implies qs conjugate to zd) Suppose f : X →
X is a metric cxc dynamical system where X is homeomorphic to S1. Then
there exists a quasisymmetric homeomorphism h : X → S1 conjugating f on
X to the map z 7→ zdeg f on the Euclidean circle S1.

Proof: An open connected subset of S1 is an interval. Since f is open, it
sends small open intervals onto small open intervals. Moreover, if these in-
tervals are small enough, f must be injective on such intervals, else there is
a turning point in the graph and openness fails. Hence f is a local homeo-
morphism. A local homeomorphism on a compact space is a covering map
[see [AH], Thm. 2.1.1]. In particular f is strictly monotone.

Such a map admits a monotone factor map π onto g(z) = zd where
d = deg f [[KH], Prop. 2.4.9]. If π is not a homeomorphism, then there
is an interval I ⊂ π−1(x) for some x ∈ S1. Axiom [Irreducibility] implies
fN(I) = S1 for some N . Then

gN(x) = gn(π(I)) = π(fN(I)) = π(S1) = S1

which is impossible. Thus π is a homeomorphism and f is topologically
conjugate to g. Since g is cxc with respect to the Euclidean metric, π is
quasisymmetric, by Theorem 2.8.2.

105
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4.2 Semi-hyperbolic rational maps

We endow the Riemann sphere Ĉ with the spherical metric, and we will talk
of disks D(x, r) rather than balls B(x, r) in this context.

If g is a rational map, the Fatou set F (g) of g is the set of points z ∈ Ĉ

which admit a neighborhood N(z) such that the restrictions {(fn)|N(z)}n
forms a normal family. The Julia set J(g) of g is the complement of F (g).

We shall say that g is chaotic when J(g) = Ĉ.
The class of semi-hyperbolic rational maps has been introduced by L. Carleson,

P. Jones and J.-C. Yoccoz in [CJY]. In their paper, they provide several dif-
ferent characterizations, some of which we recall now.

Theorem 4.2.1 (definition of semi-hyperbolic rational maps) Let g be
a rational map. The following conditions are equivalent and define the class
of semi-hyperbolic rational maps.

1. A radius r > 0 and a maximal degree p < ∞ exist, such that, for any
z ∈ J(g), for any iterate n ≥ 1 and any connected component W of
g−n(D(x, r)), the degree of gn|W is at most p.

2. A radius r > 0, a maximal degree p < ∞, and constants c > 0 and
θ < 1 exist such that, for any x ∈ J(g), any iterate n ≥ 1, and any
component W of g−n(D(x, r)), the degree of the restriction of gn to W
is at most p, and the diameter of Wn is at most cθn.

3. The map g has no recurrent critical point in the Julia set nor parabolic
cycles.

4. A maximal degree p0 exists such that, for any r > 0 and any x ∈ J(g),
if we let n be the least iterate such gn(D(x, r) ∩ J(g)) = J(g)) then
gn|D(x,2r) has degree at most p0.

We refer to Theorem 2.1 in [CJY] for the proofs of the equivalence above.

Corollary 4.2.2 (Topological cxc rational maps are semi-hyperbolic)
A rational map is topological cxc if and only if it is semi-hyperbolic.

Proof: Let us assume that f is a topological cxc rational map. Then it
satisfies conclusion 1(1) of Theorem 4.2.1 with radius the Lebesgue number
of the cover U .
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Conversely, the classification of stable domains implies that the comple-
ment of the Julia set J(f) consists of points which converge to attracting
cycles under iteration. Thus if X0 is the complement of a suitable neighbor-
hood of attacting cycles and their preimages, then X1 = f−1(X0) has closure
in X0 and the branch points of f : X0 → X1 lie in J(f).

The axiom [Irreducibility] holds for any rational map in a neighborhood
of its Julia set.

If f is semihyperbolic, Theorem 4.2.1 asserts that there is an r > 0,
p < ∞, c > 0, and θ < 1 such that, for any x ∈ J(f), any iterate n ≥ 1,
and any component W ′

n of f−n(D(x, 3r)), the degree of the restriction of fn

to W ′
n is at most p, and the diameter of W ′

n is at most cθn. We let U0 be
a finite subcovering of J(f) of {D(x, r), x ∈ J(f)}, and Un be the set of
components of f−n(U) when U ranges over U0. Therefore, Axioms [Degree]
and [Expansion] hold, so that f is a topological cxc map.

Note that the last item shows that any point in the Julia set is conical (as
for convex cocompact groups), meaning that we may use the dynamics to go
from small scales to large scales and vice versa with bouded distortion (cf.
Lemma 4.2.6 below). Indeed, Lyubich and Minsky [LM] call semihyperbolic
maps convex cocompact and show that such maps are characterized by the
following property: the quotient (by the induced invertible dynamics of f)
of the convex hull of the “Julia set” (the hull taken in their affine hyperbolic
three-dimensional lamination associated to f) is compact.

The aim of this section is first to prove that these maps are cxc (Theorem
4.2.4) and also to strenghten their relationship to convex cocompact Kleinian
groups within the dictionary by establishing new characterisations of this
class. Theorem 4.2.4, Theorem 4.2.7 and Theorem 4.2.8 below imply the
following.

Theorem 4.2.3 (Characterizations of semi-hyperbolic rational maps)
Let g be a rational map. The following propositions are equivalent.

1. g is semi-hyperbolic.

2. g is metric cxc on its Julia set, with respect to the spherical metric.

3. There is a covering U of J(g) such that the associated graph Γ is quasi-
isometric to the convex hull of J(g) in H3 by a quasi-isometry which
extends to φg : J(g)→ ∂Γ.
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The map φg in the statement above is the one defined by Theorem 3.2.1.

The last paragraphs deal with the topological characterization of semi-
hyperbolic maps in the spirit of Cannon’s conjecture for hyperbolic groups,
which claims that a hyperbolic group G with a topological 2-sphere as bound-
ary admits a faithfull cocompact Kleinian action.

4.2.1 Characterization of cxc mappings on the stan-
dard 2-sphere

Theorem 4.2.4 (semi-hyperbolic rational maps are cxc) Let f be a semi-
hyperbolic rational map with Julia set J . Then there are closed neighborhoods
X0,X1 of J in the sphere such that f : X1 → X0 is cxc with repellor J with
good open sets given by a finite collection U0 of open spherical balls.

Notation. Let σ = |dz|/(1 + |z|2) denote the spherical Riemannian metric

on Ĉ. For a simply-connected hyperbolic domain V in Ĉ, let ρV denote the
hyperbolic metric on V and V c its complement in Ĉ. Given a metric g,
B(a, r; g) denotes the ball of radius r about a and diam(A; g) the diameter
of a set A.

Lemma 4.2.5 (Comparing metrics) There exists a universal constant C

such that the following holds. Let W ⊂ Ĉ be a simply-connected hyperbolic
domain of spherical diameter < π/4, x ∈W , and D = B(x, 2; ρW ). Then, re-
stricted to the domain D, the metrics ρW and σ/diam(D, σ) are C-bilipschitz
equivalent.

Proof: By applying a rigid spherical rotation we may assume W is contained
in the Euclidean unit disk ∆ about the origin. For such domains, σ and the
Euclidean metric |dw| are bilipschitz equivalent. By the Koebe 1/4 theorem,
ρW is 4-bilipschitz equivalent to the metric

η =
1

dist(w,W c)
|dw|

where dist(w,W c) denotes the Euclidean distance from w to the complement
W c of W in C. Suppose φ : (∆, 0) → (W,x) is a holomorphic isomorphism.
By compactness of the space of Schlicht functions, and the fact that D is a
hyperbolic ball of radius 2,

diam(D; σ) ≍ diam(D; |dw|) ≍ |φ′(0)|. (4.1)



4.2. SEMI-HYPERBOLIC RATIONAL MAPS 109

Let w ∈ D. The Schwarz lemma implies dist(w,W c) ≤ const · |φ′(0)|, and
the Koebe 1/4-theorem implies dist(w,W c) ≥ const · |φ′(0)|, so that

dist(w,W c) ≍ |φ′(0)|. (4.2)

Dividing (1) by (2) yields

diam(D; σ)

dist(w,W c)
≍ 1

and so
ρW (w)

σ(w)/diam(D; σ)
≍ diam(D; σ)

dist(w,W c)
≍ 1.

Lemma 4.2.6 (Distortion of p-valent maps) For p ∈ N and r̃, r > 0,
there exist real-valued functions Ch(p, r) and C−1

h (p, r), tending to zero as r, r̃

tend to zero, with the following property. Suppose W̃ ,W ⊂ Ĉ are hyperbolic
simply-connected domains, f : W̃ → W is a proper, holomorphic map such
that #f−1(w) ≤ p for all w ∈W , and f(w̃) = w.

1. Let B = B(w, r; ρW ) ⊂ W and let B̃ be the component of f−1(B)
containing w̃. Then

(a) B(w̃, r; ρW̃ ) ⊂ B̃ ⊂ B(w̃, Ch(p, r); ρW̃ ).

(b) If B is replaced by an open connected set, then

diam(B; ρW ) ≤ diam(B̃; ρW̃ ) ≤ Ch(p, diamB).

2. Given r̃ > 0,

B(w,C−1
h (p, r̃); ρW ) ⊂ f(B(w̃, r̃; ρW̃ )) ⊂ B(w, r̃; ρW ).

Basically, the above lemma says that for connected sets of a fixed size, preim-
ages cannot be too large or too small, and images cannot be too large or too
small.
Proof: 1(a) is the content of Lemma 2.2 in [CJY] and implies the lower
containment in (2) and the upper bound in 1(b). The lower bound in 1(a)
and the upper containment in (2) follow from the Schwarz-Pick lemma.
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Proof: (Theorem 4.2.4) Suppose f : Ĉ → Ĉ is semihyperbolic. Let r, p be
the constants as in Theorem 4.2.1. Let X0 be the complement of a forward-
invariant neighborhood of the attractors as in the proof of Corollary 4.2.2
and X1 its preimage, so that f : X1 → X0 is an fbc. To define the level zero
good open sets U0 we proceed as follows.

Definition of U0. For x ∈ J(f), let W (x) be the spherical ball whose radius
is r/2. By Lemma 4.2.6 there exists r0 so small that Ch(p, r0) < 1/2 and let
U(x) = B(x, r0; ρW (x)). Let U0 be a finite open cover of J(f) by pointed sets
of the form (U(x), x). Then we have a finite set of triples (W (x), U(x), x). By
taking preimages, we obtain for each n ∈ N a covering Un of J(f) by Jordan

domains Ũ such that each has a preferred basepoint x̃ and is compactly
contained in a larger domain W̃ . Moreover,

fk : (W̃ , Ũ , x̃)→ (W,U, x)

whenever U ∈ Un, Ũ ∈ Un+k, and fk(x̃) = x. Note that by construction and
Lemma 4.2.6, for all n and all U ∈ U = ∪nUn with basepoint x,

B(x, r0; ρW ) ⊂ U ⊂ B(x, 1/2; ρW ).

In particular, 2r0 ≤ diam(U ; ρW ) ≤ 1.

Diameter distortion. Suppose fk : (Ũ , Ũ ′) → (U,U ′), and let W̃ and W

be the larger sets given with Ũ and U . We have by Lemma 4.2.5

diam(U ′; σ)

diam(U ; σ)
= diam(U ′; σ/diam(U ; σ)) ≍ diam(U ′; ρW ) (4.3)

and similarly

diam(Ũ ′; σ)

diam(Ũ ; σ)
≍ diam(Ũ ′; ρW̃ ). (4.4)

By Lemma 4.2.6 1(b), we have

diam(U ′; ρW ) ≤ diam(Ũ ′; ρW̃ ) ≤ Ch(p, diam(U ′; ρW )). (4.5)

Together, (4.3), (4.4), and (4.5) imply

diam(U ′; σ)

diam(U ; σ)
≤ const · diam(Ũ ′; σ)

diam(Ũ ; σ)
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and
diam(Ũ ′; σ)

diam(Ũ ; σ)
≤ const · Ch

(
p, const

diam(U ′; σ)

diam(U ; σ)

)

as required.

Roundness distortion. We first estimate the distortion of roundness with
respect to hyperbolic metrics, and then relate the hyperbolic to the spherical
metric.

Suppose U ∈ U = ∪nUn, a ∈ U , and Round(U, a) = K in the hyperbolic
metric of W . By the definition of roundness, there exists s > 0 such that
with respect to the hyperbolic metric on W ,

B(a, s) ⊂ U ⊂ B(a,Ks)

and no smaller K will do. Thus

1

2
diam(U) ≤ Ks ≤ diam(U).

Since by construction 2r0 ≤ diam(U) ≤ 1 we have K ≍ 1/s.

Now suppose fk : (Ũ , ã)→ (U, a).

Backward roundness distortion. By Lemma 4.2.6 1(a), with respect to

the hyperbolic metric on W̃ ,

B(ã, s) ⊂ Ũ ⊂ B(ã, Ch(p,Ks)) ⊂ B(ã, Ch(p, 1))

and so

Round(Ũ , ã) ≤ Ch(p, 1)

s
≤ const ·K

since K ≍ 1/s. Hence we obtain a linear backwards roundness distortion
function.

Forward roundness distortion. Suppose now Round(Ũ , ã) = K̃. Then

with respect to the hyperbolic metric on W̃ , there exists s̃ > 0 such that

B(ã, s̃) ⊂ Ũ ⊂ B(ã, K̃s̃) ⊂ B(ã, 1)

so that K̃ ≍ 1/s̃. Hence by Lemma 4.2.6(2), with respect to the hyperbolic
metric on W ,

B(a, C−1
h (p, s̃)) ⊂ U ⊂ B(a, 1)
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and so
Round(U, a) ≤ 1/C−1

h (p, s̃) ≤ a function of K̃

since s̃ ≍ 1/K̃.

It remains only to transfer the roundness estimates from the hyperbolic
to the spherical metric. Suppose U ∈ U has basepoint x, a ∈ U , and
Round(U, a) = K with respect to the hyperbolic metric on W . By construc-
tion,

U = B(x, r0; ρW ) ⊂ B(x, 1; ρW )

and we have already shown

B(a,Ks; ρW ) ⊂ B(a, 1; ρW ).

Therefore, U , its largest inscribed ball B(a, s) about a, and smallest cir-
cumscribing ball B(a,Ks) about a are all contained in the hyperbolic ball
D = B(x, 2). On this set, Lemma 4.2.5 implies that the hyperbolic metric
ρW is bilipschitz equivalent to the metric σ/diam(D; σ). Since roundness is
invariant under constant scalings of the metric, the factor 1/diam(D; σ) is
irrelevant. It follows easily that the roundness computed with respect to the
hyperbolic metric on W is comparable to that computed with respect to the
spherical metric σ.

This completes the proof of Theorem 4.2.4.

We may now provide a converse statement :

Theorem 4.2.7 (cxc on the Euclidean S2 implies uniformly quasiregular)
Suppose f : S2 → S2 is an orientation-preserving cxc with respect to the stan-
dard spherical metric. Then f is quasisymmetrically, hence quasiconformally
conjugate to a chaotic semi-hyperbolic rational map.

This result is reminiscent of D. Sullivan’s theorem which says that a uni-
form convergence group which acts as a uniform quasiconformal group on the
Euclidean standard 2-sphere is quasiconformally conjugate to a cocompact
Kleinian group [Sul1].

Proof: Any iterate fn is also a finite covering from the sphere to itself, hence
has exactly 2dn − 2 critical points counted with multiplicity. We will first
prove that a constant K exists such that fn is K-quasiregular for all n ≥ 1.
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Fix n and consider a small disk 2D disjoint from the critical set of fn. It
follows from Lemma 2.7.2 that there is a constant H <∞ such that, for all
x ∈ 2D,

lim sup
r→0

max{|fn(x)− fn(y)| : |x− y| = r}
min{|fn(x)− fn(y)| : |x− y| = r} ≤ H .

Therefore F. Gehring’s metric characterisation of quasiconformal maps im-
plies that there is a universal K = K(H) such that fn is K-quasiconformal
on D [Geh].

This implies that fn is K-quasiregular off the critical set of fn. But
finitely many points are removable for quasiregularity, hence fn isK-quasiregular.
It follows from Theorem 4.4.1 that f is quasiconformally conjugate to a ra-
tional map. The semi-hyperbolicity follows from the property of bounded
degree along pull-backs (cf. Theorem 4.2.1).

4.2.2 Convex Hull of Julia sets

In this paragraph, we prove the following theorem.

Theorem 4.2.8 Let f be a rational map. There is a finite cover U of J(f)
such that the space Γ = Γ(f,U) is quasi-isometric to the convex hull of the
Julia set in H3 by a quasi-isometry which extends as φf : J(f) → ∂Γ if and
only if f is semi-hyperbolic.

We note that if Γ is quasi-isometric to the convex hull of J(f) then the
elements of S(n) have their diameter exponentially small, which forces f to
be a so-called topologically Collet-Eckmann map, cf. [PR] and [PRLS].

Proposition 4.2.9 Let f be a rational map, and Γ the graph constructed
from a finite covering U . If Γ is hyperbolic and φf : J(f)→ ∂εΓ is quasisym-
metric for some ε > 0 then f is semi-hyperbolic. Furthermore, the measure
of maximal entropy is doubling on Ĉ.

Under the assumptions of Proposition 4.2.9, and since φf is a homeomor-
phism and the mesh of (S(n))n tends to 0 with respect to the metric dε, it
follows that (f,U) satisfies the Axiom [Expansion].

We start with a lemma.
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Lemma 4.2.10 Let K be a compact subset of J(f) − {∞} ; for any α =
(w0,W ), where W ∈ U and w0 ∈ W ∩ K, let Aα(z) = w0 + diam(W )z.
Under the assumptions of Proposition 4.2.9, the family of maps {f |W | ◦Aα}α
is normal on C. Furthermore, any limit is open.

The collection {Wn} of neighborhoods of w0 is a local basis of neighbor-
hoods, so eventually each Wn is contained in some fixed Euclidean disk about
w0 on which the Euclidean and spherical metrics are comparable. Changing
metrics does not affect normality, so we use whichever is most convenient.

The notation diamW will denote the diameter with respect to the spher-
ical metric in Ĉ, otherwise, we will write diamε for the metric dε on ∂Γ.

Proof: Let us consider a sequence (αn); if the sequence of levels is bounded,
then the lemma is clearly true. So we might as well assume that αn =
(wn,Wn) with |Wn| = n. We shall then write Aαn

= An.
We note that F n is eεn-Lipschitz in ∂εΓ. But Proposition 3.3.2 asserts

that diamεW ≍ e−ε|W | for all W ∈ V . Therefore, if W ∈ S(n), then the
Lipschitz constant of

F n :

(
∂Γ,

dε

diamεW

)
→ (∂Γ, dε)

does not depend on W nor n.

We assume that φf is η-quasisymmetric. We observe that the family

φf ◦ An : A−1
n (J(f))→

(
∂Γ,

dε

diamW

)

is equicontinuous. This follows from Proposition 10.26 in [Hei] : all these
maps are η-quasisymmetric, and normalized: for any z, w ∈W ,

|A−1
n (z)−A−1

n (w)| ≤ 1

and

|φf(z)− φf(w)|ε
diamεφf(W )

≤ η

(
2
|z − w|
diamW

)
≤ η(2|A−1

n (z)−A−1
n (w)|) ≤ η(2) .

This implies that, for all R > 0, all the (fn ◦ An)|A−1
n (J(f))∩D(0,R) share a

common modulus of continuity ωR since

fn ◦ An = φ−1
f ◦ F n ◦ (φf ◦ An)
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and

F n :

(
∂Γ,

dε

diamεW

)
→ (∂Γ, dε)

is uniformly Lipschitz.

Let us now prove the lemma. If (fn ◦ An)n≥0 was not a normal family
at a point z∞ ∈ C, then Zalcman’s lemma would imply the existence of a
convergent sequence of points (zk) with z∞ as a limit, a decreasing sequence
to 0 of positive numbers ρk and a subsequence (nk) such that fnk ◦Ank

◦Bk

tends to an open map g : C→ Ĉ where Bk(z) = zk + ρkz [Zal].

Let R = 2|z∞|, and let us choose R′ > 2d(0, g−1(J(f)). Then, for k large
enough, it follows that Bk(D(0, R′)) ⊂ D(0, R) and

diam(fnk ◦ Ank
) ◦Bk(D(0, R′) ∩ (Ank

◦Bk)−1(J(f))) ≤ ωR(2ρkR
′)

which tends to 0. This contradicts the fact that g is open since diam(g−1(J(f)∩
D(0, R′)) > 0.

Therefore, (fn ◦ An)n≥0 is a normal family on C.

By construction, for all k the domains (fnk ◦ Ank
)−1(W0) have diame-

ter one, contain the origin, and map onto the domain W0. Therefore h is
nonconstant, hence open.

Proof: (Proposition 4.2.9) We will prove that the condition 1. in Theorem
4.2.1 follows from Lemma 4.2.10 : let r > 0 be such that any disk of radius r
centered at a point of J(f) is contained in some open set defining the cover
U . If the condition was not satisfied, we would find a sequence of points
zk ∈ J(f), connected components Wk of f−nk(D(zk, r)) such that the degree
of fnk |Wk

would tend to infinity. Let wk ∈Wk be such that fnk(wk) = zk.

It follows from Lemma 4.2.10 that (z 7→ fn(wk + diamWkz))k is a normal
sequence on C with open limits. So the degree has to be eventually bounded.
Therefore, f is semi-hyperbolic.

The statement on the measure follows from the following argument. Since
f is semi-hyperbolic, f is also cxc (Theorem 4.2.4), so Theorem 3.5.6 implies
that µf is the unique measure of maximal entropy and that µf is also Ahlfors-
regular of dimension (1/ε) log d.
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In particular µf is doubling : there is a constant C > 0 such that, for
any ball B(x, r), with r ≤ diamε∂Γ, µf(B(x, 2r)) ≤ 2µf(B(x, r)). Since this
condition is preserved under the application of quasisymmetric mappings, the
same is true for φ∗

fµf (cf. Cor. 4.15 from [Hei]). Furthermore, metric entropy
is invariant under Borelian isomorphisms (Proposition 4.3.16 in [KH]), and
in particular under homeomorphisms, we recover the fact that f admits a
unique measure of maximal entropy : the pull-back under φf of µf , and this
measure is doubling.

We may now prove Theorem 4.2.8 :

Proof: (Theorem 4.2.8) Suppose Γ is quasi-isometric to the convex hull of
J(f) via a map which extends as φf . First, since quasi-isometries between
proper geodesic spaces preserve hyperbolicity, it follows at once that Γ is
hyperbolic. Alternatively, the comment following the statement of Proposi-
tion 4.2.9 shows that one may apply Theorem 3.3.1 to get the hyperbolicity
of Γ. Second, since quasi-isometries extend as quasisymmetric maps, φf is
quasisymmetric.

Therefore, Proposition 4.2.9 applies and shows that f is semi-hyperbolic.

Conversely, if f is semi-hyperbolic, then Theorem 3.5.1 shows that φf is
quasisymmetric and that Γ is hyperbolic. Since both sets Γ and the convex
hull of J(f) are quasi-starlike Gromov spaces, then the quasisymmetry ex-
tends as a quasi-isometry between Γ and the convex hull of J(f) (Theorem
3.1.5).

4.2.3 Topological characterizations of chaotic semihy-
perbolic rational maps

In this paragraph, we prove the following theorem.

Theorem 4.2.11 (Characterization of chaotic semi-hyperbolic rational maps)
Let f : S2 → S2 be an orientation-preserving finite branched covering map
defined on a topological 2-sphere which satisfies [Expansion] with respect to
some covering U , and suppose ε is small enough so that Theorem 3.2.1 ap-
plies. Then the following are equivalent:
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1. f is topologically conjugate to a semi-hyperbolic rational function R :
Ĉ→ Ĉ with JR = Ĉ.

2. ∂∞Γ is quasisymmetrically equivalent to the standard Euclidean S2.

3. Γ is quasi-isometric to hyperbolic three-space H3.

4. The gauge of ∂∞Γ contains a 2-Ahlfors regular metric.

5. The map f is topological cxc and the sequence {Un}n of coverings of S2

is conformal in the sense of Cannon.

Let us recall that the conformal gauge of a metric space (X, d) is the set of
metrics d̂ on X such that the identity Id : (X, d)→ (X, d̂) is quasisymmetric
(see Chapter 15 in [Hei]).

The equivalence with 5 will be proved after developing some needed back-
ground. This corresponds to a theorem of Cannon and Swenson for hyper-
bolic groups whose boundary is homeomorphic to the two-sphere [CS].

Proof: Suppose U = U0 satisfies [Expansion]. Then there exists some N
such that for all n ≥ N , elements of Un contain at most one branch value of
f . Let V be a finite covering of the sphere by Jordan domains V which is
finer than UN and such that ∂V avoids the countable set of forward orbits of
critical points. The elements of V = ∪nVn are then homeomorphic to Jordan
domains, since they are coverings of disks ramified over at most one point
and their boundaries are unramified covers of the Jordan curve boundaries
of elements of V. Since the quasi-isometry class of Γ does not depend on the
cover (Theorem 3.3.1), we may assume at the outset that U = V and hence
that elements U of U and their complements in the sphere are connected.

1.⇒ 2. Suppose h1 : S2 → Ĉ conjugates f to a semi-hyperbolic rational
function R and h2 : S2 → ∂∞Γ conjugates f to the dynamics F on the
boundary of Γ. Since R is semi-hyperbolic, f is topologically cxc (Corollary
4.2.2) and so F is topologically cxc as well. By Corollary 3.5.4, F is metric

cxc. The rigidity theorem, Theorem 2.8.2, implies that h2 ◦ h−1
1 : Ĉ→ ∂Γ is

quasisymmetric.

2.⇒ 1. Suppose h : ∂∞Γ → S2 is a quasisymmetric map, where S2 is
the standard Euclidean two-sphere. By Propositions 3.3.7 and 2.7.2, F is
uniformly weakly quasiregular. Since this condition is preserved under qua-
sisymmetric conjugacies, so is G = hFh−1. By Theorem II.6.2 in [Ric], G is
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uniformly quasiregular. D. Sullivan’s Theorem 4.4.1 implies that G is conju-
gate to a rational map R. But, since h is a quasisymmetry, Theorem 4.2.8
and Theorem 3.1.5 imply that R has to semi-hyperbolic.

3. ⇐⇒ 2. This is follows from Theorem 3.1.5: boundary values of quasi-
isometries are quasisymmetries and, conversely, quasisymmetric maps of bound-
aries extend to quasi-isometries.

4. ⇐⇒ 2. The fact that 2 implies 4. follows from the fact that Ĉ is
naturally a 2-Ahlfors regular metric space.

For the converse, since all elements of U are Jordan domains, Proposition
2.6.6 shows that ∂Γ is linearly locally connected. Since linear local connec-
tivity is a quasisymmetry invariant [Hei], there exists a metric in the gauge
of ∂Γ which is both linearly locally connected and, by hypothesis, Ahlfors
2-regular. By M. Bonk and B. Kleiner’s characterization of the standard two-
sphere [BK1], this implies that this metric is quasisymmetrically equivalent
to the standard Euclidean two-sphere.

These statements mimic similar theorems for Gromov hyperbolic groups
in the context of Cannon’s conjecture. Statement 2 is concerned with Sul-
livan/Tukia’s straightening theorem of quasiconformal groups [Sul1, Tuk2];
statement 3 is due to J. Cannon and D. Cooper [CC] in the context of groups;
statement 4. is due to M. Bonk and B. Kleiner, and can be deduced either
from [BK2], or from [BK1] and [BK3].

In [BK3], M. Bonk and B. Kleiner also prove that a Gromov hyperbolic

group admits a cocompact Kleinian action on Ĉ if the Ahlfors-regular confor-
mal dimension of the gauge of its boundary is attained. The Ahlfors-regular
conformal dimension of (X, d) is the infimum of the Hausdorff dimensions
over all Ahlfors-regular metrics in its gauge. In our context of non-invertible
dynamical systems, this statement does not hold:

Proposition 4.2.12 There is a metric d on the 2-sphere S2 and a cxc map
f : (S2, d) → (S2, d) such that the Ahlfors-regular conformal dimension is
given by d, but f is not conjugate to a rational map.

Proof: Let us consider F : C→ C be defined by F (x+ iy) = 2x+ 3iy. Let
us consider the metric d̂(x + iy, x′ + iy′) = |x − x′| + |y − y′|α where α =
log 2/ log 3. One may check that (C, d̂) is Ahlfors regular of dimension 1+1/α
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and that this dimension is also its Ahlfors-regular conformal dimension since
the (1 + 1/α)-modulus of the family of horizontal curves is clearly positive
(cf. Theorem 15.10 in [Hei]).

Since F (Z[i]) ⊂ Z[i] and F (−z) = −z, this map descends to a map

f : Ĉ → Ĉ, on which one can push down the metric d̂ to a metric d. It
follows that this metric satisfies the same properties as d̂. Furthermore,
since d̂(F (z), F (z′)) = 2d̂(z, z′) clearly holds for any z, z′ ∈ C, it follows that
f is cxc with the metric d.

But since the conformal dimension of (Ĉ, d) is strictly larger than 2, The-
orem 4.2.11 shows that f is not equivalent to a rational map.

This implies that the sphere need not be a Loewner space even if the
Ahlfors-regular conformal dimension is attained. But, if ∂Γ admits an Ahlfors
regular Loewner metric in its gauge, then the theorem above with [BK1]
imply f is conjugate to a rational map.

4.2.4 Cannon’s combinatorial Riemann mapping the-

orem

Before we prove the equivalence with (5), we will first review the notions that
are needed to understand the statement and the proof.

Combinatorial moduli. Let S be a covering of a topological surface X.
Denote by M(S) the set of maps ρ : S → R+ such that 0 <

∑
ρ(s)2 < ∞

which we call admissible metrics. Let K ⊂ X ; the ρ-length of K is by
definition

ℓρ(K) =
∑

s∩K 6=∅

ρ(s)

and its ρ-area is

Aρ(K) =
∑

s∩K 6=∅

ρ(s)2 .

If Γ is a family of curves in X and if ρ ∈ M(S), we define

Lρ(Γ,S) = inf
γ∈Γ

ℓρ(γ),
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and its combinatorial modulus by

mod(Γ,S) = inf
ρ∈M(S)

Aρ(X)

Lρ(Γ,S)2
= inf

ρ∈M(S)
mod(Γ, ρ,S).

Let A be an annulus in X. Let Γt be the set of curves in A which join
the boundary components of A, and Γs those which separate the boundary
components of A. Define

modsup(A,S) =
1

mod (Γt,S)
and modinf(A,S) = mod (Γs,S) .

The classical moduli of Γs,Γt are mutually reciprocal. In the combinato-
rial setting, this is no longer quite true. However J. Cannon, W. Floyd and
W. Parry have proved that always modinf(A,S) ≤ modsup(A,S) [CFP1].

A covering S has N-bounded overlap if, for all x ∈ X,
∑

s∈S

χs(x) ≤ N

where χs denotes the characteristic function of s. Two coverings are said to
be N -equivalent if each piece of one intersect at most N pieces of the other,
and vice-versa.

Sequence of coverings. In order to state J.W. Cannon’s combinatorial
Riemann mapping theorem, we introduce a couple of new notions.

Definition. A shingle is connected compact subset of X, and a shingling is
a covering of X by shingles.

Definition. A sequence of coverings (Sn) is K-conformal (K ≥ 1) if

1. the mesh of (Sn) tends to zero;

2. for any annulus A in X, there exist an integer n0 and a positive constant
m = m(A) > 0 such that, for all n ≥ n0,

modsup(A,Sn),modinf(A,Sn) ∈ [m/K,Km];

3. for any x ∈ X, any m > 0 and any neighborhood V , there is an annulus
A ⊂ V which separates x from X \ V such that mod∗(A,Sn) ≥ m for
all large n, where ∗ ∈ {inf, sup}.
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The quantity m(A) will be referred to as the combinatorial modulus of A
with respect to the sequence (Sn). If S ′ = (S ′

n) is another sequence of shin-
glings whose elements S ′

n are N -equivalent with Sn, where N is independent
of n, then the combinatorial moduli computed with respect to S and S ′ are
known to be comparable (Theorem 4.3.1 in [CS]). Hence S is conformal iff
S ′ is conformal.

Theorem 4.2.13 (combinatorial Riemann mapping theorem [Can])
If (Sn) is a conformal sequence of shinglings, on a topological surface X, then
X admits a complex structure such that the analytical moduli of annuli are
comparable with their combinatorial moduli.

There is also a converse :

Theorem 4.2.14 If (Sn) is a sequence of shinglings on the Riemann sphere
such that the mesh goes to zero, each Sn has overlap bounded by some uni-
versal constant N , and such that a constant K > 1 exists such that, for
any n, any s ∈ Sn, there are two concentric disks Ds ⊂ s ⊂ ∆s with
diam∆s ≤ KdiamDs, then (Sn) is conformal.

This is slightly different from Theorem 7.1 in [Can]. There, the smaller
disks Ds are required to be pairwise disjoint. There is no such assumption
here, so we provide a proof. We will use the following lemma of J. Strömberg
and A. Torchinsky [ST]. Below, disks are spherical, and integrals over the
whole sphere.

Lemma 4.2.15 Let us consider a family of disks B ∈ B to which we assign
a positive weight aB > 0. For any p > 1 and any λ ∈ (0, 1), a constant
C = C(p, λ) > 0 independent from B and from the weights exists such that

∫ (∑
aBχB

)p

≤ C

∫ (∑
aBχλB

)p

.

Proof: (Theorem 4.2.14) It suffices to prove that there is some constant
C > 0 such that, for any annulus A, there is some n(A) such that, if n ≥ n(A),
then modinf(A,Sn) ≥ (1/C)modA and modsup(A,Sn) ≤ CmodA.

Fix an annulus A. Since the mesh of Sn tends to 0, we may find some n(A)
and κ > 0 (κ independent from A and n) such that, for any n ≥ n(A), any
piece s ∈ Sn which intersects A and any curve γ ∈ Γt ∪ Γs which intersects
s, the length of γ ∩ 2∆s is at least κdiams.
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Let Γ denote Γs or Γt and S = Sn for some n ≥ n(A). If γ ∈ Γ, the
family of pieces s ∈ S which intersects γ is denoted by S(γ).

If ρ : S → R+ is an admissible metric for Γ, we define a classical test
metric

ρ̂ =
∑

s∈S

ρ(s)

diams
χ2∆s

,

where χ2∆s denotes the characteristic function of 2∆s. Therefore, if γ ∈ Γ,
then the definitions of ρ̂ and κ imply

ℓρ̂(γ) ≥
∑

s∈S(γ)

ρ(s)

diams
ℓ(γ ∩ 2∆s)

≥ κ
∑

s∈S(γ)

ρ(s)

≥ κLρ(Γ,S)

and so

Lρ̂(Γ) ≥ κLρ(Γ,S). (4.6)
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On the other hand,

Area(Ĉ, ρ̂) =

∫

Ĉ

(
∑

s∈S

ρ(s)

diams
χ2∆s

)2

≤ C

∫

Ĉ

(
∑

s∈S

ρ(s)

diams
χDs

)2

by Lemma 4.2.15. Since S has bounded overlap,

(
∑

s∈S

ρ(s)

diams
χDs

)2

≤ N2

(
max

{
ρ(s)

diams
χDs

})2

≤ N2
∑

s∈S

(
ρ(s)

diams
χDs

)2

.

Therefore

Area(Ĉ, ρ̂) ≤ CN2
∑

s∈S

∫

s

(
ρ(s)

diams

)2

≤ CN2K2π
∑

s∈S

ρ(s)2 .

Hence
Area(Ĉ, ρ̂) ≤ CN2K2πAρ(Ĉ) . (4.7)

Combining (4.6) and (4.7) yields

mod(Γ) ≤ c mod(Γ,S)
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where c = C(NK)2π/κ2 is independent of the level n of S = Sn. Taking
Γ = Γs, we obtain

modinf(A,S) = mod(Γs,S) ≥ 1

c
mod(Γs) =

2π

c
mod(A).

Taking Γ = Γt, we obtain

modsup(A,S) =
1

mod(Γt,S)
≤ c

mod(Γt)
=

c

2π
mod(A).

4.2.5 Proof of rational iff Cannon-conformal

Proof: [5⇒ 1] We assume that f is topological cxc, given by covers (Un), and
that this sequence is conformal. Considering a cover S(0) by Jordan domains
fine enough, the existence of some constant N independent from n so that
the covers Un and S(n) are N -equivalent follows from Axiom [Degree]. Thus,
(S(n))n is conformal, and we may now apply the combinatorial Riemann
mapping theorem: ∂∞Γ has a complex structure compatible with its combi-
natorial structure. In other words, there is a homeomorphism h : ∂∞Γ→ Ĉ

such that, for any annulus A and for n large enough,

mod∗(A,Sn) ≍ modh(A) .

Hence the map G = h◦F ◦h−1 is a ramified covering of Ĉ. Let us prove that it
is uniformly quasiregular: this will establish 1. by D. Sullivan’s straightening
theorem (Theorem 4.4.1), and the fact that G is topological cxc (Corollary

4.2.2). Fix k and z ∈ Ĉ off the (finite) branching set B(Gk) of Gk. Let V be
a neighborhood of z disjoint from B(Gk). Therefore, Gk|V is injective so, if
A ⊂ V is an annulus, then, for all n large enough

modGk(A) ≍ modsup(F k(h−1(A)), S(n)) = modsup(h−1(A), S(n+k)) ≍ modA

hence Gk|V is K-quasiconformal for some universal K. Therefore, Gk is
K-quasiregular since B(Gk) is finite hence removable.
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Proof: [2⇒ 5] Let φ : S2 → ∂Γ be the conjugacy given by Theorem 3.2.1.

Let us fix a quasisymmetric homeomorphism h : ∂∞Σ→ Ĉ.

It suffices to prove that (h◦φ(S(n)))n satisfies the assumption of Theorem
4.2.14. Since h is quasisymmetric, Proposition 3.3.2 implies that the round-
ness of h ◦ φ(W ) is uniformly bounded for any W ∈ ∪S(n). Furthermore,
each covering has bounded overlap, so Theorem 4.2.14 applies.

Furthermore, since [2⇒ 1], it follows that f is also topological cxc.

4.3 Finite subdivision rules

Finite subdivision rules have been intensively studied since they give natural
concrete examples with which to study Cannon’s problem of determining
when a sequence of combinatorial structures yields a compatible conformal
structure; see [CFP2], [CFKP], [CFP3] and the discussion in the preceding
section.

A finite subdivision rule (f. s. r.) R consists of a finite 2-dimensional
CW complex SR, a subdivision R(SR) of SR, and a continuous cellular map
φR : R(SR) → SR whose restriction to each open cell is a homeomorphism.
When the underlying space of SR is homeomorphic to the two-sphere S2 (for
concreteness, we consider only this case) and φR is orientation-preserving, φR

is a postcritically finite branched covering of the sphere with the property
that pulling back the tiles effects a recursive subdivision of the sphere. That
is, for each n ∈ N, there is a subdivision Rn(SR) of the sphere such that f
is a cellular map from the nth to the (n − 1)st subdivisions. Thus, we may
speak of tiles(which are closed 2-cells), faces (which are the interiors of tiles),
edges, vertices, etc. at level n. It is important to note that formally, an f. s.
r. is not a combinatorial object, since the map φR, which is part of the data,
is assumed given. In other words: as a dynamical system on the sphere, the
topological conjugacy class of φ is well-defined.

LetR be a finite subdivision rule on the sphere such that φR is orientation-
preserving. R has mesh going to zero if for every open cover of SR, there is
some integer n for which each tile at level n is contained in an element of
the cover. A tile type is a tile at level zero equipped with the cell structure
induced by the first subdivision. R is irreducible if, given any pair of tile
types, an iterated subdivision of the first contains an isomorphic copy of the
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second. If R has mesh going to zero, then it is easy to see that R is irre-
ducible: any two tile types are joined by a path of edges of some bounded
length. R is of bounded valence if there is a uniform upper bound on the
valence of any vertex at any level.

If in addition R has bounded valence, then R yields a topologically cxc
dynamical system on the sphere with respect to a naturally arising family
of open sets at level zero. To define these sets, we recall a few notions from
[CFP3]. Given a subcomplex Y of a CW complex X the star star(Y,X) of
Y in X is the union of all closed tiles intersecting Y . Let X denote the CW
structure on the sphere at level zero, and set Xn = RnX.

Lemma 4.3.1 Suppose R is a finite subdivision rule on the two-sphere which
is orientation-preserving and has mesh going to zero. Then there exist n0, n1 ∈
N with the following property. For each closed 2-cell t ∈ Xn0, the set
Dt = star(t, Xn0+n1) is a closed disk which, if it meets the postcritical set
P of φR, does so in at most one point, and this point lies in the interior Ut

of D.

Proof: Mesh going to zero implies that for some n0, each 2-cell t of Xn0

meets P in at most one point. It also implies that for some n1, for any 2-
cell s of X0, and any two 0-cells x, y of s, no 2-cell of Xn1 contains both x
and y. Together, these two observations imply that for any 2-cell t of Xn0,
Dt = star(t, Xn0+n1) is a cell complex which contains t in its interior Ut, and
which, if it intersects P , does so in its interior. Since Dt is the closure of Ut

and its boundary is a simple closed curve, Dt is a disk.

Let U0 be the finite open covering of the two-sphere underlying X given
by the Jordan domains Ut constructed above, and consider the topological
dynamical system f = φR : X → X together with U0. Since R is irreducible,
Proposition 2.4.1 3(a) implies that axiom [Irreducibility] in the definition of

topologically cxc holds. For any k ∈ N, the restriction of fk to an element Ũ
of Uk is a branched covering onto its image U which is ramified at at most
one 0-cell c which maps onto some 0-cell v . Let w̃ ∈ U be a 0-cell and put
w = fk(w̃). Then w is joined by an edge-path (i.e. a union of 1-cells) to v
whose interior avoids v, and the length of this edge path (i.e. the number

of 1-cells comprising it) is at most some constant q. Since fk : Ũ → U is
ramified only at c, this edge-path lifts to an edge path of length at most q
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joining w̃ to c. It follows that the combinatorial diameter of the zero-skeleton
of U is uniformly bounded. Since R has mesh going to zero, it follows that
axiom [Expansion] holds.

Moreover, if in addition R has bounded valence, then the ramification

of fk at c is uniformly bounded. This implies that Ũ comprises a uniformly
bounded number of cells and hence that the degree of fk : Ũ → U is uniformly
bounded, so that axiom [Degree] holds.

Hence, f : X → X together with U0 yields a topologically cxc system on
the sphere. By Corollary 3.5.4, there is a preferred metric on X for which
the dynamics is metrically cxc. By Theorem 4.2.11, X is quasisymmetrically
equivalent to the standard two-sphere if and only if f is conjugate to a
postcritically finite rational map whose Julia set is the whole sphere; compare
[Mey].

4.4 Uniformly quasiregular dynamics

Let M be a compact Riemannian manifold of dimension n ≥ 2. Given
K < ∞, a non-invertible continuous map f : M → M is said to be K-
quasiregular if f ∈ W 1,n

loc (M) and if |Dxf |n ≤ K · Jf for almost every x.
References on quasiregular mappings include S. Rickman’s monograph [Ric].

When f is not constant, then f is a finite branched covering (see § I.4
in [Ric]). We say that f is uniformly quasiregular if all its iterates are K-
quasiregular for a fixed K.

When n = 2, D. Sullivan proved the following theorem [Sul3] in parallel
with a similar statement for quasiconformal groups on the 2-sphere [Sul1]:

Theorem 4.4.1 (D. Sullivan) A uniformly quasiregular map of the stan-
dard Euclidean two-sphere to itself is quasiconformally conjugate to a rational
map.

The iteration of uniformly quasiregular on the standard two-sphere boils
down to the iteration of rational maps. In higher dimension n ≥ 3, these
maps generalize one-dimensional holomorphic dynamics, and have been in-
troduced in this setting by T. Iwaniec and G. Martin in [IM]. Uniformly
quasiregular maps on space-forms have been classified in [MMP]. They can
be seen as analogs of quasiconformal groups.

For such maps, Fatou sets are defined as the set of normality, and Julia
sets as the set of non-normality.
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In [May], V. Mayer proposes a generalization of Lattès examples to higher
dimensions. They are uniformly quasiregular maps of finite degree f : M →
M , where M is a compact Riemannian manifold, which are defined as follows.

There are a crystallographic group Γ and an onto Γ-automorphic quasireg-
ular map h : Rn → M such that h(x) = h(y) if and only if there is some
element γ ∈ Γ so that y = γ(x), and there are a matrix U ∈ SOn(R) and a
constant λ > 1 such that, if we set A = λU , then AΓA−1 ⊂ Γ and such that
the following diagram commutes

Rn A−→ Rn

h ↓ ↓ h

M
f−→ M

For more precise statements, we refer to V. Mayer’s article [May].

Let us recall the following compactness result (cf. Theorem 2.4 [MSV]):

Theorem 4.4.2 (normality of qr mappings) Suppose that 0 < r < R ≤
∞, 0 < r′ < ∞, 1 ≤ K < ∞, N ≥ 1, and that F is a family of K-
quasiregular mappings f : Bn(R) → Rn such that every point has at most
N preimages, f(0) = 0, and such that for each f ∈ F there is a continuum
A(f) with the properties

0 ∈ A(f), max{|x|, x ∈ A(f)} = r, max{|f(x)|, x ∈ A(f)} = r′.

Then F is a normal family and any limit map is K-quasiregular, and any
point in the range has at most N preimages.

This implies that, under the assumptions of Theorem 4.4.2, assuming
R = 1, there are functions d+ and d− such that d±(t) → 0 with t and such
that, for any f ∈ F , and any set U ⊂ Bn(1), diamf(U) ≤ d+(diamU) and,
for any compact connected subset V of the image of f which contains the
origin, diamW ≤ d−(diamV ) where W denotes the component of f−1(V )
which contains the origin.
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Theorem 4.4.3 Lattès examples are cxc.

Proof: Axiom [Irreducibility] clearly holds.
Fix r0 > 0; for any x ∈ Rn, we denote by W (x) the connected component

of h−1(B(h(x), r0)) which contains x. It follows from the quasiregularity
and the fact that h is automorphic with respect to a cocompact group of
Euclidean motions that we may choose r0 > 0 such that a constant N <∞
exists so that, for all x ∈ Rn, the degree of h|W(x) is bounded by N (Lemma
III.4.1 in [Ric]).

We fix some size r1 > 0 small enough so that, for any x, y ∈ Rn, if
x belongs to the component V (y) of h−1(B(h(y), r1)) containing y, then
B(x, 2diamV (y)) ⊂W (x).

We define U0 as a finite subcover of {B(x, r1), x ∈M}. Then U0 satisfies
[Degree] and [Expansion]. It remains to prove [Roundness distortion] and
[Diameter distortion]. Since f is semi-conjugate to a conformal map, one then
needs only verify (i) h distorts the roundness of (small) sets by a controlled
amount, and (ii) h distorts ratios of diameters of nested sets by a controlled
amount.

We note that since M is compact, one may find uniformly quasiconformal
charts which map balls of radius 3r1 in M onto the unit ball of Rn. Therefore,
we may assume that h takes its image into Rn in the sequel.

For each x0 ∈ Rn and each connected open set V contained in some V (y)
which contains x0, we consider the map

hx0,V : x ∈ Bn(0, 1) 7→ 1

diamh(V )
· h(x0 + diamV x).

All these maps define a compact family F of degree at most N according
to Theorem 4.4.2 since hx0,V (B(0, 1)) contains at least one point at distance
1/2 from the origin.

If W ⊂ V ⊂ Rn, then it follows that W ⊂ B(x0, diamV ) and

diamh(W )

diamh(V )
≤ d+

(
diamW

diamV

)
.

Similarly, if V ′ ⊂M is small enough, if W ′ ⊂ V ′ and if V and W denote
connected components of h−1(V ) and h−1(W ) such that W ⊂ V , then

diamW

diamV
≤ d−

(
diamW ′

diamV ′

)
.
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This establishes (ii).

Let V ⊂ Rn contained in some V (y), and let x0 ∈ V . Denote by K =
Round(V, x0) its roundness. Then B(x0, diamV/(2K)) ⊂ V so

B(h(x0), d+(1/(2K))diamh(V )) ⊂ h(V ).

This proves that Round(h(V ), x0) ≤ 1/d+(1/(2K)).
Let us denote by F(K ′) the subset of F obtained from pairs (V, x0) such

that diamh(V ) ≤ r1 and Round(h(V ), h(x0)) ≤ K ′. This family is also
compact, so the roundness of V at x0 depends only on K ′. Hence (i) holds.

This ends the proof that a Lattès example is cxc.

Conversely, one has :

Theorem 4.4.4 Let f : M → M be an orientation preserving metric cxc
mapping, where M is a compact Riemannian manifold of dimension at least
3. Then f is a Lattès map.

Proof: It follows from Proposition 2.7.2 and Theorem II.6.2 in [Ric] that f is
uniformly quasiregular. Furthermore, it follows from compactness arguments
of qr mappings that every point is conical: for any x0 ∈ M , a sequence of
sizes rn → 0 and a sequence of iterates kn exist such that x ∈ B(0, 1) 7→
fkn(x0+rnx) defines a convergent sequence to a non constant map. Therefore,
Theorem 1.3 in [MM] implies that f is a Lattès map.

Let us note that V. Mayer has also generalized the notion of power maps in
[May] : these are uniformly quasiregular maps f : Sn → Sn, n ≥ 3, such that
the Fatou set consists of two totally invariant attracting basins, the Julia
set is a sphere Sn−1, and the dynamics on the Julia set is of Lattès type.
These maps are also clearly cxc, if one restricts the dynamics to suitable
neighborhoods of the Julia sets.

For all other known examples of uniformly quasiregular maps, the Julia
set is a Cantor set, and the Fatou set is the basin of an attracting or of a
parabolic fixed point [IM, Mar1, Pel, HMM, Mar2, MMP]. In the former
case, when f has degree d, then there are d + 1 embedded balls B0, . . . , Bd,
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such that B1, . . . , Bd have pairwise disjoint closures, all of them contained in
B0, and the restriction to each Bj, j = 1, . . . , d, is a homeomorphism onto
B0: the Julia set is contained in these balls, and the restriction of f to these
balls is clearly cxc.

4.5 Expanding maps on manifolds

A baby example. Let X = T2 = R2/Z2 be the two-torus and f : X → X
the degree twelve covering map induced by v 7→ φv where Φ : R2 → R2 is the
linear map given by Φ(x, y) = (3x, 4y). Equip R2 with the norm | · | given by

|(x, y)| = max{|x|, |y|λ}

where λ = log 3/ log 4. Then for all v ∈ R2,

|Φ(v)| = 3|v|.

It follows that for all a, b ∈ X sufficiently close,

|f(a)− f(b)| = 3|a− b|

and it follows easily that (X, f) is cxc.
We now (greatly) generalize this example.

Theorem 4.5.1 (From expanding to homothety) Let f : M →M be a
C1 expanding map of a compact connected C1 Riemannian manifold to itself.
Then there exists a distance function on d on M and constants δ > 0 and
ρ > 1 such that for all x, y ∈M ,

d(x, y) < δ ⇒ d(f(x), f(y)) = ρ · d(x, y)

and such that balls of radius ≤ δ are connected and contractible.

Corollary 4.5.2 (Expanding implies cxc) The dynamical system ((M, d), f)
is cxc. Hence the metric d is unique, up to quasisymmetry.

Proof: (of Corollary) We remark that f : M →M is necessarily a covering
map of degree D = deg f .

Since f is expanding on a compact manifold, Axiom [Irreducibility] holds.
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Let U0 be a finite open cover of M by open balls of radius δ. If U ∈ U
then since U is contractible we have

f−1(U) =

D⋃

1

Ũi

where the union is disjoint and where each f |Ũi : Ũi → U is a homeomor-
phism which multiplies distances by exactly the factor ρ. Thus for each i
there is an inverse branch gi : U → Ũi which is a homeomorphism and which
contracts distances exactly by the factor ρ−1. By induction, for each n and
each U ∈ U0 there are Dn inverse branches of fn over U which are homeo-
morphisms and which contract distances by ρ−n. Verification of the axioms
is now straightforward. The last claim follows from Theorem 2.8.2.

The proof of Theorem 4.5.1 occupies the remainder of this section.

Sketch of proof. One way to prove the theorem is to apply the geometric
constructions of the previous chapter. We prefer however to give a self-
contained proof using the algebra hidden behind expanding covers of Rie-
mannian manifolds.

I. By a celebrated result of Gromov [Gro1], f is topologically conjugate
to the action of an expanding endomorphism on an infra-nilmanifold.
Thus we may assume M is an infra-nilmanifold modelled on a simply
connected nilpotent Lie group G and f is such an endomorphism.

II. Let f̃ denote the lift of f to the universal cover G. We shall show
that there exists an associated f̃ -homogeneous norm | · | : G → [0,∞)
satisfying the following properties for all x ∈ G:

1 |x| = 0 ⇐⇒ x = 1G,

2 |x−1| = |x|,
3 ∃ρ > 1 such that |f̃(x)| = ρ|x|
4 | · | is proper and continuous.

III. For some 0 < ǫ ≤ 1, the function

x, y 7→ |x−1y|ǫ
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is bilipschitz equivalent to a left-invariant metric d = dǫ on G. In the
metric d, the map f̃ expands distances by the constant factor ρǫ, and
thus d descends to a distance on M with the desired properties.

We now begin the proof of Theorem 4.5.1.

Infra-nilmanifolds. For background, see [Dek]. Let G be a real, simply
connected, finite dimensional, nilpotent Lie group. Then G ⋊ Aut(G) acts
on G on the left via

(g,Φ)x = g · Φ(x).

An almost-Bieberbach group is a torsion-free subgroup E < G ⋊ Aut(G) of
the form L⋊ F where L < G is discrete and cocompact and F < Aut(G) is
finite. Recalling that E then acts freely on G, the quotient E\G (which is
not a coset space) is called an infra-nilmanifold modelled on G.

Expanding endomorphisms. Suppose E is an almost-Bieberbach group,
M = E\G, and (g,Φ) ∈ G⋊ Aut(G) satisfies (g,Φ)E(g,Φ)−1 ⊂ E. Define

f̃ : G→ G

by
f̃(x) = (g,Φ)x.

Then f̃ descends to a map
f : M →M

which is called an endomorphism of the infra-nilmanifold M . It is called
expanding if all eigenvalues of the differential dΦ : g → g lie outside the
closed unit disk, where g is the Lie algebra of G.

We remark that

f̃(x)−1 · f̃(y) =
(
(g,Φ)x

)−1 ·
(
(g,Φ)y

)
= Φ(x−1y). (4.8)

Homogeneous norms. If Ψ ∈ G ⋊ Aut(G), a function | · | : G → [0,∞)
will be called a Ψ-homogeneous norm if it satisfies properties (1)-(4) in (II)
with f̃ replaced by Ψ in (3). Equation (4.8) implies that if f̃ is given by
the action of (g,Φ), then | · | is a f̃ -homogeneous norm if and only if it is a
Φ-homogeneous norm.

Since G is simply connected, the exponential map exp : g → G is a
diffeomorphism. Hence we may identify g and G. In this identification,
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Φ becomes dΦ, which we again denote by Φ. Thus, we may assume that
Φ : g→ g is a linear map and search for Φ-homogeneous norms on g.

The case when Φ is semisimple is treated in detail in [FS]. In general, we
need the following development.

Linear algebra.

Lemma 4.5.3 Let V be a finite-dimensional real vector space and Φ ∈ Aut(V)
have all eigenvalues strictly outside the closed unit disk. Then there exists a
function

| · | : V → [0,∞),

and a real 1-parameter family Φt ⊂ Aut(V) with Φ = Φ1 such that for all
v ∈ V and all t ∈ R

1. |v| = 0 ⇐⇒ v = 0

2. | − v| = |v|

3. |Φt(v)| = et|v|

4. | · | is proper and continuous.

Assuming the lemma, we proceed as in [FS]. Let | · | be the homogeneous
norm on g given by Lemma 4.5.3 and transfer this via the exponential map to
a homogeneous norm on G satisfying conditions (1)-(4) in the sketch of the
proof. Now we are done with Lie algebras and work only on G. Condition
(4) implies that

{(x, y) ∈ G×G : |x|+ |y| = 1}

is compact. Therefore

Q = sup{|xy| : |x|+ |y| = 1}
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exists. For any x, y ∈ G, let t be so that et = |x|+ |y|. Then

|xy| = ete−t|xy|

= et|Φ−t(xy)|

= et|Φ−t(x)Φ−t(y)|

≤ etQ

= Q(|x|+ |y|)

since |Φ−t(x)| + |Φ−t(y)| = 1 by construction. In summary, the norm | · |
satisfies the additional property

5. |xy| ≤ Q(|x|+ |y|)
for some constant Q > 0.

Quasimetrics. The function

̺(x, y) = |x−1y|

satisfies the symmetry and nondegeneracy conditions of a distance function
by properties (1) and (2) of the norm | · |. However, the triangle inequality
fails if Q > 1; the function ̺ is then called a quasimetric.

It is well-known that, given any quasimetric ̺, there are constants C, α >
0 such that C̺α defines a metric. We outline the construction below and
refer to e.g. [GdlH], §7.3 for details. Define

̺ǫ(x, y) = |x−1y|ǫ

which is now a quasimetric with constant Qǫ. Moreover, it satisfies the
homogeneity property

̺ǫ(Φ(x),Φ(y)) = ρǫ̺ǫ(x, y). (4.9)
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Given x, y ∈ G a chain C from x to y is a sequence

x = x0, x1, . . . , xn = y

of elements of G; its length is given by

lǫ(C) =
n∑

i=1

̺ǫ(xi−1, xi).

The set of chains from x to y is denoted Cxy. Define a new function on pairs
of points by

dǫ(x, y) = inf{lǫ(C) : C ∈ Cxy}.
The function dǫ is symmetric and trivially satisfies the triangle inequality.
Since ̺ǫ satisfies Equation (4.9), so does dǫ. Moreover, if Qǫ <

√
2 then for

all x, y ∈ G, one has (ibid, Prop. 10)

(3− 2Qǫ)̺ǫ(x, y) ≤ dǫ(x, y) ≤ ̺ǫ(x, y)

so that the nondegeneracy condition holds and the functions dǫ, ̺ǫ are bilip-
schitz equivalent.

This completes the proof, modulo the proof of Lemma 4.5.3.

Proof: (Lemma 4.5.3) Assume first that Φ lies on a 1-parameter subgroup

Φt = exp(φt)

for some φ ∈ End(V). Then the real parts of the eigenvalues of φ have strictly
positive real parts.

Claim. There exists a basis for V such that if || · || is the corresponding
Euclidean norm, then for all 0 6= v ∈ V the function

t 7→ ||Φtx||

is strictly increasing.

The claim implies that for nonzero v, there is exactly one t(v) such that

||Φt(v)(v)|| = 1.

Define |0| = 0 and for v 6= 0 define

|v| = e−t(v).
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Conclusions (1) and (2) are clearly satisfied. To prove (3), note that the
conclusion is obvious if v = 0 and if v 6= 0 we have

1 = ||Φt(v)v|| = ||Φt(v)−sΦs(v)||

hence

t(Φs(v)) = et(v)−s ⇒ |Φs(v)| = es|v|.

Clearly | · | is continuous. To prove properness, note that the Claim implies
that for all t ≤ 0, and for all v with ||v|| = 1, ||Φt(v)|| ≤ 1. Thus

B = {v : |v| ≤ 1}

is compact. Therefore, given any r = et we have by (3) that the set

{v : |v| ≤ r} = Φt(B)

is also compact. It follows easily that | · | is proper.

Proof of Claim. To prove the claim, let V = ⊕iVi be the real Jordan
decomposition of V given by φ (not Φ), and choose a basis of V such that
each Jordan block is either of the form




λi 1

λi . . .

. . . 1

λi 1

λi




or




ρiRθi
I

ρiRθi
. . .

. . . I

ρiRθi
I

ρiRθi



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where λi, ρi > 0, I is the 2-by-2 identity matrix, andRθ =




cos θ − sin θ

sin θ cos θ




.

If i corresponds to a block of the second kind we set λi = ρi cos θi; this is
positive since this is the real part of the corresponding complex eigenvalue.
By making a coordinate change of the form




1

δ−1

. . .

δ−(m−1)




for an m-by-m block we may assume that the off-diagonal elements are δ in
the first case and δI in the second, where

0 < δ < λi.

Thus if φi = φ|Vi
then

φi = λiI + δNi +Ki

where Ni is the nilpotent matrix with ones just above the diagonal, Ki is
skew-symmetric, and the three terms commute pairwise.

So setting

Φi
t = exp(φit)

we have

Φi
t = exp((λiI + δNi)t) · exp(Kit)

where the second factor is orthogonal.
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Let 〈·, ·〉i denote the inner product on Vi corresponding to the above basis
on Vi and extend to V in the obvious way so that the Vi are orthogonal. The
claim is proved once we show that for each i

t 7→ ||Φi
t(v)||i

is strictly increasing.

We have for all t0 ∈ R and all v 6= 0

d
dt
|t=t0 〈Φt(v),Φt(v)〉 = d

dt
|t=t0

〈
e(λiIi+δNi)tv , e(λiIi+δNi)tv

〉

= 2
〈
e(λiI+δNi)t0 , d

dt
|t=t0 e

(λiI+δNi)tv
〉

= 2
〈
e(λiI+δNi)t0v, (λiI + δNi)e

(λiI+δNi)t0v
〉

= 2λi 〈y, y〉+ 2δ 〈y,Niy〉

where y = e(λiI+δNi)t0v. The Cauchy-Schwarz inequality shows that | 〈y,Niy〉 | <
〈y, y〉 and so since δ < λi we have that the derivative at t0 is strictly positive
and the claim is proved.

If Φ does not lie on a 1-parameter subgroup we proceed as follows. It is
well-known that Φ lies on a 1-parameter subgroup if and only if the Jordan
blocks with negative real eigenvalues occur in identical pairs. If this is not
the case, we first change notation so Φ = Φ′. Next, let Mi : Vi → Vi be given
by −id if the ith Jordan block of Φ is real with negative eigenvalue and by
id otherwise, and set M = ⊕iMi : V → V. Then Φ′ commutes with M and
we set Φ = MΦ′. Then Φ lies on a 1-parameter subgroup Φt = exp(φt) and
we set Φ′

t = MΦt. Since

||Φ′
t(v)|| = ||MΦt(v)|| = 1 ⇐⇒ ||Φt(v)|| = 1

we have

|Φ′
t(v)| = et|v|

for all nonzero v and the proof is complete.



140 CHAPTER 4. EXAMPLES OF CXC SYSTEMS

Remarks: In many cases, raising to a power in step (III) of the construction
of d is unnecessary and a representative metric d can either be written down
explicitly or is a well-studied object.

For example, suppose g is abelian (i.e. all brackets are trivial) and Φ is
diagonalizable over R. This is a generalization of the baby example and one
can write the metric d explicitly. The resulting gauges on the universal cover
Rn are studied by Tyson [Tys], §15. If not equivalent to the Euclidean gauge,
these gauges are highly anisotropic: there exist a flag V0 ⊂ V1 ⊂ . . . ⊂ Vm =
Rn such that any qs automorphism h satisfies h(Vk) = Vk, k = 1, . . . , m.

Another well-studied situation arises in the Carnot-Carathéodory case,
i.e. when Φ|H = λidH on a subalgebra H which generates g as a Lie alge-
bra. In this case any two points are joined by a smooth curve with tangent
in the distribution defined by H. The resulting length space is a so-called
smooth Carnot-Carathéodory metric space; cf. Pansu [Pan2]. The prototyp-
ical example is the map (x, y, z) 7→ (2x, 2y, 4z) on the Heisenberg manifold
M = H/Γ where H is the three-dimensional Heisenberg group of upper tri-
angular matrices with ones on the diagonal and Γ is the lattice consisting of
such matrices with integer entries.

In both cases, the conformal dimension (i.e. the infimum of the Hausdorff
dimension over all quasisymmetrically equivalent spaces) is given by

1

λ1
(λ1 + λ2 + . . .+ λn)

where λ1 ≤ λ2 ≤ . . . ≤ λn are the eigenvalues of Φ.

The classification of Lie algebras admitting expanding endomorphisms is
still in progress; see [DL].

4.6 Non-cxc maps with periodic branch points

4.6.1 Barycentric subdivision

Given a Euclidean triangle T , its barycentric subdivision is the collection of
six smaller triangles formed by the three medians. Barycentric subdivision
is natural with respect to Euclidean affine maps: if A : R2 → R2 is affine,
then the small triangles comprising the barycentric subdivision of T are sent
by A to those comprising A(T ). If T is equilateral, the six smaller triangles
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are congruent. Suppose T has side length one, and let B be an orientation-
preserving affine map sending T to one of the six smaller triangles in its
barycentric subdivision. Then

B = L ◦ S ◦K
where K is an linear isometry, L is a translation, and

S =




1/2
√

3/6

0 1/3


.

Using the naturality of barycentric subdivision and the fact that the Eu-
clidean operator norm of S is (

√
7 + 1)/6 ≈ .608 < 1, it follows easily that

for any triangle, under iterated barycentric subdivision, the diameters of the
smaller triangles after n subdivisions tends to zero exponentially in n.

Let T as above be the Euclidean equilateral unit triangle. Equip T with an
orientation and label the vertices of T as a, b, c as shown. Let T1 be one of the
two smaller triangles in the first subdivision meeting at the vertex c, and let
φ : T1 → T be the restriction of the unique orientation-preserving Euclidan
affine map fixing c and sending T1 onto T . Regard now the two-sphere S2 as
the double T ∪ T of the triangle T across its boundary. Equip S2 with the
complete length structure inherited from the Euclidean metric on T and its
mirror image, so that the sphere becomes a CW complex X equipped with a
path metric. By composing with reflections, there is a unique affinely natural
extension of φ to an orientation-preserving degree six branched covering map
f = φR : S2 → S2 sending each of the twelve smaller triangles at level one
onto T or T ; see Figure 4.6.1.

The twelve smaller triangles give a CW structure R(X) on X subdividing
the original one, and we obtain a finite subdivision rule (in the sense of §4.3)
with mesh going to zero. Notice, however, that this f.s.r. does not have
bounded valence, since the branch point c of φR is a fixed 0-cell.

Let U0 be the finite open cover of the sphere whose elements are given by
the construction in Section 4.3. The discussion there implies that together,
f : S2 → S2 and U0 satisfy axioms [Irreducibility] and [Expansion], but not
[Degree] in the definition of topologically cxc, and that the diameters of the
elements of Un tend to zero exponentially in n.

Let Γf = Γ(f,U0) be the associated graph constructed in §3.2. By the-
orem 3.2.1, for some ε > 0, there is a homeomorphism φf : S2 → ∂εΓf
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5

6 7

T1

T

f

Figure 4.6.1

conjugating f to the induced map F on the boundary. Since Pf consists of
a finite set of points, Proposition 3.3.8 applies and hence ∂εΓf fails to be
doubling.

The map f is not the only dynamical system naturally associated to the
barycentric subdivision rule. Let H ⊂ C denote the upper half-plane and let
ρ : T → H be the unique Riemann map sending a 7→ 0, b 7→ 1, c 7→ ∞. By
Schwarz reflection, this defines a conformal isomorphism ρ : S2 → Ĉ, where
now S2 is the sphere endowed with the conformal structure of the path metric
defined above. Let ψ : T1 → T be given by the unique Riemann map fixing c
and sending vertices to vertices. As before, this determines an f.s.r. S with
an associated map ψS : S2 → S2. By the symmetry of the construction, the
map g : Ĉ→ Ĉ given by ρ ◦ φS ◦ ρ−1 is a rational map; it is given by

g(z) =
4

27

(z2 − z + 1)3

z2(z − 1)2
.

See [CFKP].
The composition h′ = (φR|T1)

−1 ◦ (φS|T1) : T1 → T1 extends by reflection
to a homeomorphism h′1 : (S2, a, b, c)→ (S2, a, b, c). Letting h′0 = id, then

h′0 ◦ φS = φR ◦ h′1
and h′0 is isotopic to h′1 relative to the set {a, b, c}. That is, as postcritically
finite branched coverings of S2, φR and φS are combinatorially equivalent.
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Letting h1 = h′1 ◦ ρ−1 gives h0 ◦ g = f ◦ h1 with h0, h1 isotopic relative to the
set {0, 1,∞}.

By lifting under the dynamics, we obtain for each n ∈ N a homeomor-
phism hn : Ĉ → S2 such that hn ◦ g = f ◦ hn+1 with hn ∼ hn+1 relative to
{0, 1,∞}. Since f is uniformly expanding with respect to the length metric

on S2, the sequence of maps {hn} converges uniformly to a map h : Ĉ→ S2

for which hg = gh. Since g is locally contracting near infinity, the diameters
of the preimages of the two half planes H± under g−k which meet the point at
infinity remain bounded from below as k →∞. Therefore h is not injective.
Indeed, it is easy to see that h collapses the closure of each Fatou component
to a point.

Let V0 = {h−1(U) : U ∈ U0} be the open covering of Ĉ given by pulling
back the elements of U0 under h−1 and let Γg = Γ(g,V0). Then h induces an
isometry hΓ : Γg → Γf . The natural map φg : Jg → ∂Γg satisfies φf ◦ h|Jg =
∂hΓ ◦ φg|Jg and collapses the closure of every Fatou component to a point.

4.6.2 Expanding polymodials

For z = reiθ let f : C→ C be given by f(z) = 1−arei2θ where a = (1+
√

5)/2
is the golden ratio. This map is an expanding polymodial in the sense of [BCM]
and is studied in their Example 5.2.

The origin is a critical point which is periodic of period three, hence for
each n ∈ N, f 3n is locally 2n-to-one on neighborhoods of the origin. The
point −β ≈ −1.7 is a repelling fixed point with preimage β. Let I = [−β, β],
I− = [−β, 0], I+ = [0, β]. Then f |I± : I± → I is a homeomorphism which
expands Euclidean lengths by the factor a.

Let T0 be the metric tree with underlying space I and length metric given
by the Euclidean length metric σ0. It is easy to see that for all n ∈ N, the
set f−1(Tn) is a tree which is the union of Tn together with a finite collection
of smooth closed arcs Ji. Each such Ji is attached to Tn at a single endpoint
which lies in f−n+1({0, f(0), f(f(0))}), and f |Ji

is a homeomorhpism onto
its image. Inductively, define a length metric σn on Tn by setting

σn+1|Ji
= a−1(f |Ji

)∗(σn).

Then f : Tn+1 → Tn mutliplies the lengths of curves by the factor a.
Let πn+1 : Tn+1 → Tn be the map which collapses each such “new” interval

Ji to the point on Tn to which it is attached. Clearly, πn is distance-decreasing
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for all n. Let
X = T0

π1← T1
π2← T2 . . .

denote the inverse limit. Metrize X as follows. The diameters of the Tn are
bounded by the partial sums of a convergent geometric series and thus are
uniformly bounded. Hence for all x = (xn), y = (yn) ∈ T ,

sup
n
σn(xn, yn)

is bounded and increasing, hence convergent. It follows easily that T inherits
a length metric σ such that the map f of T induced by f |Tn+1 : Tn+1 → Tn

multiplies the lengths of curves by the factor a.
It is easy to see that near the origin, for each k ≥ 1 X contains an iso-

metrically embedded copy of the one-point union of 2k copies of a Euclidean
interval of length a−k where the common vertex is the origin (0, 0, 0, . . .).
This implies that X is not doubling, since (i) doubling is hereditrary under
passing to subspaces, and (ii) at least 2k balls of radius a−k/2 will be needed
to cover the ball of radius a−k centered at the origin. On the other hand, it
is also easy to see that (X, f) satisfies the other axioms for a cxc system.

4.7 The p-adic case

The construction of the graph Γ is reminiscent of certain constructions in p-
adic dynamics. Below, we give a quick and partial account of p-adic dynamics
in order to point out some formal similarities and major differences between
our setting and the p-adic setting. References include [BH, Ben, RL1].

The main object of p-adic dynamics is to understand the iterates of ra-
tional maps with p-adic coefficients acting on P1(Cp), where Cp is the metric
completion of the algebraic closure of Qp endowed with the p-adic norm.
Cp is an algebraically closed, non-Archimedean valued field, and a complete
non-locally compact totally disconnected ultra-metric space.

Let us note that the first difference with our setting is that Cp is neither
locally compact nor connected !

Since the metric on Cp is an ultrametric, two balls are either disjoint,
or one is contained in the other. In turn this induces a tree structure on
the family of balls: the vertices are the balls of rational radii, and the edges
originating from such a vertex are parametrised by the residual field Fp. If
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B ⊂ B′ are two balls, then the edge joining them is made of the intermediate
balls, and if B ∩ B′ = ∅, then the edge joining these balls is made of the
two edges joining these balls to the smallest ball which contains both of
them. This is the p-adic hyperbolic space H [RL2]. H can be metrized to
become a complete R-tree i.e., a 0-hyperbolic metric space. The projective
space P1(Cp) is a part of the boundary of H. The tree H is isometric to the
Bruhat-Tits building for SL(2,Cp) and is closely related to the Berkovich line
[Ber].

We emphasize that the boundary at infinity of H is larger than P1(Cp),
since some intersections of balls with radii not converging to 0 may be empty,
yielding points of ∂H not in P1(Cp).

It turns out that rational maps send balls to balls, and that rational maps
always act on the tree H. So in the p-adic setting, the natural hyperbolic
space H on which any rational map f acts does not depend on the dynamics:
it is a universal object independent of f . Another difference is that dynamics
can be tame on the boundary, but never on the tree. That is, in P1(Cp) the
chaotic locus may be empty, but in H it is always nonempty. In contrast, in
our setting, the dynamics is always chaotic on the boundary ∂Γ, while the
induced dynamics on the tree Γ itself is transient.

Finally, one can define, for rational maps R of degree d on Cp, an invariant
measure µ such that R∗µ = dµ. While its metric entropy is at most log d,
there are examples for which the inequality is strict. This happens when the
Julia set is contained in the hyperbolic space H and the topological degree
of the map on the Julia set is also stricty smaller than d; see for instance
[FRL]).

Of course, there are examples of rational maps over the p-adics for which
the dynamics on the Julia set is conjugate to a full shift. In such cases, one
obtains cxc maps. But generally, the p-adic case is rather different from ours,
and the similarities are merely formal.
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d’équidistribution de Brolin en dynamique p-adique. C. R.
Math. Acad. Sci. Paris 339(2004), 271–276.

[Flo] William J. Floyd. Group completions and limit sets of Kleinian
groups. Invent. Math. 57(1980), 205–218.

[FS] G. B. Folland and Elias M. Stein. Hardy spaces on homogeneous
groups, volume 28 of Mathematical Notes. Princeton University
Press, Princeton, N.J., 1982.

[Fox] Ralph H. Fox. Covering spaces with singularities. In A symposium
in honor of S. Lefschetz, pages 243–257. Princeton University Press,
Princeton, N.J., 1957.

[Geh] F. W. Gehring. The definitions and exceptional sets for quasicon-
formal mappings. Ann. Acad. Sci. Fenn. Ser. A I No. 281(1960),
28.

[GM] F. W. Gehring and G. J. Martin. Discrete quasiconformal groups.
I. Proc. London Math. Soc. (3) 55(1987), 331–358.



BIBLIOGRAPHY 151
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