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Input independent chaos synchronization of

switched systems

Gilles Millerioux, Jamal Daafouz

Abstract

Input independent chaos synchronization of switched systems is addressed. The synchronization is carried out by designing an observer
which involves a switched matrix gain. A special structure of this gain enables both an input independence of the state reconstruction error
equation and a global convergence of this equation. Input independence is ensured by a suitable partial pole placement while the global
convergence is based on the poly-quadratic stability concept. Those theoretical results would be interesting for possible applications in

communications.

I. INTRODUCTION

For a large decade, since the pioneering works of [1], synchronization of chaotic motions has attracted a growing
attention from the control theory point of view. One of the most popular approach for achieving the synchronization is
based upon the framework of nonlinear observers. Indeed, synchronization problem has been shown [2] to be strongly
related to the construction of the full state vector of the chaotic system from which only a transmitted signal consisting
of a vector of smaller dimension is available. Distinct methodologies for the design of an observer have been examined.
For relative recent results, the reader can refer to the ”dynamic inversion” in the sense of [3], the concept of absolute
stability [4], the observer design for chaotic systems with Generalized Hamiltonian Forms [5], the polytopic observers
design based upon Linear Matrix Inequalities [6]. An attempt to mention all related papers on chaos synchronization
would result in a prohibitively long list. It might be worthwhile to consult all devoted special issues and references
therein appeared for that purpose [7][8][9][10].

Synchronization problems has become popular because of its possible use in communication. A huge number of papers
has been published from this perspective, but security and performances of the proposed algorithms is a current research
topic. Recent works and a serious overview can be found in [11] and references therein. What distinguishes the pure

synchronization problem from the chaos-based communication problem is the fact that in the latter situation, an input,
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playing the role of the information to be masked, is embedded in the chaos generator, namely the drive. And yet, the
input must be recovered at the so-called response side despite of the fact that it is not transmitted. To face this situation,
two methods can be found in the existing literature. The problem is likely to be tackled from the identification point
of view. The information is interpreted as a time-varying parameter, not available beforehand [12] and which must be
identified. The second approach is based on nonlinear adaptive methods [13]. Both methods suffers from the fact that
the parameter must be slowly time-varying to avoid too long convergence transients.

In this paper, a novel observer-based synchronization method is presented. It is called input independent global synchro-
nization (IIGS) and enables to remove such a constraint for a special drive-response setup. The method first involves
a partial pole placement technique which makes the equation governing the state reconstruction error to become input
independent. Partial pole placement has been widely investigated for linear systems. It consists of assigning a set of
given eigenvalues while preserving stability by a suitable choice concerning the rest of the spectrum. In [14], a technique
using dynamic output-feedback is presented. In [15], the problem is tackled while guaranteeing stability under LQ
criteria. On the other hand, to date, very few papers, to our knowledge, have focus on partial pole for piecewise linear
systems. Secondly, a special Lyapunov approach ensures the global convergence of the state reconstruction error. It
is shown how this approach, resorting to poly-quadratic stability [16][17], turns the design of the gain matrices of the
observer into a resolution of a set of Linear Matrix Inequalities.

The layout of the paper is as follows. Section II introduces the required formalism to establish the input independent
state reconstruction problem as a special observer design. It is also devoted to some preliminary results required for the
forthcoming sections. It particularly includes the poly-quadratic stability notion and the required structure of the ob-
server gain so that the matrix governing the state reconstruction error gets a null space. Indeed, it will be shown that an
input independent convergence property requires such a null space. In section III, the main result of the paper providing
the design procedure to ensure input independent global convergence and the recovering of the original information is
established. The switched matrix gain of the observer is derived from the solution of a set of Linear Matrix Inequalities.

Finally, in order to assess the IIGS, an illustrative example borrowed from a communication context is given in section IV.

Notations
Throughout the paper, 1 (resp. 0) is an identity (resp. null) matrix of appropriate size. For a matrix X, X7 stands for
the transpose of X, N'(X) is the null space of X. When being symmetric, X > 0 indicates that X is positive definite

and the symbol (e)7 denotes each of its symmetric block.



II. PROBLEM STATEMENT AND PRELIMINARY RESULTS

Consider the discrete time system :

Tpt1 = A,--(;Uk+M,-uk) + E; (1)

Yk Ci - (zr + Mug)

where z; € R?, yr € R™, ux € R™ are respectively the state vector, the output and the external input representing
the information to be masked. The state space z; € R™ is partitioned into P distinct regions R; with U:if R; C R".
A;, M;, E; and C; are constant matrices assigned, with a one-to-one correspondence, to the region R; visited by xj at the

discrete time k. The matrices C; are of rank m, A; and E; govern the dynamics such that a chaotic motion is exhibited.

Finally, M; characterizes the way to mix the input u with the chaotic signal x.

Remark 1. It is pointed out that for switched systems, chaos behaviors depend not only on the local dynamics but also
on the rule which orchestrates the switches. One of the most popular piecewise linear systems are the Chua’s circuit in

the continuous time case, or the Tent Map, the Uniform Markov Map, the Logistic Map in the discrete time case.
Consider the discrete time system described by :

1 = Aty + E; 4+ Li(ye — r) @)

Uk = Cigy

This system acts as an observer with matrix gain L;. The gain depends on the index i since switched systems are
considered. Throughout the paper, according to usual chaos synchronization terminology, the system (1) will be called
drive and the system (2) will be refer to as response.

Problem is to design a drive-response system such that & tends asymptotically towards xj for any ug, not available at

the response side, and for any initial state £o. It amounts to find suitable matrices pairs (M;, L;) for i = 1,... , P such
that :
lim ||z — &]| =0 Vi and Vuy (3)
k—oo

When (3) is verified, the drive-response system will be referred to as Input Independent Global Synchronized (IIGS).

Before dealing with the main result of the paper, preliminary results are presented in next section.



A. Poly-quadratic stability

Consider the dynamical discrete time system which depends in a polytopic way on a vector & :

Zh1 = A(&r) 2k (4)

The structure of the dynamical matrix 4 gets the following polytopic description :

P P

A&) =D A,  &>0, Y &=1 (5)

p=1 p=1

Following reasonings developed in [16], we consider Parameter-Dependent Lyapunov Functions (PDLF) of the form:

V(2k, &) = 2 P(ék)2k (6)
with
P
P(&) = Y &P, (7)

the various P,, p = 1, ..., P, are symmetric positive definite matrices of appropriate order. The poly-quadratic stability

concept is recalled in the following definition.

Definition 1. System (4) is said to be poly-quadratically stable if there exists a Positive Definite Parameter Dependent

Quadratic Lyapunov Function (6) whose difference along the solution of (4) satisfies

L=V (2k+1,&k+1) — V(zk, &) < —ao([[2e]]) (8)
with ag @ Koo function'.

Poly-quadratic stability is sufficient for asymptotic stability. Assessing the poly-quadratic stability of a polytopic

model is equivalent to find P Positive Definite matrices P,, p = 1,...P such that :

—P(&) + AT(&)P (&) A(&) < 0 VE 9)
with :

P(fk) = 2521 glfpp

vk (10)

P+(§k) = 25:1 §£+1Pp

1A function a : [0,00) —+ [0,00) is a koo function if it is continuous, strictly increasing, zero at zero and unbounded (a(s) — co as s — 00).



The following Theorem gives a necessary and sufficient condition for a time varying polytopic system such as (4) to be

poly-quadratically stable.

Theorem 1. System (4) is poly-quadratically stable if and only if there exist symmetric positive definite matrices S;

and matrices G; of appropriate dimensions such that

Gi+Gl =8 (7T
>0 (11)
AiGs s

V(i,j) € {1,...,P} x{1,...,P}. In this case, the time varying PDLF is given by (6) with

P
PE) = Y &S,

p=1

Proof see [16]. O

Poly-quadratic stability is less conservative than quadratic stability which corresponds to the special choice of the
Lyapunov function, V (zx, &) = 2] P ()2, with P (&) = P*, a constant matrix, and thus corresponds to the particular
case G; = 5; = S*, a constant matrix too. As far as piecewise linear systems are concerned, Theorem 1 holds by defining

the quantity & as an ”indicator vector” given by the following definition :

Definition 2. An indicator vector associated to a switched system is a vector & = (&, ... ,55 )T whose components are

defined as :

1if z, wisits R,
0 otherwise

B. Stability under piecewise linear similarity transform

Consider the autonomous discrete time system :

Net1 = Pimg (12)

where ®; belongs to a finite set of P matrices. Let introduce a full rank piecewise linear transform T; and consider the

recursion :

k1 = Ty @ Ty (13)



where the succession of indexes i and the discrete times k corresponding to switches are the same as the ones of (12).
It can be stated that, the convergence towards zero of the solution 77* of (13) is equivalent the convergence towards zero
of the solution n* of (12).

Indeed, (13) can be rewritten :

Tifjg+1 = ®;T;mjg (14)

which is equivalent to (12) and means that the samples 9} and 7j;; of the respective discrete trajectories n* and 7* verify
0y = Ty7y;. T; being of full rank, since 77* converges towards zero, it does the same for n*.
C. Input independence property

In this subsection, a relation between M; and L; is stated in order to ensure the convergence of the system governing
the state reconstruction error e = xp, — £;. This equation is obtained by subtracting (1) and (2) :

ept1 = (A; — L;iCy)er, + (A; — LiCs) Myuy, (15)

Proposition 1 For i = 1,..., P, assume that L; satisfies N(A; — L;C;) # 0. Denote N; the matriz whose columns

span the null space of A; — L;C;. If M; = N; , thus the convergence is input independent, that is

€kp+1 = (A, - L,C,)ek (16)

Proof The proof is the immediate consequence of the definition of the null space. Indeed, for i = 1,...,P, (4; —

L;C))M; = (A; — L;C;)N; = 0. Hence, (15) turns into (16). O

III. INPUT INDEPENDENT GLOBAL SYNCHRONIZATION
This section is devoted to the design of the matrices L; and M; such that the drive-response system is both input
independent as well as global synchronized.
A. Input independence and partial pole placement

In this subsection, a special form of the gains L; which guarantees that A; — L;C; has a non empty null space, required

for input independence property, is presented. It is shown that the gains achieve a partial pole placement with zero



eigenvalues.

Consider the following canonical equation :
&1 = (Ai — LiCi)&, (17)

where, for i = 1,...,P, A; = (Tf) ' ATY, L; = (Tf)'L; and C; = CiTf with Tf the piecewise linear transform

verifying :
CiTf =0 1] =C; (18)

Here, 0 is a m x (n —m) null matrix and 1 is the identity matrix of dimension m. Tf always exists since rank(C;) = m.

Proposition 2 Fori=1,...,P, the gain L; = A;K; with K; = [K} 1] ensures N'(A; — L;C;) # 0

Proof The proof is constructive in the sense that it provides the dimensionality of the null space. Consider the partitioned

matrix A; with blocks of appropriate sizes :

A 42
i = ’
A ap
By direct calculation, one obtains :
A _AVR]
Ai—LiCi=| Y (19)
A —AZ K]
Now, take the piecewise linear transform :
1 —K}
T! =
0 1

Premultiplying (19) by the inverse of T}’ and postmultiplying by T}*, we obtain :
A —K!AZ o
A2t 0

Consequently, A; — L;C; and so A; — L;C; has at least m zero eigenvalues. This completes the proof. O

The gains L; are retrieved by L; = T¢L;. The constraint on the structure of L; ensures (15) to be input independent
by applying Proposition 1.

Now, the block matrix K'zl of L; must be computed in order to obtain the global convergence of (16) by a suitable



assignment of the n — m remaining eigenvalues. Combined with the input independence property, (15) will have the

IIGS property.

B. IIGS conditions

In this subsection, the result ensuring the IIGS property is stated.

Let some matrices G; get the form :

3 G o0
G; =
0 G
Besides, consider the partitions of some matrices S; :
11 812
g = St S
K3 K3

Theorem 2. The drive-response system (1-2) is IIGS if there exist symmetric positive definite matrices S;, Gi parti-

tioned as above and matrices F; of appropriate dimensions such that

GI' +(GIHT - Sh (o7 (o (o)T
-5 GP+(GA)T-52 (o7 (0T

>0 (21)
(AMTGH - (AYHTF, (AT G Sit (o)
0 0 sz 5

V(i,5) € {1,...,P} x {1,... , P}.

The gains K} satisfy K} = (G1')"TF[.

Proof Let A; be the matrices obtained from A; under the piecewise linear similarity transform fulfilling (18). Further-
more, let L; be the gain matrices of which structure is defined as in Proposition 2. In this proposition, it has been
shown in subsection ITI-A that such gains make the equation (16) of the error to be input independent. Besides, global
convergence of (16) is equivalent to global convergence of (17) according to the result of section II-B. And yet, global

convergence of (17) is also equivalent to global convergence of the dual system :
1 = (A = LiC) Ty, (22)
Substitute A; by (Ai - Eié’i)T, G; by G; and S; by S; in (11). Finally, making use to the change of variable

F; = (K1TGY, (21) is obtained. The Matrix Inequalities of Theorem 2 ensure (22) and so (16) to be poly-quadratic sta-

ble, which is sufficient for global asymptotical stability. Combined with the input independence property, (3) is fulfilled O



Remark 2. Tt can be easily shown that the special diagonal structure of the matrices G; causes the problem to be solvable
as a set of Linear Matriz Inequalities while a non diagonal structure would have lead to Bilinear Matrix Inequalities
constraints. Consequently, such a matriz allows not only the linearity of the constraints (and so the convexity of the
problem) but also prevents a restriction on the structure of S; involved in the PDLF, which would have rendered the
problem to be more conservative. Indeed, let us recall that quadratic stability is a special case of poly-quadratic stability

when taking G; = S; = S*.

Remark 3. The global stability is ensured since all the switches are taken into account, regardless of the rule which
orchestrates them. As a consequence, the theorem holds regardless of the chaotic motion exhibited by the drive. If the
detailed study of the chaotic dynamics reveals that some specific switches cannot occur, the conservatism can be reduced

by removing the corresponding pairs (i,5) in (21).

C. General Design Procedure

A general procedure for designing an input independent global synchronization of a drive-response of the form (1-2),

that is for computing the pairs (M;, L;), given A;, E; and C;, consists in the following points.

i) perform Tf such that C;Tf =[0 1]
i) compute K} = (GI')~TET with GI' and F; solutions of (21)
#i) compute successively L; = A; K; with K; = [IN(Z1 17 and L; = Tfﬂi

iv) set M; = N; with N; the matrix whose columns span the null space of 4; — L;C;

It is recalled that IIGS allows the synchronization regardless to ug. Now, the following proposition provides a way to

recover uy since it is not directly available on the response part.

Proposition 4 Provided that rank(C;N;) = m, the quantity Gy defined as :
ax = (CilN:) " (yr — Cidr) (23)

will converge towards uy.



Proof From (23) and the output equation of (1) with M; = N;, one obtains :

ug — G = —(CiN;) "' Ci(zr, — &) (24)

Thus, global convergence of Zj, towards xj, implies global convergence of 4, towards ug. O

IV. ILLUSTRATIVE EXAMPLES

To illustrate the results above, consider the map of which state space representation of the drive and the response is

respectively of the form (1) and (2) with:

-z = [z} 22 23T and 3y, = [3} 27 23]
0 04 1
-Ai= | h 04 0 |bh=-112,hy =1
-08 0 09

-E; =00 0Tand By =[]0 —12.72 0|7

the two regions respectively associated to A; and As are R; and Ra. R; is the set {ar:k|ac,1c < 6} and R; is the set

{zk|a} > 6}
- the output matrix is chosen to be a constant matrix : C' =[0 0 1]
This map exhibits a chaotic motion. This complex motion is used in order to mask an information w; through an

embedding corresponding to (2). Let us apply the design procedure of subsection III-C to ensure the recovering of uy.

step 1)

This step is useless since T = 1 as the output matrix C is already in the canonical form.

Since Tf equals the identity matrix, A; = A;. The set of Linear Matrix Inequalities (21) are solved by using a LMT tool
(see for instance [18]). The resulting unknown matrices involved in the gains computation are :

- G = GI =0.6938

- Fy =[-0.0514 1.2837]

- Fy =[0.0459 —1.1462]

10



The corresponding gains K} = (G!)~TET are K! = [-0.0741 1.8503)7 and K1 = [0.0661 — 1.6520]7.

step iii)
The gains of the observer L; = L; = A; K; are computed which yields L; = [1.7401 0.8231 0.9593]7 and Ly = [0.3392 —

0.5947 0.8471]7.

step iv)
Both vectors spanning the one-dimensional null space of 4; — L;C; (m = 1) associated to each region R; are computed.

We get Ny = [0.0352 —0.8792 —0.4752]7 and N, = [0.0342 — 0.8550 0.5175]7. Then, we set M; = N;.

To assess IIGS, based upon the resulting pairs (M;, L;), the proposed drive-response setup has been designed such

that the sinusoidal signal depicted on Fig 1A is masked by zj, of the chaotic map and recovered after synchronization.

Results are reported on Fig 1BCD. Before the discrete time k = 60, the gains of the observer are set to zero such that
the drive and the response are not synchronized. On Fig 1B, it can be seen that before k = 60, the recovered signal is
completely wrong. After £ = 60 and a synchronization transient, the information uy is successfully retrieved. Fig 1C
and Fig 1D correspond respectively to the state reconstruction error ||z — Zx|| and the difference uy — 4y between the
recovered information and the initial one. Clearly, both errors converge towards zero.

Fig. 1. A :information uj. B : recovered information 4. C : state reconstruction error ||z — Zg||. D : ugp — G

V. CONCLUSION

Input independent global chaos synchronization of switched systems has been examined. The synchronization is
achieved based upon a response system getting an observer structure. First, a suitable partial pole placement obtained
by the choice of a special structure of the observer gains ensures a partial zero eigenvalues assignment and turns the
equation governing the error of reconstruction to be independent from the input. Secondly, poly-quadratic stability,
more general than quadratic stability, ensures the global convergence while preventing conservatism. The drive-response
system is referred to as Input Independent Global Synchronized. A preliminary practical implementation of the scheme
described in this note has shown the possible interest of the IIGS concept in a secured communication context [19]

even though it deserves further works to obtain a viable encryption scheme. From a theoretical point of view, it is

11



worth pointing out that the problem treated here differs from the unknown input observer approach for piecewise linear

systems investigated in [20][21] where the involved systems have relative degree equal to one.
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