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Continuous-time errors-in-variables system identification

In this paper the continuous-time errors-in-variables
model depicted in the opposite Figure is considered. uo(t) ~Go (p)_Bo(
Errors-in-variables (EIV) models, where uncertainties or (
measurement noises are present on both input and out-
put observations, play an important role when the iden- \\
tification purpose is the determination of the inner laws
that describe the process, rather than the prediction of
its future behavior. Numerous scientific disciplines use a(ty) )
such EIV models, including time series modeling, array

signal processing for direction-of-arrival estimation, blind channel equalization, multivariate calibration in
analytical chemistry, image processing, or environmental modeling [9].

Furthermore, in many areas of science and engineering, the identified dynamic models should be physi-
cally meaningful. As a result, there is a need for modeling approaches that are able to yield directly from
the sampled data efficiently parameterized (parsimonious) continuous-time models that have clear physical
interpretations. The attention in the system identification community was almost completely focused on the
discrete-time model identification techniques until recently. The last decade has indeed witnessed consid-
erable development in continuous-time approaches to system identification from sampled data (see [5] and
[8, 3] for more recent references).

The goal of this paper is to present an approach for continuous-time modeling that can take into account
colored measurement noise in both input and output observations. Many methods have been proposed to
solve the EIV problem in discrete-time, whereas in continuous-time it is relatively unexplored. An overview
of the main discrete-time methods can be found in [6]. Regarding the continuous-time, an approach has
been recently proposed in [4], assuming the noises contaminating the data to be white.

Unless we impose certain assumptions on the signal and noise models, it is well-known that the general
EIV model is not uniquely identifiable from second order statistics [1]. Although that problem can be
overcome by adding supplementary conditions, EIV models suffer from this lack of identifiability. This
motivates the approaches based on higher-order statistics.

\

g Yo(t)

u(ty) glte) Ay y()

D)<

>

@

Higher-order statistics

The proposed methods are based upon the third-order cumulants; their main properties are quickly recalled.
Some statistical assumptions on the noise-free input signal and on the noises are necessary: the probability
density function of the input signal is assumed to be non-symmetric, whereas the noises are assumed to
be symmetrically distributed. The differential equation of the system is then satisfied by the third-order
cumulants [2]

B(p)

Cuyu(7'1,7'2) = G(p, O)Cuuu(Tlv 7'2) - m

Cuuu(Tla 7-2) (1)

where Cyyy, Cuyu are the third-order (cross-)cumulants and G(p, 0) is the parametrization of the real system.
The noise-cancellation property of the third-order cumulants implies that equation (1) is (asymptotically)
noise-free, consequently the simple least-squares method gives consistant estimates. However, when only a



finite data record is available, errors appear in both left- and right-hand side of equation (1).
To obtain estimates of the parameter vector, two possibilities are then considered.

Linear regression. To estimate the parameter vector 8, the linear regression theory can be applied to
equation (1). Minimizing the following equation error

61(7_1;7—2) = A(p)Cuyu(Th'Q) - B(p)Cuuu(ThTQ) (2>

two criterion-based estimators are derived: the simple LS estimator and the TLS estimator.

Non-linear regression: the Steiglitz-McBride algorithm. From equation (1),  can also be derived
by minimizing the following output error

B(p)
A(p)
This output error is non-linear in the parameters. To avoid the recourse to non-linear optimization, following
the work of J.M.M. Anderson in discrete-time [2], the Steiglitz-McBride [7] algorithm is used. An equation
error is consequently defined, converging towards the output error (3) in an iterative fashion. Another
criterion-based estimator is then defined.

62(7-177—2) = Cuyu(TlaTQ) - Cuuu(TlaTQ) (3)

The state variable filter. One of the key points in continuous-time system identification is how to handle
time-derivation. Here the cumulants time-derivatives are needed and to estimate them the state variable
filter [10] is utilized: in a first step the derivatives of the input/output signals are estimated, then the
cumulants derivatives are computed from these estimates.
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