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Abstract: This article deals with identification design for sensor fault diagnosis
of a wastewater treatment station. First, we established a physical model of this
station by simplifying and linearizing the model ASM1 (Henze et al., 1987). Then,
we study the measurement values in order to find other redundancy equations.
Multiple linear regression allowed the determination of a static black box type
model, coherent with the physical model. The addition of temporal lags between
the signals makes possible to improve the performances of this model. We show
finally the use of this model for detection-localization of faults measurements.
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1. INTRODUCTION

In the case of an activated sludge wastewater
treatment station, the complexity of the biological
mechanisms (non-linear kinetics, parameters vary-
ing in time, ...) imposes the development and the
use of advanced techniques of automatic control
to develop a strategy of real time fault diagno-
sis. In our work, we use the model-based diag-
nosis methods based on analytical redundancy,
that correpond to execute a test of coherence
between measurement and the estimate provided
by a model.

In a first part, we present the wastewater treat-
ment station of Bleesbrück. To highlight the exist-
ing relations between the variables characterizing

the activated sludge process of the biology, the
second part of the talk is devoted to the appli-
cation of the Activated Sludge Model 1 (ASM1)
(Henze et al., 1987) to this station. Initially, we
seek a linear model which depends on the available
measurements; it was then necessary to reduce
the complexity and to linearize the ASM1 model.
Next we search the relations between the variables
of the station by multiple linear regression. This
analysis allows us, at the same time, to check
in the data the relations of the second part and
to underscore the redundancy relations used to
determine a black box type model. We show then
that this approach is useful for fault localization.
In the last part, we conclude on the current results
of the study.



NOMENCLATURE ASM1
SI Concentration of soluble inert organic matter

SS Concentration of readily biodegradable substrate

SO2
Concentration of dissolved oxygen

Ssat
O2

Dissolved oxygen saturation concentration

SNO Concentration of nitrate and nitrite nitrogen

SNH Concentration of ammonia nitrogen

SND Concentration of soluble biodegradable organic nitrogen

SALK Molar concentration of alkalinity

XI Concentration of particulate inert organic matter

XS Concentration of slowly biodegradable substrate

XH Concentration of active heterotrophic biomass

XA Concentration of active autotrophic biomass

XND Concentration of particulate biodegradable organic nitrogen

XP Concentration of particulate products from biomass decay

bA Decay rate coefficient for autotrophic organisms

bH Decay rate coefficient for heterotrophic organisms

fXI Fraction of biomass generating the particulate products

iNBM Mass of nitrogen in the biomass

iNXI Mass of nitrogen in the inert particulate organic matter

ka Ammonification rate

kh Maximum specific hydrolysis rate

kLa Coefficient of oxygen rate

K(.) Half-saturation coefficient:

KNH of ammonia for autotrophs

KNO of nitrate for denitrifying heterotrophs

KO2,A of oxygen for autotrophs

KO2,H of oxygen for heterotrophs

KS for heterotrophic organisms

KX for hydrolysis of slowly biodegradable substrate

YA Yield coefficient for autotrophic organisms

YH Yield coefficient for heterotrophic organisms

µA Maximum specific growth rate for autotrophic organisms

µH Maximum specific growth rate for heterotrophic organisms

ηNO3g
Correction factor for anoxic growth of heterotrophs

ηNO3h
Correction factor for anoxic hydrolysis

2. BLEESBRÜCK STATION

The station has a maximum capacity of treatment
of 100 000 equivalent inhabitants and it treats
wastewater of urban and industrial origins. It is
located near the Sûre, river which collects purified
water.

2.1 Description of operation

In the purification procedure of water, we can
distinguish three phases, the pretreatment, the
primary treatment and the secondary treatment.
The pretreatment operation consists in the elimi-
nation of all the components which could block or
cause an abrasion of the conduits and pumps or
disturb the treatments of decontamination. The
primary treatment is composed of a rectangular
aeration tank called the first biology which is an
activated sludge biology and two settling tanks.
The sludges in the settling tanks are recirculated
in the biology. The goal of this biology is to
eliminate mainly organic pollution. Phosphorus is
eliminated chemically by the addition of a prod-
uct. The secondary treatment is composed of a
second biology split into two aeration tanks (Bio
2.1 and Bio 2.2) and two settling tanks. The aim
of this treatment is to eliminate ammonium by

nitrification. An overflow, limits the input flow of
the second biology.

N
◦ Position Name Measure type

1

Before
biology 1

Qin Flow

2 T Temperature
3 σ Conductivity
4 A UV absorption

5 PH PH

6 In

biology 1

MES1 Suspended matter

7 O1 Dissolved oxygen

8
After
biology 1

NH1 Ammonium

9 NO1 Nitrate

10 OP1 Orthophosphate

11 Before

biology 2

H Height of wastewater
before the overflow

12

In
biology 2

O21 Dissolved oxygen

13 MES21 Suspended matter

14 O22 Dissolved oxygen

15 MES22 Suspended matter

16
After
biology 2

NH2 Ammonium

17 NO2 Nitrate

18 OP2 Orthophosphate

Table 1. Available sensors

2.2 Available sensors

For this application, we seek to validate the data
of the sensors detailed in the table 1.

3. MODEL OF KNOWLEDGE

With an aim of determining the relations between
the variables and their structures, we model a
system made up of a biology (activated sludge
process) and of a settling tank.
In the literature, there are various types of mod-
els which describe the mechanisms of biological
degradation in wastewater treatment stations, as
the ASM1, the AMS2, ASM2d, and the ASM3
(Gernaey et al., 2004). In our case we will use
ASM1, which describes the biological mechanisms
of degradation of the organic matter, nitrification
and denitrification.

The objective is to simplify model ASM1 in order
to as much as possible remove the unmeasured
variables. For that we will use assumptions gener-
ally allowed in the literature and validated by the
practice.

Xr , Sr

Qs

X, S

Qeff

settling tank

Qwa

aeration tank
Qr

Fig. 1. Aeration tank and settling tank

The figure 1 presents the biology and the settling
tank. We call Qs the flow entering the station, Qr

the flow of recirculation of sludges, Qwa the flow
of extraction of sludges in excess and Qeff the



flow on the outlet side of the settling tank. Next,
we consider, because of absence of measurement
in the settling tank, that this one is perfect,
i.e. no sludge leaves by the overflow the settling
tank. This assumption leads to the two following
equations:

S = Sr (1)

(Qs + Qr)X = (Qr + Qwa)Xr (2)

where X and S are the respective concentrations
of particle and substrate in the aeration tank,
and Xr and Sr the concentrations of particle and
substrate in the circuit of sludge recirculation.
3.1 ASM1 Modeling

In this study two traditional simplifications are
applied to the original model (Julien, 1997) (the
alkalinity SALK is omitted and the particulate
compound interns XI and XP are not distin-
guished). Then ASM1 model includes 11 variables
of states. It is a general model, which can be used
to model the first or the second biology.
The figure 1 represents the biological engine. The
equations of mass balances are written:

ξ̇α = Dsξ
in
α + Drξ

r
α − (Ds + Dr) ξα + Rα (3)

where Ds =
Qs

V
, Dr =

Qr

V
, V is the volume

of the aeration tank and Rα correspond to the
degradation of the compound α and ξin

α , ξR
α , ξα

indicate the concentration of the compound α

in the influential, the recycling and the aeration
tank, i.e.:

ξ = [SI , SS , SNO, SNH , SND, SO2
,XI ,

XS ,XH ,XA,XND]T (4)

The various values of Rα are explicited in table 2
and table 3. The parameters YA, YH , fXI , iNBM ,

α Rα

1 0

2 −
1

YH

(ρ1 + ρ2) + ρ7

3 −
1 − YH

2.86YH

ρ2 +
1

YA

ρ3

4 −iNBM (ρ1 + ρ2) −

(

iNBM +
1

YA

)

ρ3 + ρ6

5 −ρ6 + ρ8

6 kLa
(

Ssat
O2

− SO2

)

−
1 − YH

YH

ρ1 −
4.57 − YA

YA

ρ3

7 fXI (ρ4 + ρ5)

8 (1 − fXI) (ρ4 + ρ5) − ρ7

9 ρ1 + ρ2 − ρ4

10 ρ3 − ρ5

11 (iNBM − fXI iNXI) (ρ4 + ρ5) − ρ8

Table 2. Stoichiometric parameters of
the degradation model

iNXI , ηNO3g
, ηNO3h

, ka, kh as well as the terms
K.. are constant. The values of these constants
are given for a temperature of 10°C and of 20°C
(Henze et al., 1987). The other parameters vary

according to time. The kLa
(

Ssat
O2

− SO2

)

term
corresponds to the supplying of air in biology,
i.e. with the operation of the aerators of biology.
The terms in ρj with j=1...8, correspond to the
kinetics of the degradation model and are explicit
in table 3.

To be able to apply model ASM1 to our situation,
it should be reduced for taking into account only
the measured variables.

3.2 Reduction of model ASM1

The simplifying assumptions used are inspired by
(Chachuat, 2001) and (Gomez-Quintero, 2002):

• Absence of anoxic growth of heterotrophs. In-
deed, the wastewater treatment station does
not have a period of significant anoxia, there-
fore the term ρ2 is removed from the various
values of degradation Rα (table 2).

• Independence of SI . The variations of the
inert soluble organic matter concentration
(SI) do not have any influence on the others
composed and conversely, we then omit this
compound in the model, by removing the
state variable of the equation (3) with α = 1.

• Simplification of model dynamic. Theory
of the singular disturbances makes possi-
ble to consider that XI , XA and XH have
slow dynamic. Thus these variables are con-
sidered constant over a few hours. Then
the corresponding states variables are re-
moved from the equation (3) corresponding
to α = 7, 9 and 10.

• Simplification of the organic compounds. The
measurement of the chemical oxygen demand
(COD), does not make possible to distinguish
the soluble part (SS) and the particulate part
(XS) (Smets et al., 2003). A single organic
compound then is considered: XCOD = SS +
XS

• Simplification of the nitrogenized compounds,
Model ASM1 distinguishes four nitrogenized
fractions SNO, SNH , SND and XND. The
process of ammonification of soluble organic
nitrogen (kinetic ρ6) is assumed constant.
The concentration SND being constant, the
modeling of XND is then useless, because this
concentration is only used in the estimate
of SND. With this assumption, the ammo-
nium internal formation is also condidered
constant.

In the station, the flow of recirculation is higher
than the flow of extraction of sludges, one sup-
poses that Dwa

Dr+Dwa
<< 1. Thus the XS term

is neglected from the equation XCOD = SS +
XS . Next one defines the soluble fraction of the
organic compounds by fSS = SS

XCOD
, XCOD can

be written:



j Process Kinetic, ρj

1 Aerobic growth of heterotrophs µH
SS

SS + KS

SO2

SO2
+ KO2,H

SNH

SNH + KNH,H

XH

2 Anoxic growth of heterotrophs µH
SS

SS + KS

KO2,H

SO2
+ KO2,H

SNH

SNH + KNH,H

SNO

SNO + KNO

ηNO3g
XH

3 Aerobic growth of autotrophs µA

SO2

SO2
+ KO2,A

SNH

SNH + KNH,A

XA

4 ‘Decay’ of heterotrophs bHXH

5 ‘Decay’ of autotrophs bAXA

6 Ammonification of soluble organic nitrogen kaXHSND

7 ‘Hydrolysis’ of entrapped organics kh

XS

KX + XS/XH

[

SO2

SO2
+ KO2,H

+ ηNO3h

KO2,H

SO2
+ KO2,H

SNO

SNO + KNO

]

8 ‘Hydrolysis’ of entrapped organic nitrogen kh

XND

KX + XS/XH

[

SO2

SO2
+ KO2,H

+ ηNO3h

KO2,H

SO2
+ KO2,H

SNO

SNO + KNO

]

Table 3. Kinetic of the degradation model

ẊCOD = Ds

(

Xin
COD − fSSXCOD

)

−
1

YH

ρ1

+(1 − fXI) (ρ4 + ρ5) (5)

It is also supposed that the concentration, at
the input of the station, of dissolved oxygen is
negligible in front of the concentration in the tank
(Sin

O2
=0). Then, starting from the equations (3, 5),

the following reduced model is as follow:
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
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




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












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




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
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

















ẊCOD = Ds

(

Xin
COD −

KS

KCOD

XCOD

)

−
1

YH

θ1

XCOD

KCOD + XCOD

SO2

KO2,H + SO2

SNH

SNH + KNH,H

+ θ2

ṠNO = Ds

(

Sin
NO − SNO

)

+
θ3

YA

SNH

KNH,A + SNH

SO2

KO2,A + SO2

ṠNH = Ds

(

Sin
NH − SNH

)

− iNBMθ1

XCOD

KCOD + XCOD
SO2

KO2,H + SO2

SNH

SNH + KNH,H

−

(

iNBM +
1

YA

)

θ3

SNH

KNH,A + SNH

SO2

KO2,A + SO2

+ θ4

ṠO2
= −DSSO2

−
1 − YH

YH

θ1

XCOD

KCOD + XCOD
SO2

KO2,H + SO2

SNH

SNH + KNH,H

−
4, 57 − YA

YA

θ3

SNH

KNH,A + SNH

SO2

KO2,A + SO2

+ kLa
(

Ssat
O2

− SO2

)

(6)

with constants:


















DS =
QS

V
θ1 = µHXH

θ2 = (1 − fXI) (bHXH + bAXA)

θ3 = µAXA

θ4 = kaXHSND

(7)

Hence the model obtained depends only on nine
variables: DS , Xin

COD, XCOD, SNO, Sin
NO, Sin

NH ,
SNH , SO2

and of the aerators working. For sim-
plicity, one tries now to find linear relations.

3.3 Linearization of the reduced model

We linearize the model (6) with the following
considerations:

• In our case, biology 1 does not have an anoxia
period, then it is supposed that the dis-
solved oxygen concentration is important, i.e.

SO2
>> KO2,H and thus

SO2

SO2
+ KO2,H

≈ 1;

one uses the same assumption with KO2,A,

thus
SO2

SO2
+ KO2,A

≈ 1 .

• To linearize the equations (6) compared to
the state variables (XCOD, SNH et SNO),
one simplifies:

·
XCOD

KCOD + XCOD

→ aCODXCOD + bCOD

where aCOD and bCOD are constants.

·
SNH

KNH + SNH

→ aNHSNH + bNH where

aNH and bNH are constants.

·
SNO

KNO + SNO

→ aNOSNO + bNO where

aNO and bNO are constants.
• Moreover, the products of state variables are

also replaced by terms of type SxSy = S̄ySx+
S̄xSy with S̄x and S̄y constant average values
of the variables Sx and Sy.

Then one finds a linear system with variable
parameters, however the dilution ratio relating to
the input flow (DS(t)) and the operation of the
aerators (kLa(t)

(

Ssat
O2

− SO2
(t)

)

) depend on time.

Discretization of the linear model from a numer-
ical point of view gives with a sampling step of
∆:











































XCOD (k + 1) = ∆
(

DS (k) Xin
COD (k)

+ACOD (k) XCOD (k) + BNHSNH (k) + k1)

SNO (k + 1) = ∆
(

DS (k) Sin
NO (k) + CNO (k) SNO (k)

+DNHSNH (k) + k2)

SNH (k + 1) = ∆
(

DS (k) (k) Sin
NH (k)

+ENH (k) SNH (k) + FCODXCOD (k) + k3)

SO2
(k + 1) = ∆

(

GO2
(k)SO2

(k) + HNHSNH (k)

+ICODXCOD (k) + kLa (k) Ssat
O2

+ k4

)

(8)

where parameters ACOD (k), BNH , CNO (k), DNH ,
ENH (k), FCOD, GO2

(k), HNH , ICOD, k1, k2, k3

and k4 are identified according to the linear model,
for example GO2

(k) = 1

∆
− DS (k) − kLa (k).



Explained var. Corr. Explanatory var.

1 0.925 11 55

2 0.773 8 3 7 4 55

3 0.658 2 8 4 55

4 0.523 2 8 3 55
5 ×

6 0.360 11 1 55

7 0.798 2 8 9 16 14 55

8 0.882 2 10 7 16 55
9 0.825 7 8 16 10 55

10 0.763 8 16 9 2 55

11 0.925 1 55

12 0.973 14 16 55

13 0.976 15 55
14 0.973 12 7 55

15 0.976 13 58

16 0.852 18 8 9 7 12 10 55

17 0.258 1 55
18 0.668 16 55

Table 4. Explanatory variables in the
static case

To extract the relationship between the variables
of biologies and obtaining redundancy relations
connecting the variables of the two biology sets,
we will now used multiple linear regression.

4. BLACK BOX MODEL

To build a black box model by multiple linear
regression, we choose a period where the water
temperature is varying a bit thus allowing to free
itself from this disturbance. The period include
variations of polluant because of the week-end
(close of industries).

4.1 Static model

Initially, explained variables (table 4) are deter-
mined by multiple linear regression by adding the
most explanatory variables in first (variable 55
corresponds to a constant). If one calls yi(t) the
explained variable, uj(t) the explanatory variables
and θj the parameters associated with the ex-
planatory variables, then one finds a linear model
of the form:

yi(t) =

p
∑

j=1

θj uj(t) (9)

where p represent the number of explanatory
variable.
The estimates θ̂j of the parameters and ŷi(t) of
the measurement are determined by minimization
of the quadratic criterion corresponding to the
sum of the squares of the differences between
measurement and estimate.

The table 4 specifies the coefficient of correlation
of each estimated variable ŷi(t) towards its mea-
surement yi(t). Let us note that these calculations
were carried out on a data set not used for the
identification.

Explained var. Corr. Explanatory var.

1 0.929 11 19 55

2 0.926 20 8 26 3 21 55

3 0.803 21 2 20 8 4 55

4 0.590 2 20 22 8 3 55
5 0.028 25 55

6 0.955 24 19 29 10 55

7 0.780 25 20 26 2 55

8 0.987 26 44 20 2 55
9 0.958 27 25 7 26 8 55

10 0.944 28 2 8 55

11 0.934 1 19 29 55

12 0.982 14 30 32 55

13 0.992 15 31 33 55
14 0.987 12 32 30 55

15 0.991 13 33 31 55

16 0.996 34 52 44 26 55

17 0.986 35 53 55
18 0.997 36 54 52 34 16 55

Table 5. Explanatory variables in the
dynamic case

One notices that in the case of the measurement
of the pH (5), it is not possible to build a model,
because of weak correlations with the other vari-
ables. Whereas the flow (1) is explained only from
the height measure of the overflow (11) and vice-
versa, which translates a strong correlation be-
tween these two measurements.

4.2 Dynamic model

By putting back certain parametres, one can im-
prove the quality of modeling. One considers,
moreover, the same delay of 120 points (signal
number from 19 to 36) and 240 points (signal
number from 37 to 54), i.e. a lag of 1h and 2h,
which corresponds roughly to the residence times
of the water used in the first and the second
biology. The table 5 presents the same information
as in the table 4 but in the dynamic case. The
constructed models are, when the redundancy are
near direct (like parameters 12 and 14 or 13 and
15), good. The other model must be improved.

The determined model for NO1 is then:

NO1(k) = 0.38NO1(k − 120)
−0.03O1(k − 120)
−0.01O1(k)
+0.02NH1(k − 120)
+0.75NH1(k) + 0.23

(10)

The figure 2 represents the estimate of the concen-
tration of NO1 with the static model and the dif-
ference between its estimate and its measurement,
this difference is named residual. The figure 3
shows the estimate and the residual of this same
variable but with the dynamic model. These two
estimates are carried out on validation data, one
notices an better estimation in the dynamic case.
For the residual determined with the dynamic
model, it is necessary to adapt the test of fault
detection according to the nature and the ampli-
tude of the defect.
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Fig. 2. Estimate of the NO1 concentration with
the static model
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Fig. 3. Estimate of the NO1 concentration with
the dynamic model

4.3 Use of the models for the diagnosis

The construction of the incidence matrix of the
various variables for the dynamic models makes
possible to highlight the ability of locating the
sensors faults. Indeed, this matrix shows the re-
lationship between two classes of objects. If we
consider two classes, X for the residual and Y for
the parameters , the matrix has one row for each
element of X and one column for each element of
Y. The entry in row x and column y is 1 if x and
y are related (called incident in this context) and
0 if they are not.

For example, if a fault appears on the temperature
measurement (2), then the tests of fault detection
of residuals 3, 4, 7, 8 and 10 must be positive, one
can thus locate the defect. This table also makes it
possible to highlight impossibility of dissociating
a defect on the sensor MES21 (13) and on the
sensor MES22 (15), because in both cases the tests
of fault detection of residuals 13 and 15 must be
positive, it is then necessary to have additional
information to locate the defect. One is in the
same case to locate a defect appearing on the
sensor O21 (12) and that P22 (14).

5. CONCLUSION

To build models for fault diagnosis, the first stage
is the comprehension of the system in order to
release the relationship between the measured
variables. In optics to highlight linear redundancy
relations between the variables, we used ASM1
model. But not having measurements of all the
variables of this model, it should initially have

been reduced by assuming realistic and commonly
accepted assumptions. To determie the simplest
possible relations, we linearized it. We thus deter-
mined the structure of the relations between the
variables.
After having found the structure of the relations
between the variables describing the operation of
biologies, we were then interested in the determi-
nation of the redundancy relations between the
variables of the station, by multiple linear regres-
sion. This regression allowed, by adding the most
explanatory variables successively, to build black
box models. It is however necessary to take into
account, in modeling, the need for locating a fault
when it is detected. The last part of this article
approaches this problem.
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