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We consider four turbulent models to simulate the boundary mixing layer of the ocean. We show the existence of solutions to these models in the steady-state case then we study the mathematical stability of these solutions.

Introduction

The presence of an homogeneous layer near the surface of the ocean has been observed since a long time. The so called "mixed layer" presents almost constant profiles of temperature and salinity (or equivalently the density). The bottom of the mixed layer corresponds either to the top of the thermocline, zone of large gradients of temperature, or to the top of the zone where haline stratification is observed [START_REF] Vialard | An ogcm study for the toga decade. part i: Role of salinity in the physics of the western pacific fresh pool[END_REF]. Some attempts to describe this phenomenon can be found for example in Defant [START_REF] Defant | Schichtung und zirculation des atlantischen ozeans[END_REF] or Lewandowski [START_REF] Lewandowski | Analyse mathématique et océanographie[END_REF]. The effect of the wind-stress acting on the sea-surface was then considered to be the main forcing of this boundary layer. Observations in situ were completed by laboratory experiments [START_REF] Deardorff | Laboratory investigation of nonsteady penetrative convection[END_REF] and more recently by numerical modelizations of the mixed layer.

In this note, we consider four turbulent models to describe this homogeneous boundary layer. The first one is the Pacanowski-Philander model, and two of these models are new models. They aim to compute the velocity and the water density of a water column, are one space dimensional and the eddy viscosities depend on the Richardson number. For those model, we show the existence of a steady-state solution and we analyse the mathematical linear stability of these steady state solution, showing that only one of these model, the one we introduce in this note (model labelized as R -2 -2 -4 below), has a unique staedy state solution with a large range of stabilty. Moreover, in [START_REF] Bennis | Parametrization of the mixing layer: Comparison of four models depending on the richardson number[END_REF] we have used these models to simulate the warm pool at the equator. Numerical results confirm that R -2 -2 -4 is the most accurate parametrization.

The equations

We denote by (u, v) the horizontal water velocity and ρ its density. Since the numerical simulation performed in [START_REF] Bennis | Parametrization of the mixing layer: Comparison of four models depending on the richardson number[END_REF] concerns the equator zone, we do not take the Coriolis force into account. The closure equations are:

(2.1)

                                       ∂u ∂t - ∂ ∂z ν 1 ∂u ∂z = 0, ∂v ∂t - ∂ ∂z ν 1 ∂v ∂z = 0, ∂ρ ∂t - ∂ ∂z ν 2 ∂ρ ∂z = 0, for t 0 and -h z 0, u = u b , v = v b , ρ = ρ b at the depth z = -h, ν 1 ∂u ∂z = ρ a ρ 0 V x , ν 1 ∂v ∂z = ρ a ρ 0 V y , ν 2 ∂ρ ∂z = Q at the surface z = 0, u = u 0 , v = v 0 , ρ = ρ 0 at initial time t = 0.
In system (2.1), the coefficients ν 1 and ν 2 are the vertical eddy viscosity and diffusivity coefficients and will be expressed as functions of the Richardson number R defined as

R = - g ρ 0 • ∂ρ ∂z ∂u ∂z 2 +
∂v ∂z

2
where g is the gravitational acceleration and ρ 0 a reference density (ρ 0 ≃ 1025 kg.m -3 ).

The constant h denotes the thickness of the studied layer that must contain the mixing layer. Therefore the circulation for z < -h, under the boundary layer, is supposed to be known, either by observations or by a deep circulation numerical model. This justifies the choice of Dirichlet boundary conditions at z = -h, u b , v b and ρ b being the values of horizontal velocity and density in the layer located below the mixed layer. The air-sea interactions are represented by the fluxes at the sea-surface : V x and V y are respectively the forcing exerced by the zonal wind-stress and the meridional wind-stress and Q represents the thermodynamical fluxes, heating or cooling, precipitations or evaporation. We have

V x = C D |u a | 2 and V y = C D |v a | 2
, where U a = (u a , v a ) is the air velocity and C D a friction coefficient.

We study hereafter four different formulations for the eddy coefficients

ν i = f i (R), labeled as "R -2 -i" and/or "R -2 -i -j" . In all models, f 1 (R) = α 1 + β 1 (1 + 5R) 2 , except in model R -2 -3 below: (2.2) R -2 -1 -3 : f 2 (R) = α 2 + f 1 (R) 1 + 5R = α 2 + α 1 1 + 5R + β 1 (1 + 5R) 3 . R -2 -3 f 1 (R) = α 1 + β 1 (1 + 10R) 2 , f 2 (R) = α 2 + β 2 (1 + 10R) 3 R -2 -2 -4 : f 2 (R) = α 2 + f 1 (R) (1 + 5R) 2 = α 2 + α 1 (1 + 5R) 2 + β 1 (1 + 5R) 4 , R -2 -2 f 2 (R) = α 2 + β 2 (1 + 5R) 2 ,
Formulation R -2 -1 -3 corresponds to the modelization of the vertical mixing proposed by Pacanowski and Philander [START_REF] Pacanowski | Parametrization of vertical mixing in numericals models of the tropical oceans[END_REF]. The coefficients α 1 , β 1 and α 2 have the following values: α 1 = 1.10 -4 , β 1 = 1.10 -2 , α 2 = 1.10 -5 (units:m 2 s -1 ).This formulation has been used in the OPA code developed in Paris 6 University [START_REF] Madec | version 8.0. ocean general circulation model[END_REF] with coefficients α 1 = 1.10 -6 , β 1 = 1.10 -2 , α 2 = 1.10 -7 units: m 2 s -1 .The selection criterion for the coefficients appearing in these formulas was the best agreement of numerical results with observations carried out in different tropical areas. Formulation R -2 -3 has been proposed by Gent [START_REF] Gent | The heat budget of the toga-coare domain in an ocean model[END_REF]. Formulations R -2 -2 -4 and R -2 -2 are new as far as we know. Notice that models R -2 -1 -3 and R -2 -3 are no more physically valid respectively for R ∈ (-3.13, -0.2) and R ∈ (-2.25, -0.1) since the coefficient ν 2 becomes negative.

Steady-state solutions

Steady-state solutions to system (2.1) satisfy

(2.3) ∂ ∂z f 1 (R) ∂u ∂z = 0, ∂ ∂z f 1 (R) ∂v ∂z = 0, ∂ ∂z f 2 (R) ∂ρ ∂z = 0. Theorem 2.1 System (2.
3) has at leat one smooth solution on [0, -h] for each model in (2.2). In case of R -2 -2 -4 the solution is unique.

Proof. Integrating (2.3) with respect to z, yields

(2.4) f 1 (R) ∂u ∂z = V x ρ a ρ 0 , f 1 (R) ∂v ∂z = V y ρ a ρ 0 , f 2 (R) ∂ρ ∂z = Q. and since R = - g ρ 0 • ∂ρ ∂z ∂u ∂z 2 +
∂v ∂z

2 we deduce from (2.4) that R = - gQρ 0 ρ 2 a (V 2 x + V 2 y ) • (f 1 (R)) 2 f 2 (R) , which yields (2.5) (f 1 (R)) 2 f 2 (R) = - ρ 2 a (V 2 x + V 2 y ) gQρ 0 R
which is a fixed point equation for R. Any solution R to equation (2.5) yields a Richardson number R e corres ponding to the fluxes V x ,V y and Q and not on z as ν 1 and ν 2 are independent on the depth variable z as well asq the turbulent viscosities. The Richardson number R e being known, steady-state profiles for velocity and density are obtained by integrating (2.4) with respect to z, taking into account the boundary conditions at z = -h:

(2.6)

u e (z) = u b + V x ρ a ρ 0 f 1 (R e ) (z + h) , v e (z) = v b + V y ρ a ρ 0 f 1 (R e ) (z + h) , ρ e (z) = ρ b + Q f 2 (R e ) (z + h) .
It remains to analyse the existence of solutions of equation (2.5). These solutions can be interpreted as the intersection of the curves

k (R) = (f 1 (R)) 2 f 2 (R) and h (R) = CR with C = - ρ 2 a (V 2 x + V 2 y ) gQρ 0
. The existence and the number of solutions are controlled by the constant C and then by the parameter

V 2 Q , V 2 = V 2
x + V 2 y , depending only on the surface fluxes. The graph of function k and h for Q < 0 and Q > 0 is plotted on Figures 1 and2 below when f 1 and f 2 in case of R-2-2-4 and R -2 -2. CR meets k at only one point for Q > 0 and Q < 0. Therefore it exists one unique equilibrium Richardson number R e whatever the values of the surface fluxes V x , V y and Q. In the case of the other models, we get several solutions. The proof is finished. Notice that in [START_REF] Bennis | Parametrization of the mixing layer: Comparison of four models depending on the richardson number[END_REF] we show that the most accurate model is R -2 -2 -4 from the physical and numerical viewpoint.

Linear stability of the equilibrium solutions

In this section we analyse the time evolution of a small perturbation of one of the equilibrium states (u e , v e , ρ e ) described in the previous section.

At initial time t = 0 we set (u 0 , v 0 , ρ 0 ) = (u e , v e , ρ e ) + (u ′ 0 , v ′ 0 , ρ ′ 0 ) and we denote by (u, v, ρ) = (u e , v e , ρ e ) + u ′ , v ′ , ρ ′ the solution of equations (2.1) at time t where (u e , v e , ρ e ) are solution to the steady-state system (2.3), and ν e 1 = f 1 (R e ) and ν e 2 = f 2 (R e ) are two positive constants. Introducing the new variables ψ = ∂ρ ∂z , θ = ∂u ∂z and β = ∂v ∂z , the Richardson number can be expressed as

R = - g ρ 0 ψ (θ 2 + β 2 ) = R (θ, β, ψ)
Applying the Taylor formula, we get The equations satisfied by the perturbation (u ′ , v ′ , ρ ′ ) are deduced from equations (2.1):

F = (θ -θ e ) ∂ν 1 ∂θ (θ e ,
(2.7)

     ∂u ′ ∂t - ∂ ∂z (ν 1 (θ, β, ψ) (θ e + θ ′ )) = 0, ∂v ′ ∂t - ∂ ∂z (ν 1 (θ, β, ψ) (β e + β ′ )) = 0, ∂ρ ′ ∂t - ∂ ∂z (ν 2 (θ, β, ψ) (ψ e + ψ ′ )) = 0.
We now replace ν 1 and ν 2 by expresions deuced from the Taylor's development and retain only the first order terms. The approximated equations for (u ′ , v ′ , ρ ′ ) then are (2.8) 

                   ∂u ′ ∂t - ∂ ∂z ν e 1 + θ
            , V =   u ′ v ′ ρ ′   ,
Equations (2.8) can be written

(2.9) ∂V ∂t - ∂ ∂z A ∂V ∂z = ∂V ∂t -A ∂ 2 V ∂z 2 = 0.
Let (λ 1 , λ 2 , λ 3 ) be the eigenvalues of matrix A. Assuming the eigenvalues dinstincts,matrix A is equal to P -1 DP , where D is diagonal, and such that d 11 = λ 1 , d 22 = λ 2 and d 33 = λ 3 .

Set now W = P V. The vector W verifies the system ∂W ∂t -D ∂ 2 W ∂z 2 = 0, i.e.

(2.10)

∂w 1 ∂t -λ 1 ∂ 2 w 1 ∂z 2 = 0, ∂w 2 ∂t -λ 2 ∂ 2 w 2 ∂z 2 = 0, ∂w 3 ∂t -λ 3 ∂ 2 w 3 ∂z 2 = 0.
Stability of the equilibrium solution (u e , v e , ρ e ) means that any perturbation (u ′ 0 , v ′ 0 , ρ ′ 0 ) imposed at initial time t = 0 is damped as t → ∞. This is verified if the eigenvalues λ 1 , λ 2 , λ 3 are such that Re (λ 1 ) > 0, Re (λ 2 ) > 0 and Re (λ 3 ) > 0. These three conditions are equivalence to det (A) > 0, tr (A) > 0 and tr (Adj(A)) > 0. From these conditions, we build the graph below (see figure 1), obtained thanks an analytical computation (we skip the technical details here): The results are summarized in Figure 1.

The circle zone represents a zone where the solution is physically not valid. It is the case for the R-2-3 and R-2-1-3 formulation. The rectangular zone is a unstability zone. All formulations have a unstability zone. Nevertheles, one observes that for each model, mathematical stability holds for non negative R.

Conclusion

All the models have a steady-state solution, unique in the case of R-2-2-4. Each one is linearly stable for non negative R, which corresponds to physical stability. All these models present a linear unstable zone, located in a region where R is non positive. They all presents a linear stability zone for some non positive values of R, situation that can arise in real situation, as reported in [START_REF] Bennis | Parametrization of the mixing layer: Comparison of four models depending on the richardson number[END_REF] (physical unstability). All these models have been tested in [START_REF] Bennis | Parametrization of the mixing layer: Comparison of four models depending on the richardson number[END_REF]. The simulation confirms the existence of stable linear steady-state solutions and the ability of these models to describe a boundary mixing layer. However, the numerical study in [START_REF] Bennis | Parametrization of the mixing layer: Comparison of four models depending on the richardson number[END_REF] confirms that R -2 -2 -4 yields better numerical results.
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 1 Figure 1: Numerical stability
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