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MULTIPLIERS ON SPACES OF FUNCTIONS ON A LOCALLY
COMPACT ABELIAN GROUP WITH VALUES IN A HILBERT

SPACE

VIOLETA PETKOVA

Abstract. We prove a representation theorem for bounded operators commut-
ing with translations on L2

ω(G, H), where G is a locally compact abelian group,
H is a Hilbert space and ω is a weight on G. Moreover, in the particular case
when G = R, we characterize completely the spectrum of the shift operator S1,ω on
L2

ω(R, H).

MAS Classification 2000: Primary 43A22, 43A25.

1. Introduction

Let G be a locally compact abelian group. Denote by Ĝ the dual group of G.

The groups G and Ĝ are equipped with the Haar measure. Let H be a separable
Hilbert space and denote by < u, v > the scalar product of two elements u and v in
H. Let ω be a weight on G i.e. ω is a continuous, positive, measurable function on
G such that

0 < sup
x∈G

ω(x + y)

ω(x)
< +∞, ∀y ∈ G.

For 1 ≤ p < +∞, we denote by Lp
ω(G, H) the space of the functions f on G with

values in H such that

G 3 x −→ ‖f(x)‖ ∈ R+

is a function in Lp
ω(G), where Lp

ω(G) is the set of the measurable functions g on G
such that ∫

G

|g(x)|pω(x)pdx < +∞.

Let Cc(G) be the space of the continuous functions from G into C with compact
support. Denote by Cc(G, H) the space of the functions f on G with values in H
such that ‖f(.)‖ ∈ Cc(G). For a ∈ G, define

Sa,ω : Lp
ω(G, H) −→ Lp

ω(G, H)

by the formula

(Sa,ωf)(x) = f(x− a), ∀f ∈ Lp
ω(G, H), a.e.
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and let

Sa,ω : Lp
ω(G) −→ Lp

ω(G)

be the operator defined by the formula

(Sa,ωg)(x) = g(x− a), ∀g ∈ Lp
ω(G), a.e.

Notice that we have

‖Sa,ω‖ = ‖Sa,ω‖ = sup
x∈G

ω(x + a)

ω(x)
, ∀a ∈ G,

and consequently

ρ(Sa,ω) = ρ(Sa,ω), ∀a ∈ G.

Here ρ(Sa,ω) (resp. ρ(Sa,ω)) denotes the spectral radius of Sa,ω (resp. Sa,ω). Denote
by Cc(G)⊗H the closed vector space generated by functions

fu : G 3 x −→ f(x)u ∈ H

with f ∈ Cc(G) and u ∈ H. The space Cc(G) ⊗ H is dense in Lp
ω(G, H), for

1 ≤ p < +∞. We say that M is a multiplier on Lp
ω(G, H) if M is a bounded

operator from Lp
ω(G, H) into Lp

ω(G, H) such that

MSa = SaM, ∀a ∈ G.

Define Mp
ω the algebra of the multipliers on Lp

ω(G, H). We denote by F (resp.

F) the usual Fourier transformation from L2(G, H) (resp. L2(G)) into L2(Ĝ, H)

(resp. L2(Ĝ)). We have the following representation theorem for the multipliers on
Lp(G, H).

Theorem 1. ([2]) For every M multiplier on Lp(G, H), 1 ≤ p < +∞, there exists
a measurable function

ΦM : Ĝ −→ L(H),

which is essentially bounded for the operator norm of L(H) such that

F(Mf)(χ) = ΦM(χ)[F(f)(χ)], a.e. on Ĝ,

for every f ∈ Lp(G, H) ∩ L2(G, H). Moreover,

ess sup
χ∈ bG

‖ΦM(χ)‖ ≤ ‖M‖.

The proof of this theorem is based on the well-known result about the multipliers
on Lp(G). Indeed, for every bounded operator M commuting with the translations

on Lp(G) there exists a function h ∈ L∞(Ĝ) (see [3]) such that

M̂f = hf̂ , ∀f ∈ Cc(G) (1.1)

and ‖h‖∞ ≤ ‖M‖. This paper is motivated by a recent result generalizing the
representation (1.1) for a more general class of Banach spaces of functions on G.
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The spaces Lp
ω(G) are included in this class. Denote by G̃p

ω the set of the continuous
morphisms from G into C∗ such that∣∣∣ ∫

G

f(x)θ−1(x)dx
∣∣∣ ≤ ‖Mf‖L(Lp

ω(G)), (1.2)

where Mf is the operator of convolution by f on Lp
ω(G). Define G̃p+

ω = {|θ|, θ ∈ G̃p
ω}.

It was proved in [6] that the set G̃p+
ω is not empty, log-convex and compact for the

topology of the uniform convergence on every compact set of G. It is clear that

G̃p
ω = G̃p+

ω Ĝ. Let G̃ be the set of the continuous morphisms from G into C∗. We
have the following proposition.

Proposition 1. (see [6], [7]) If G is either a discrete group or a compact group, we
have

G̃p
ω = {θ ∈ G̃ | |θ−1(x)| ≤ ρ(Sx,ω), ∀x ∈ G}

and G̃p
ω is isomorphic to the joint spectrum of {Sx,ω}x∈G. The same result holds for

G = R.

Also in [6], it was proved the following result, which we will use.

Theorem 2. ([6], [7]) Fix θ ∈ G̃p
ω. For every bounded operator M commuting with

the translations on Lp
ω(G), we have (Mg)θ−1 ∈ L2(G), ∀g ∈ Cc(G). There exists a

function hM,θ ∈ L∞(Ĝ) such that

̂(Mg)θ−1 = hM,θ (̂gθ−1), ∀g ∈ Cc(G)

and ‖hM,θ‖∞ ≤ Cω‖M‖, where Cω is a constant independent of M .

The main result in this paper is the following.

Theorem 3. For M ∈Mp
ω and θ ∈ G̃p

ω, we have:
1) (Mg)θ−1 ∈ L2(G, H) ,∀g ∈ Cc(G)⊗H.

2) There exists Φθ ∈ L∞(Ĝ,L(H)) such that

F((Mg)θ−1)(χ) = Φθ(χ)[F(gθ−1)(χ)], ∀g ∈ Cc(G)⊗H, a.e.

Moreover,
ess sup

χ∈ bG
‖Φθ(χ)‖ ≤ Cω‖M‖.

2. Proof of Theorem 3

Since Theorem 2 plays an important role in the proof of Theorem 3, for the con-
venience of the reader we give a sketch of the proof. The detailed proof is exposed
in [7] and [6].

Sketch of the Proof of Theorem 2. First, every multiplier M in Lp
ω(G) is

the limit for the strong operators topology of a net (Mφα) where φα ∈ Cc(G) and
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‖Mφα‖ ≤ Cω‖M‖. This may be proved by using the fact that the restriction of every
multiplier on Cc(G) is a convolution with a quasimeasure (see [2]). Fix M ∈Mp

ω and

let (Mφα) be a net satisfying the above property. Fix θ ∈ G̃p
ω. From the definition

of Ĝ, it follows that ∣∣∣φ̂αθ−1(χ)
∣∣∣ ≤ ‖Mφα‖ ≤ Cω‖M‖, ∀χ ∈ Ĝ.

If we replace (φα) by a suitable subnet, we obtain that (φ̂αθ−1) converges to a

function hM,θ ∈ L∞(Ĝ) for the weak* topology σ(L∞(Ĝ), L1(Ĝ)). This implies that
for each f ∈ Cc(G), the net(

F((Mφαf)θ−1)
)

=
(
F((φα ∗ f)θ−1)

)
=

(
φ̂αθ−1f̂ θ−1

)
converges to hM,θf̂ θ−1 with respect to the weak topology of L2(Ĝ). Consequently,

lim
α

(Mφαf)θ−1 = F−1(hM,θf̂ θ−1), ∀f ∈ Cc(G)

with respect to the weak topology of L2(G). On the other hand, since Lp
ω(G) ⊂

L1
loc(G) and the inclusion is continuous, for g ∈ Cc(G), we get

lim
α

∣∣∣ ∫
G

g(y)θ−1(y)
(
Mφαf(y)−Mf(y)

)
dy

∣∣∣ = 0.

We conclude that for every f ∈ Cc(G) the functions (Mf)θ−1 and F−1(hM,θf̂ θ−1)

define the same linear functional on Cc(G) and so (Mf)θ−1(x) = F−1(hM,θf̂ θ−1)(x),

for almost every x ∈ Ĝ. We conclude that (Mf)θ−1 ∈ L2(G) and

̂(Mg)θ−1 = hM,θ (̂gθ−1), ∀g ∈ Cc(G). �

In order to proof Theorem 3, we need the following lemma.

Lemma 1. Let g ∈ L2(G, H) and v ∈ H. Then we have

F(< g(.), v >)(χ) =< F(g)(χ), v >,

for almost every χ ∈ Ĝ.

Proof. Let g ∈ L2(G, H) and (gn)n∈N ⊂ Cc(G, H) be a sequence converging to
g in L2(G, H). Then, we have

F(< g(.), v >) = lim
n→+∞

F(< gn(.), v >),

with respect to the norm of L2(Ĝ). For fixed χ ∈ Ĝ and v ∈ H, the map

Cc(Ĝ, H) 3 h −→< h(χ), v >∈ C

is a continuous linear form. For given φ ∈ Cc(Ĝ), the integral∫
G

gn(x)φ(χ)χ−1(x)dx
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is a convergent Bochner integral with values in Cc(Ĝ, H). Indeed, we have∫
G

sup
χ∈ bG

‖gn(x)φ(χ)χ−1(x)‖dx

≤ ‖φ‖∞
∫

G

‖gn(x)‖dx < +∞.

Since the Bochner integral commutes with continuous linear maps, we have for every

χ ∈ Ĝ,
φ(χ)F(< gn(.), v >)(χ) = φ(χ) < F(gn)(χ), v > .

Since limn→+∞F(gn) = F(g) with respect to the norm of L2(Ĝ, H), if we replace
(gn)n∈N by a suitable subsequence, we get

lim
n→+∞

‖F(gn)(χ)−F(g)(χ)‖ = 0, a.e.

and hence
lim

n→+∞
< F(gn)(χ), v >=< F(g)(χ), v >, a.e.

We conclude that
F(< g(.), v >)(χ) =< F(g)(χ), v >,

for almost every χ ∈ Ĝ. �

Proof of Theorem 3.
Fix M ∈ Mp

ω and fix u and v ∈ H. Introduce the operator Mu,v defined for
f ∈ Lp

ω(G) by the formula

Mu,v(f)(x) =< M(fu)(x), v >, a.e. (2.1)

Notice that Mu,v(f) ∈ Lp
ω(G) for every f ∈ Lp

ω(G). Indeed, since M(fu) ∈
Lp

ω(G, H), we have ∫
G

| < M(fu)(x), v > |pω(x)pdx

≤
∫

G

‖M(fu)(x)‖p‖v‖pω(x)pdx < +∞.

Moreover, notice that
‖Mu,v‖ ≤ ‖M‖‖u‖‖v‖.

It is clear that

< M(Sa(fu))(x), v >=< M(fu)(x− a), v >, a.e.

hence Mu,v is a multiplier on Lp
ω(G). From Theorem 2, we obtain for every θ ∈ G̃p

ω,

(Mu,vf)θ−1 ∈ L2(G), ∀f ∈ Cc(G) (2.2)

and there exists Φθ,u,v ∈ L∞(Ĝ) such that

F((Mu,vf)θ−1)(χ) = Φθ,u,v(χ)F(fθ−1)(χ), a.e. (2.3)
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Let O be an orthonormal basis of H and let F be the set of finite linear combi-
nations of elements of O. We have

|Φθ,u,v(χ)| ≤ Cω‖Mu,v‖, ∀χ ∈ Ĝ\Nu,v,

where Nu,v is a set of measure zero. Without loss of generality, we can modify Φθ,u,v

on N = ∪(u,v)∈F×F Nu,v in order to obtain

|Φθ,u,v(χ)| ≤ Cω‖Mu,v‖ ≤ Cω‖M‖‖u‖‖v‖, ∀u, v ∈ F, a.e.

For fixed χ ∈ Ĝ\N
F×F 3 (u, v) −→ Φθ,u,v(χ) ∈ C

is a sesquilinear and continuous form on F × F and since F is dense in H, we
conclude that there exists an unique map

H ×H 3 (u, v) −→ Φ̃θ,u,v(χ) ∈ C
such that

Φ̃θ,u,v(χ) = Φθ,u,v(χ), ∀u, v ∈ F.

Consequently, there exists an unique map

Φθ : Ĝ −→ L(H)

such that
< Φθ(χ)[u], v >= Φ̃θ,u,v(χ), ∀u, v ∈ H.

It is clear that

‖Φθ(χ)‖ = sup
‖u‖=1,‖v‖=1

| < Φθ(χ)[u], v > | ≤ Cω‖M‖, a.e.

Fix θ ∈ G̃p
ω and f ∈ Cc(G). For every χ ∈ Ĝ, we have f̂ θ−1(χ)u ∈ H. Next for

almost every χ ∈ Ĝ, we obtain

< Φθ(χ)[f̂ θ−1(χ)u], v >=< Φθ(χ)[u], v > f̂θ−1(χ)

= Φθ,u,v(χ)f̂ θ−1(χ) = F((Mu,vf)θ−1)(χ)

= F(< M [fu], v > θ−1)(χ).

Consequently,

F−1(< Φθ(.)[f̂ θ−1(.)u], v >)(x) =< M [fu](x), v > θ−1(x), (2.4)

for almost every x ∈ G. Now, consider the function Ψθ on Ĝ defined for almost

every χ ∈ Ĝ by the formula

Ψθ(χ) = Φθ(χ)[f̂ θ−1(χ)u]

and observe that Ψθ ∈ L2(Ĝ, H). Indeed, we have∫
bG

‖Φθ(χ)[f̂ θ−1(χ)u]‖2dχ
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≤
∫
bG

‖Φθ(χ)‖2‖f̂ θ−1(χ)u‖2dχ

≤ C2
ω‖M‖2

∫
bG

|f̂ θ−1(χ)|2‖u‖2dχ < +∞.

This makes possible to apply Lemma 1, and we get

F−1(< Φθ(.)[f̂ θ−1u(.)], v >)(x) =< F−1(Φθ(.)[f̂ θ−1(.)u])(x), v >,

for almost every x ∈ G. It follows from (2.4) that we have

M [fu](x)θ−1(x) = F−1(Φθ(.)[f̂ θ−1(.)u])(x),

for almost every x ∈ G and this yields

M [fu]θ−1 ∈ L2(G, H).

Moreover, we obtain

F(M [fu]θ−1)(χ) = Φθ(χ)[f̂ θ−1(χ)u],

for almost every χ ∈ Ĝ. �

3. The case G = R

In [4] we have established a more complete version of Theorem 2 concerning
multipliers on weighted spaces on R. Let w be a weight on R and denote by Sω the
operator S1,ω on L2

ω(R, H). Define

Iω = [− ln ρ(S−1
ω ), ln ρ(Sω)]

and
Ωω = {z ∈ C, Im z ∈ Iω}.

For f ∈ L2
ω(R, H) denote by (f)a the function

(f)a(x) = f(x)eax, ∀a ∈ Iω.

We have the following theorem.

Theorem 4. ([4]) Let ω be a weight on R and let M be a multiplier on L2
ω(R).

i) We have (Mf)a ∈ L2(R), ∀f ∈ C∞
c (R) and there exists ha ∈ L∞(R) such that

(̂Mf)a(x) = ha(x)(̂f)a(x), ∀a ∈ Iω, ∀f ∈ C∞
c (R), a.e.

and
‖ha‖∞ ≤ Cω‖M‖.

ii) If
◦

Ωω 6= ∅, then there exists h ∈ H∞(
◦

Ωω), such that for every f ∈ C∞
c (R),

M̂f(z) = h(z)f̂(z), ∀z ∈
◦

Ωω,

where

M̂f(x + ia) = (̂Mf)a(x), ∀x + ia ∈
◦

Ωω.
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Using the same methods as those exposed in Section 2 combined with Theorem
4, we obtain the following interesting version of Theorem 3 in the particular case
G = R.

Theorem 5. Let ω be a weight on R. Let M be a multiplier on L2
ω(R, H). Then

i) We have (Mf)a ∈ L2(R, H), ∀f ∈ Cc(R)⊗H and there exists Φa ∈ L∞(R,L(H))
such that

(̂Mf)a(x) = Φa(x)[(̂f)a(x)], ∀a ∈ Iω, ∀f ∈ Cc(R)⊗H, a.e.

and

ess sup
x∈R

‖Φa(x)‖ ≤ Cω‖M‖.

ii) If
◦

Ωω 6= ∅, then there exists

Φ :
◦

Ωω −→ L(H)

such that for every f ∈ Cc(R)⊗H,

M̂f(z) = Φ(z)[f̂(z)], ∀z ∈
◦

Ωω,

where

M̂f(x + ia) = (̂Mf)a(x), ∀x + ia ∈
◦

Ωω.

For every u, v ∈ H the function

z −→< Φ(z)[u], v >

is in H∞(
◦

Ωω).

Since the proof of Theorem 5 is very similar to that of Theorem 3, we omit the

details. Notice that following the results of [4] and [6], if G = R, the set G̃p
ω given

by (1.2), which we have used in Theorem 3 is isomorphic to the strip Ωω and the

set G̃p+
ω is isomorphic to the segment Iω. Applying Theorem 5, we get the following

proposition.

Proposition 2. Let ω be a weight on R. We have

spec(Sω) =
{

z ∈ C,
1

ρ(S−1
ω )

≤ |z| ≤ ρ(Sω)
}

.

Proof. Let α /∈ spec(Sω). Then M = (Sω − αI)−1 is a multiplier. Applying
Theorem 5, we get that for every a ∈ Iω, there exists Φa ∈ L∞(R, H) such that

(̂Mf)a(x) = Φa(x)[(̂f)a(x)], ∀a ∈ Iω, ∀f ∈ Cc(R)⊗H, a.e.

and

ess sup
x∈R

‖Φa(x)‖ ≤ Cω‖M‖.
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Replacing f by (Sω − αI)−1g in the above formula, we obtain

(̂g)a(x) = Φa(x)
[
F

(
((Sω − αI)g)a

)
(x)

]
, ∀g ∈ Cc(R)⊗H, ∀a ∈ Iω, a.e.

We have

F
(
((Sω − αI)g)a

)
(x) =

∫
G

(g(t− 1)− αg(t))eate−itxdt

= (̂g)a(x)(e−ixea − α), ∀g ∈ Cc(R)⊗H, ∀a ∈ Iω, a.e.

Consequently, we get

Φa(x)[(̂g)a(x)] =
1

e−ixea − α
(̂g)a(x), a.e.

and hence

‖Φa(x)‖ ≥ 1

e−ixea − α
, a.e

This shows that ea 6= |α|, for every a ∈ Iω and from the definition of Iω it follows
that

α /∈
{

z ∈ C,
1

ρ(S−1
ω )

≤ |z| ≤ ρ(Sω)
}

.

We deduce that {
z ∈ C,

1

ρ(S−1
ω )

≤ |z| ≤ ρ(Sω)
}
⊂ spec(Sω)

and this completes the proof. �
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