
HAL Id: hal-00121174
https://hal.science/hal-00121174

Preprint submitted on 19 Dec 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A comparison of likelihood methods and their fast
randomized versions for stochastic process models with

measurement error
Didier A. Girard

To cite this version:
Didier A. Girard. A comparison of likelihood methods and their fast randomized versions for stochastic
process models with measurement error. 2006. �hal-00121174�

https://hal.science/hal-00121174
https://hal.archives-ouvertes.fr


1

A COMPARISON OF LIKELIHOOD METHODS AND THEIR FAST

RANDOMIZED VERSIONS FOR STOCHASTIC PROCESS MODELS

WITH MEASUREMENT ERROR

Didier A. Girard

CNRS and Université Joseph Fourier

Abstract: To estimate the covariance parameters of a Gaussian spatial process from

noisy observations at a finite number, say n, of sites, the methods of solving the

likelihood equation or maximizing the likelihood are standard. Evaluating gradients

of the log likelihood requires solving linear systems of size n and computing the

trace of the associated matrix inverses; and, thus, in many various fields with large

n, randomized trace estimates have been used for the second task. The purpose

of this article is to quantify what is sacrificed when one uses a single (or the same

nR, for the version using an average of nR randomized traces) simulated vector(s)

of size n for the all gradient evaluations. We do this mainly in a simple one-

dimensional stationary context, with the classical exponential function (thus at

most 2 parameters) as covariance of the underlying spatial process, under infill

asymptotics, for which consistency and asymptotic distribution results have been

shown by Chen, Simpson and Ying (2000). We show that any consistent root of the

randomized version of the likelihood equation has the same asymptotic behavior as

for the exact version excepted that the asymptotic variances are increased by the

factor 1 + 1/nR. Moreover, to attack the problem of choosing between multiple,

possibly non-consistent, roots, we propose a simple randomized version of the whole

likelihood, whose maximizer is proved to be consistent even with nR = 1.

Key words and phrases: asymptotic normality, consistency, Gaussian process, iden-

tifiability, infill asymptotics, maximum likelihood estimator, measurement error,

nonparametric Bayesian regression, randomized trace.

1. Introduction

We consider the classical problem of building up statistical inferences for the

model

Y (s) = Z(s) + e(s), s ∈ Rd (1.1)
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where Z is a zero mean Gaussian stochastic process whose covariance function

is known up to a magnitude factor b > 0 and a shape parameter θ > 0, and

e is a “measurement error” process independent of Z. These parameters have

to be estimated from only n + 1 observations at sites s(0), s(1), . . . , s(n) with

i.i.d. Gaussian noise e(s(i)), i = 0, . . . , n; and we consider the classical maximum

likelihood (sometimes called “marginal ML” or “type II ML” from an empirical

Bayesian point of view) principle for this task.

To simplify the presentation we first assume that the noise variance is known,

say equal to 1. Denoting by bK(θ) the assumed model for the covariance matrix

of z = Z(s(0)), . . . , Z(s(n))′, the (marginal) law of y = Y (s(0)), . . . , Y (s(n))′ is

then

y ∼ N(0, b0K(θ0) + I). (1.2)

For future references, let us introduce the conditional mean of Z(s) given y,

evaluated at s(i), i = 0, . . . , n. This classical optimal prediction of z is well

known to be Aθ0
(b0)y where

Aθ(b) =
(

I + b−1K(θ)−1
)−1

(1.3)

is an example of the so-called influence matrices in the spline literature. Now,

simple manipulations of the density function (1.2) shows that −2 times the log

likelihood function is

l(b, θ) = y′ [I − Aθ(b)]y − logdet [I − Aθ(b)] + (n + 1)log(2π) (1.4)

and that its derivative w.r.t. the magnitude factor b (a score function) is

Sθ(b) = −1

b

(

y′Aθ(b) [I − Aθ(b)]y − trAθ(b)
)

. (1.5)

Various forms and extensions (e.g. for multidimensional b or θ) of these formulae

are almost ubiquitous in the geostatistics field. There, and in many other fields,

the size of the data may be very large. So a number of techniques have been

developed to implement the likelihood principle.

In recent years, fast randomized versions of the likelihood equation (i.e., here,

of solving Sθ(b) = 0, which is called the LE or “scoring” method) has been used

in many contexts with large data sets (e.g., Wahba et al. 1994): in its simplest
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form, it consists in generating a single vector w ∼ N(0, I), of the same size as y,

and replacing the function Sθ(b) by

RSθ(b) = −1

b

(

y′Aθ(b) [I − Aθ(b)]y − w′Aθ(b)w
)

. (1.6)

Thus, all we need for evaluating such a randomized score, is a (fast) algorithm

for the computation of any conditional mean Aθ(b)y. We will also denote by
RSθ(b) the “averaged” randomized score obtained when w′Aθ(b)w is replaced by

a simple Monte-Carlo average (1/nR)
∑nR

r=1 wr ′Aθ(b)w
r.

For example, in the machine learning field, fitting such models is become

a popular approach to regression, which was recently widely studied under the

name “Gaussian process regression”. In the survey by Gibbs and MacKay (1997)

the authors advise to use iterative linear solvers and averages of randomized

trace estimates for the computation of any gradient of the log likelihood crite-

rion. Gibbs and MacKay (1997) noticed that the number (nR is our notation)

of randomized trace estimates needed to obtain sufficiently good estimates is

surprisingly small. The cost of such inferences is then reduced from order n3 to

order n2 in general (that is, for full and not structured matrices). Much greater

computational gains can actually be obtained in other contexts; see the final

section.

The purpose of this paper is to give theoretical explanations of such behaviors

when nR is a fixed number (for example equal to 10); and we do this by an

asymptotic analysis in the simple context studied in Chen, Simpson and Ying

(2000) (abbreviated as CSY henceforth): in (1.1), Z is a classical Ornstein-

Uhlenbeck process, that is, a one-dimensional zero-mean Gaussian process whose

covariance function is the exponential function:

E(Z(s)Z(t)) = b exp{−θ|t − s|}. (1.7)

Note that we essentially adopt the same notations as in CSY except that the

magnitude of the covariance function is denoted here by b (in place of σ2 used

in CSY). We consider infill (or “fixed domain”) asymptotics, that means that

the s(i)s becomes dense in a compact interval as n increases. Furthermore, as in

CSY we consider equally spaced sites s(i) = i/n, i = 0, . . . , n.

Infill asymptotic frameworks may be more useful than the classical time

series frameworks to explain some empirical facts when one is faced with strong
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correlations in the underlying process. This is emphasized in Zhang (2004),

Zhang and Zimmerman (2005). For example, a clear explanation of the practical

difficulties of estimating b0 and θ0 simultaneously, is provided by the important

remark: it is known (e.g. Ying (1991)) that as long as θb = θ1b1, the couples (θ, b)

and (θ1, b1) are not distinguishable from a single sample path Z(t), t ∈ [0, 1] of

the Ornstein-Uhlenbeck process with covariance (1.7).

As was also noted by Zhang and Zimmerman (2005) the available results

under infill asymptotics are considerably narrower in scope than for increasing

domain. This is even more true when the measurements are obtained with errors

or there is a so-called nugget effect. In two notable exceptions, analogs of The-

orem 2.1 below are proved for the Brownian motion plus white noise model and

for its mth order spline generalization, by Stein (1990) and Kou (2003). Note

that, of course, in the model of CSY, randomized-traces are not useful for com-

puting ML estimates since, as is well known, for this model, the exact likelihood

(and the score) are calculable in O(n) operations by standard procedures akin to

Kalman filtering (e.g. Harvey (1994 section 3.4)). Before going on, let us notice,

however, that in the context of a simple additive multidimensional extension of

this model, these randomized procedures are particularly suitable: this will be

discussed in the final section.

In order to simplify the presentation, we assume that the variance of the

white noise is known. Note that, for this variance, one could easily construct a

lot of estimators which have the same asymptotic behavior as the ML estimate

and are easy to compute. As in CSY, we assume that we know lower (> 0)

and upper bounds for b0 and θ0 so that the (approximate) likelihoods can be

maximized over D = [b, b] × [θ, θ] with b > 0, θ > 0.

As in CSY, two cases are distinguished depending on whether θ0 is known or

not. In the second case, in view of the above remark on the non-identifiability of

the couple (b0, θ0) and the neat result in CSY on the estimation of their product,

we focus on the estimation of the single parameter b0θ0.

One of the main results of this paper is that any consistent estimate obtained

by solving the randomized likelihood equation converges to the true parameter

with the same rate as the estimate obtained with the exact likelihood, even with

nR = 1, and with an asymptotic variance only inflated by a factor 1 + 1/nR.
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However, quite often, the likelihood equation, even computed exactly, may

have several roots. In such cases, it is indispensable to select a root which globally

maximizes the likelihood since consistency is then guaranteed (cf. Theorems 2.2,

2.4 rephrased from CSY and Theorem 2.5).

A second type of results thus concerns a randomized version of the global log

likelihood function. From the expression (1.6), it is natural to propose the follow-

ing definition, in an integral form: having generated w and chosen a “boundary”

point b1 (although b1 is not necessarily at the boundary of the search domain

D), −2 times this randomized log likelihood function is defined by:

Rlb1(b, θ) = y′ (I − Aθ(b))y+

∫ b

b1

w′Aθ(s)w

s
ds−logdet [I − Aθ(b1)]+(n+1)log(2π).

(1.8)

As for the score (1.6), this expression is the particular case nR = 1 of an aver-

aged version, also denoted by Rl (note that b1 will often be omitted), directly

obtained with (1/nR)
∑nR

r=1 wr ′Aθ(s)w
r in place of w′Aθ(s)w. Evaluating this

criterion is relatively easy as soon we have at hand an efficient algorithm for the

computation of any conditional mean Aθ(b)y, excepted for the log-determinants

at the boundary values (b1, θ) (see the final section for comments on the approx-

imation of the integral by discrete sum). Of course, in the case θ0 known, there

is no need to compute logdet [I − Aθ0
(b1)] since this is a constant term in the

objective function (1.8). This computational simplification is also available in the

case where θ is constrained to be a predetermined value θ1 in the search domain.

In this paper, we show that consistency is still guaranteed (for the product θ1

times the constrained maximizer in the case θ0 unknown) by maximizing these

randomized likelihoods.

Our results are stated in Section 3. Before that, in order to make easy the

comparisons with the non-randomized versions, we essentially recall in Section 2

the main results of CSY. Section 2.1 and Section 3.1 concern the estimation of b0

assuming θ0 to be known. Section 2.2 and Section 3.2 concern the estimation of

the product b0θ0. Proofs are given in Section 4. In the final section, we connect

the proposal (1.8) with two techniques already used in the literature, and we

discuss possible applications and extensions of our results.
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2. “Asymptotic background” for the exact likelihood principle

First, recall that it is easily seen that, in the case θ0 known, the standard

Fisher information for the magnitude parameter has the following simple expres-

sion

E

(

1

2

∂2l

∂b2
(b0, θ0)

)

= var
1

2
Sθ0

(b0) =
trA2

θ0
(b0)

2b0
2

for the generic model (1.2)-(1.3); and an asymptotic equivalent for this informa-

tion, as n → +∞, in the CSY context (1.7) that we study in Sections 2, 3 and 4

under the assumption s(i) = i/n, i = 0, . . . , n, is c(b0, θ0)n
1/2 with c(b0, θ0) > 0.

So the occurrences of the power n1/4 in the following statements, in place of the

usual n1/2 of the i.i.d. case (or θ = +∞), are natural.

Let us recall that we assume that the true parameter is in the interior of the

search domain D which is either [b, b] or [b, b] × [θ, θ] with b > 0, θ > 0.

2.1. Case θ0 known.

From the work of CSY, we easily deduce than their asymptotic normality

results can be stated in the following slightly more general form, since they were,

there, restricted to the exact ML estimate:

Theorem 2.1.(CSY) Let b̂ be any candidate estimate obtained by solving the

likelihood equation at θ0, possibly up to op(n
1/4), viz. satisfying

Sθ0
(b̂) = op(n

1/4)

with Sθ0
(b) defined from (1.5). If b̂ → b0 in probability then

n1/4(b̂ − b0) →D N(0, 4
√

2θ0
−1/2b

3/2
0 ).

Now we rephrase the first consistency result of CSY. Let b̂ML denote any

minimizer of −2 times the log likelihood function (i.e. of l(·, θ0) defined from

(1.4)).

Theorem 2.2.(CSY) b̂ := b̂ML satisfies the conditions of Theorem 2.1.
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2.2. Case θ0 unknown.

In CSY an asymptotic behavior identical to the behavior of b̂θ0 of the case

θ0 known above, is proved for the product of LE estimators, precisely:

Theorem 2.3.(CSY) Let (b̃, θ̃) be any couple of candidate estimates obtained by

solving the likelihood equation possibly up to op(n
1/4), viz. satisfying

Sθ̃(b̃) = op(n
1/4)

with Sθ(b) defined in (1.5). If b̃θ̃ → b0θ0 in probability then

n1/4(b̃θ̃ − b0θ0) →D N(0, 4
√

2(b0θ0)
3/2).

Now, the following theorem is the important result that the ML principle,

which was already justified in the time series framework (e.g. Zhang and Zim-

merman (2005)), is also justified here to estimate the identifiable product b0θ0.

Let (b̃ML, θ̃ML) denote any couple minimizer, over D, of l(·, ·) defined in (1.4).

Theorem 2.4.(CSY) (b̃, θ̃) := (b̃ML, θ̃ML) satisfies the conditions of Theorem 2.3.

We now claim a result which was not stated in CSY (however see Ying (1991)

for the case of no measurement error) which is useful here for the computational

simplification outlined in the Introduction (penultimate paragraph). Let θ1 > 0

be an arbitrarily fixed constant. Let b̂ML(θ1) denote any minimizer of l defined

in (1.4) restricted to θ = θ1, i.e.

l(b̂ML(θ1), θ1) = inf
b∈[b,b]

l(b, θ1).

Theorem 2.5. Assume that b0θ0/θ1 is in the interior of [b, b]. Then (b̃, θ̃) :=

(b̂ML(θ1), θ1) satisfies the conditions of Theorem 2.3.

3. Results

The context is the same as the one of Section 2. Of course the simulated

vector(s) w(s) is (are) assumed independent of the observation y. We first state

a result on the global accuracy of the randomized likelihood function (1.8) as an
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approximation of the exact one on the whole domain. Since logdet [I − Aθ(b)] −
logdet [I − Aθ(b1)] = −

∫ b
b1

s−1trAθ(s)ds, it is stated in the following form:

Lemma 3.1. For any given b1 > 0, for all α > 0, we have

∫ b

b1

(

w′Aθ(s)w

s
− trAθ(s)

s

)

ds = op(n
1/4+α)

uniformly in (b, θ) ∈ D.

Remark 3.1. The resulting order of convergence for the global difference Rlb1−l

will be seen sufficient. Of course an extension of this result to the case b1 = 0

would be very interesting for the practice (since the boundary log-determinants

in Rlb1 would then be trivially 0) but we think that the assumption b1 > 0 is

important; this can be seen by analyzing the behavior of the continuous integrand

at the limit value b = 0, noting that b−1Aθ(b) =
(

b + K(θ)−1
)−1

approaches

K(θ); indeed the minimal order of w′K(θ)w − trK(θ) is easily seen to be the

much larger op(n
1+α) instead of op(n

1/4+α).

3.1. Case θ0 known.

We first state an analog of Theorem 2.1 for consistent roots of the randomized

score. Note that the same nR vectors ws are used for all (b, θ), in (1.6) or (1.8).

Theorem 3.1. Let Rb̂ be any candidate estimate obtained by solving the ran-

domized likelihood equation at θ0, possibly up to op(n
1/4), viz. satisfying

RSθ0
(Rb̂) = op(n

1/4)

with RSθ0
(b) defined, in the case nR = 1, from (1.6). If Rb̂ → b0 in probability

then

n1/4(Rb̂ − b0) →D N
(

0,
(

1 + n−1
R

)

4
√

2θ0
−1/2b

3/2
0

)

.

Remark 3.2. In the quite different context of nonparametric estimation of

deterministic functions by kernel methods, results which have a roughly similar

appearance are given in Girard (1998) for randomized GCV, except that, there,

the obtained relative increase in variance was strictly lower than 1 + 1/nR.
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Now we claim that the consistency property is intact with randomized traces.

Let b̂RML denote a minimizer of −2 times the randomized log likelihood function

(i.e. of Rlb1(·, θ0) defined from (1.8) with b1 any fixed “boundary” value > 0).

Theorem 3.2. For any fixed nR ≥ 1, Rb̂ := b̂RML satisfies the conditions of

Theorem 3.1.

3.2. Case θ0 unknown.

The analog of Theorem 2.3 for any consistent couple of roots for the scalar

randomized score is the following:

Theorem 3.3. Let (Rb̃, Rθ̃) be any couple of candidate estimates obtained by

solving the randomized likelihood equation possibly up to op(n
1/4), viz. satisfying

RSRθ̃(
Rb̃) = op(n

1/4)

with RSθ(b) defined, in the case nR = 1, in (1.6). If Rb̃Rθ̃ → b0θ0 in probability

then

n1/4(Rb̃Rθ̃ − b0θ0) →D N
(

0,
(

1 + n−1
R

)

4
√

2(b0θ0)
3/2
)

.

We now claim two consistency results.

Let b1 > 0 be an arbitrarily fixed value for the boundary point used in (1.8).

Let (b̃RML, θ̃RML) denote any couple minimizer, over D, of Rl := Rlb1 defined in

(1.8).

Theorem 3.4. For any fixed nR ≥ 1, (Rb̃, Rθ̃) := (b̃RML, θ̃RML) satisfies the

conditions of Theorem 3.3.

The randomized analog of Theorem 2.5, which is a consistency result allowing

a misspecified model, also holds. Let θ1 > 0 be an arbitrarily fixed constant. Let

b̂RML(θ1) denote any minimizer of Rl defined in (1.8) restricted to θ = θ1

Rl(b̂RML(θ1), θ1) = inf
b∈[b,b]

Rl(b, θ1).

Theorem 3.5. Assume that b0θ0/θ1 is in the interior of [b, b]. Then, for any

fixed nR ≥ 1, (Rb̃, Rθ̃) := (b̂RML(θ1), θ1) satisfies the conditions of Theorem 3.3.
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4. Proofs

Let us first recall basic results of CSY. These authors exhibit approxima-

tions for the exact likelihood and for its derivative w.r.t. b which are much more

manageable. Define ρθ := exp{−θ/n}, λb,θ := b(1 − ρ2
θ) + (1 − ρθ)

2. We also

define ρ0 := ρθ0
and λ0 := λb0,θ0

the true parameters. Note that CSY uses the

notation λθ for λb,θ, λ for λb,θ0
and ρ for ρ0.

CSY gives, in their Lemma 1, a quasi-diagonalized formula for the exact log

likelihood. Note that this was stated in the case θ fixed at θ0 but it is clear in

CSY that this formula holds globally of course with ρθ, λb,θ in place of ρ, λ in

their Lemma 1 (note that one must also use Tθ in place of Tθ0
where Tθ denotes

the n× (n + 1) bidiagonal matrix satisfying (Tθy)k = yk+1 − ρθyk for any vector

y). To exploit this as in CSY, we need to recall the definition of

γk := 2

(

1 − cos
πk

n + 1

)

, k = 1, . . . , n, (4.1)

which are the eigenvalues of the n × n tridiagonal Toeplitz matrix with 2 on

the diagonal and −1 on the two neighboring off-diagonals. Let uk, k = 1, . . . , n

denote the corresponding eigenvectors.

4.1 Proofs of preliminary results

To prove Lemma 3.1, we first state a diagonalized approximation which holds

with a largely sufficient accuracy: there exist i.i.d. RWk ∼ N(0, 1), k = 1, . . . , n,

such that, for all α > 0, for all b, θ,

w′Aθ(b)w

b
− trAθ(b)

b
= (1 − ρ2

θ)

(

n
∑

k=1

RWk
2

ρθγk + λb,θ
−

n
∑

k=1

1

ρθγk + λb,θ

)

+ op(n
α)

(4.2)

Here and in the following the occurrences of o(·),O(·) or op(·) terms which

are function of b or (b, θ) will always denote terms uniformly convergent over,

respectively, fixed [b, b] or D = [b, b] × [θ, θ] with b > 0, θ > 0. Starting from

their Lemma 1 and an analysis of the term of index k = 0 in the exact quasi-

diagonalized formula which has n + 1 terms, CSY actually gave a more general

result than (4.2), concerning the score and stated in their (3.37), (3.41).
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One of the steps in the proofs of CSY is the claim that, if Wk, k = 1, . . . , n,

are i.i.d. N(0, 1), then, for any α > 0,

n
∑

k=1

Wk
2 − 1

ρθγk + λb,θ
= op(n

5/4+α). (4.3)

(generalizing their Lemma 3(i)). So Lemma 3.1 is obtained by applying the mean

value theorem and noting that 1 − ρθ
2 = 2θ/n+O(n−2). The proof of (4.3) is not

detailed in CSY. We think that the following comments might be useful for the

reader : the fact that it holds pointwise is easy to see, by Chebyshev inequality,

since the Lemma 3 of SCY (concerning the behavior of trAθ(b) and trA2
θ(b) and

which is stated there for the case θ fixed at θ0) also holds, of course, with ρ0 (the

β in SCY) replaced by ρθ and λb,θ0
(the λ in CSY) replaced by λb,θ provided

appropriate simple changes are made for the constants. Next, one way to prove

the required uniformity is to use a particular Lipschitz property of the weights

of the (Wk
2 − 1)’s, as functions of b and θ, precisely

sup
(b,θ) 6=(b′,θ′)

|gn,k(b, θ) − gn,k(b
′, θ′)|

‖(b, θ) − (b′, θ′)‖ ≤ M sup
(b,θ)

|gn,k(b, θ)| (4.4)

where gn,k denotes (ρθγk + λb,θ)
−1, ‖ · ‖ is the Euclidean distance, the sup are

over D, and M is independent of k, because it is known that this property is

sufficient to translate a pointwise convergence in probability to a uniform one

(see e.g. Strook and Varadhan (1979) or Corollary A of Wu (1981)). Indeed

the property (4.4) can be checked via appropriate bounds over D for the partial

derivatives of gn,k w.r.t. to b and θ; the details are tedious and thus omitted.

Starting from the observations

ρθ = 1 − θ

n
+ O(n−2), λb,θ =

2bθ

n
+ O(n−2), (4.5)

the following comments explain how to easily deduce Theorem 2.5 from the results

of SCY. A key intermediate result in the proof of their Theorem 3 is the following:

Sθ(b) = −
(

1 − ρ2
θ

)

n
∑

k=1

(ρ0γk + λ0)Wk
2

(ρθγk + λb,θ)2
+
(

1 − ρ2
θ

)

n
∑

k=1

1

ρθγk + λb,θ
+ op(n

1/4)

(4.6)

where Wk = uk
′Tθ0

y does not depend on θ or b. Now with (4.5) and appropriate
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uniform convergence results like (4.3), it can be checked that

Sθ(b) = −2θ

n

n
∑

k=1

(

γk + 2b0θ0

n

)

Wk
2

(

γk + 2bθ
n

)2 +
2θ

n

n
∑

k=1

1

γk + 2bθ
n

+ op(n
1/4) (4.7)

(because the score will be seen to be of order n1/4 at the true parameter, this

uniform approximation indicates in passing that the product bθ is a natural choice

for reparametrization of the numerical search). Let us denote

l̃(b, θ) =
n
∑

k=1

(

γk + 2b0θ0

n

)

Wk
2

γk + 2bθ
n

+
n
∑

k=1

log

(

γk +
2bθ

n

)

(4.8)

the ideal (not exactly observed) likelihood. The consistency toward b0 of the

minimizer of l̃(b, θ0) could be obtained exactly as in the detailed proof of CSY

for l(b, θ0). A key intermediary result is that

l̃(b, θ0) − l̃(b0, θ0) ≥
n1/3

∑

k=1

(

γk + 2b0θ0

n

γk + 2bθ
n

− 1 − log
γk + 2b0θ0

n

γk + 2bθ
n

)

+ op(n
1/4+α), (4.9)

and an analysis of the deterministic sum allows CSY to conclude (cf. their proof

of Theorem 1). Now by observing that, denoting S̃θ(b) := (∂l̃/∂b)(b, θ), that is,

the sums term at the right side of (4.7)

l(s, θ1) − l(b0
θ0

θ1
, θ1) = l̃(s, θ1) − l̃(b0

θ0

θ1
, θ1) +

∫ s

b0
θ0
θ1

(

Sθ1
(t) − S̃θ1

(t)
)

dt (4.10)

= l̃(s
θ1

θ0
, θ0) − l̃(b0, θ0) + op(n

1/4+α). (4.11)

Thus from (4.9) applied to b := sθ1/θ0, we have b̂ML(θ1) → b0θ0/θ1 in probability.

The second condition (stationarity of the likelihood l(·, θ1) at b̂ML(θ1)) is satisfied

with a probability tending to 1 since b0θ0/θ1 is assumed in the interior of [b, b].

4.2 Proofs of Theorems 3.2, 3.4 and 3.5

We only consider the general case of global minimization of Rl, that is, θ0

unknown. The proofs for the other cases are similar. To prove Theorem 3.4 the

first essential argument is the following: by examining the detailed proof in CSY,
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we observe that the proof of consistency for RML estimates can be reduced to

the proof of

Rl(b, θ) − Rl(b0, θ0) ≥
n1/3

∑

k=1

(

ρ0γk + λ0

ρθγk + λb,θ
− 1 − log

ρ0γk + λ0

ρθγk + λb,θ

)

+ op(n
1/4+α).

(4.12)

The second essential argument is then Lemma 3.1 whose application gives enough

accuracy to deduce (4.12) from its non-randomized analog proved in CSY.

4.3 Proofs of Theorems 3.1 and 3.3

As usual the asymptotic laws of the (approximate) roots are obtained via

Taylor approximation. A simplifying feature of the CSY model is that the third

derivative can be uniformly bounded in probability. First a simpler approximate

form for the randomized score, similar as the approximate form (that we denote

by S̃θ(b)) stated for Sθ(b) in (4.7), can be obtained with exactly the same proof:

there exist i.i.d. RWk ∼ N(0, 1), k = 1, . . . , n, independent of the Wk’s such that

RS̃θ(b) = −2θ

n

n
∑

k=1

(

γk + 2b0θ0

n

)

Wk
2

(

γk + 2bθ
n

)2 +
2θ

n

n
∑

k=1

RWk
2

γk + 2bθ
n

(4.13)

satisfies RSθ(b) − RS̃θ(b) = op(n
1/4). We consider, to simplify the notation, the

case θ0 known (extension for the product bθ, when θ0 is unknown will be seen to

be immediate) and we drop the index θ0 in the following. The first condition of

Theorem 3.1 is thus also equivalent to RS̃(Rb̂) = op(n
1/4). By Taylor expansion

of RS̃(·) at b0 and the second condition of Theorem 3.1, there exists b⋆ which

tends to b0 in probability, such that

op(n
1/4) = RS̃(b0) +

(

Rb̂ − b0

)

RS̃′(b0) +
1

2

(

Rb̂ − b0

)2
RS̃′′(b⋆)

Theorem 3.1 can be classically proved by combining the three following prop-

erties: First, RS̃(b0) satisfies a CLT theorem similar as S̃(b0) excepted that the

variance is increased by a factor 1 + 1/nR. Second, RS̃′(b0) is uniformly equiv-

alent to the same c(b0, θ0)n
1/2 as S̃′(b0). Third,

(

Rb̂ − b0

)

RS̃′′(b⋆) = op(n
1/2).

The first and the second properties are easily shown to hold true, similarly as for
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their nonrandomized analogs. The third one can be derived from

sup
b∈[b,b]

|RS̃′′(b)| ≤ 6

(

2θ0

n

)3

sup
b∈[b,b]







n
∑

k=1

(

γk + 2b0θ0

n

)

Wk
2

(

γk + 2bθ0

n

)4 +
n
∑

k=1

RWk
2

(

γk + 2bθ0

n

)3







≤ M

n3

n
∑

k=1

Wk
2 + RWk

2

(

γk + 2b0θ0

n

)3 = Op(n
1/2)

where the second inequality, with M independent of n, results from Lemma

3(iii) of CSY and the last equality results from
∑n

k=1(γk + 2bθ
n )−3 ∼ const n7/2

and Markov inequality.

5. Discussion

Concerning the randomized likelihood function defined in (1.8), a connection

with two other works is in order.

This approximation of the log-determinant has some similarities with tech-

niques, today called path sampling, introduced by Ogata (1990) for implement-

ing ML hyperparameter estimation in Gaussian (or Gaussian approximation of)

Bayesian models of large size, like those encountered in image analysis. There

the integral expression for a log-determinant is approximated by a weighted sum

(from e.g. the trapezoidal rule of numerical integration) of simulated averages

((1/nR)
∑nR

r=1 s−1wr ′Aθ(s)w
r in our notation) on a grid of s-values, where the

nR inner products may be generated by a MCMC technique.

From the symmetry of Aθ(s), the expression of its eigenvalues (and those

of its powers Ak
θ(s)) as functions of s, and the identity −

∫ b
0 (s + c)−1ds =

−∑∞
k=0 (1 + b−1c)−k/k which holds for any b > 0, c > 0, it is direct to de-

duce that
∫ b
0 s−1w′Aθ(s)wds =

∑∞
k=0 w′Ak

θ(b)w/k. This integral can thus be

computed by truncating this series, with the attractive property that computing

the first k terms requires only k matrix-vector products invoking repeatedly the

same Aθ(b). Such a technique has already been introduced (without passing by

the integral form) by Barry and Pace (1999) in the context of fitting conditional

autoregressive (or CAR) models. Bounds for the bias incurred by truncating

with few (e.g. 10) terms, and very encouraging numerical experiments analyzing

the variability of these log-determinant estimators, can be found in that paper.
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Concerning the choice of an algorithm to approximate the integrals by dis-

crete sums or the choice of a truncation index in the power series approach, it

seems quite hard to a priori control their impact on the statistical accuracy of

the parameter estimates. To circumvent this difficulty, one may look after other

methods (e.g. speudo-likelihoods) which would be able, at a reasonable cost, to

produce a consistent, if not efficient, estimate, and this initial estimate would

then be a starting point for a local search of an approximate root of the random-

ized likelihood equation (analogs of Theorems 3.1 and 3.3 might then be useful).

This deserves further study.

A simple example of multi-dimensional process is the additive model

Y (s1, s2) = Z1(s1) + Z2(s2) + e(s1, s2)

where Z1 and Z2 are two independent Gaussian processes and e represents the

measurement error. CSY alluded to this example and wrote that, even if we as-

sume the same Ornstein-Uhlenbeck probability measures (parametered by b and

θ) for the two one-dimensional components, the maximum likelihood estimators

for this model appear to be more elusive. On the other hand, it is known that any

conditional mean Aθ(b)y can be efficiently computed, even with very large n, by

iterative techniques called backfitting. Thus the proposed randomized likelihood

techniques are particularly suitable. It would be thus interesting to establish the

asymptotic behaviors of the produced estimates of b and θ in these settings. In

view of the arguments used for the proofs in Section 4.3, it is expected that, at

least in the case θ0 known, the increase of variance by the factor 1+1/nR should

also hold.
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