Didier A Girard 
  
A COMPARISON OF LIKELIHOOD METHODS AND THEIR FAST RANDOMIZED VERSIONS FOR STOCHASTIC PROCESS MODELS WITH MEASUREMENT ERROR

Keywords: asymptotic normality, consistency, Gaussian process, identifiability, infill asymptotics, maximum likelihood estimator, measurement error, nonparametric Bayesian regression, randomized trace

. We show that any consistent root of the randomized version of the likelihood equation has the same asymptotic behavior as for the exact version excepted that the asymptotic variances are increased by the factor 1 + 1/nR. Moreover, to attack the problem of choosing between multiple, possibly non-consistent, roots, we propose a simple randomized version of the whole likelihood, whose maximizer is proved to be consistent even with nR = 1.

Introduction

We consider the classical problem of building up statistical inferences for the model

Y (s) = Z(s) + e(s), s ∈ R d (1.1)
where Z is a zero mean Gaussian stochastic process whose covariance function is known up to a magnitude factor b > 0 and a shape parameter θ > 0, and e is a "measurement error" process independent of Z. These parameters have to be estimated from only n + 1 observations at sites s(0), s(1), . . . , s(n) with i.i.d. Gaussian noise e(s(i)), i = 0, . . . , n; and we consider the classical maximum likelihood (sometimes called "marginal ML" or "type II ML" from an empirical Bayesian point of view) principle for this task.

To simplify the presentation we first assume that the noise variance is known, say equal to 1. Denoting by bK(θ) the assumed model for the covariance matrix of z = Z(s(0)), . . . , Z(s(n)) ′ , the (marginal) law of y = Y (s(0)), . . . , Y (s(n)) ′ is then y ∼ N (0, b 0 K(θ 0 ) + I).

(1.2)

For future references, let us introduce the conditional mean of Z(s) given y, evaluated at s(i), i = 0, . . . , n. This classical optimal prediction of z is well known to be A θ 0 (b 0 )y where (1.5)

A θ (b) = I + b -1 K(θ) -1 -1 (1.3)
Various forms and extensions (e.g. for multidimensional b or θ) of these formulae are almost ubiquitous in the geostatistics field. There, and in many other fields, the size of the data may be very large. So a number of techniques have been developed to implement the likelihood principle.

In recent years, fast randomized versions of the likelihood equation (i.e., here, of solving S θ (b) = 0, which is called the LE or "scoring" method) has been used in many contexts with large data sets (e.g., [START_REF] Wahba | Adaptive tuning of numerical weather prediction models: Part I: randomized GCV and related methods in three and four dimensional data assimilation[END_REF]: in its simplest form, it consists in generating a single vector w ∼ N (0, I), of the same size as y, and replacing the function S θ (b) by

R S θ (b) = - 1 b y ′ A θ (b) [I -A θ (b)] y -w ′ A θ (b)w . (1.6)
Thus, all we need for evaluating such a randomized score, is a (fast) algorithm for the computation of any conditional mean A θ (b)y. We will also denote by R S θ (b) the "averaged" randomized score obtained when

w ′ A θ (b)w is replaced by a simple Monte-Carlo average (1/n R ) n R r=1 w r′ A θ (b)w r .
For example, in the machine learning field, fitting such models is become a popular approach to regression, which was recently widely studied under the name "Gaussian process regression". In the survey by [START_REF] Gibbs | Efficient implementation of Gaussian processes[END_REF] the authors advise to use iterative linear solvers and averages of randomized trace estimates for the computation of any gradient of the log likelihood criterion. [START_REF] Gibbs | Efficient implementation of Gaussian processes[END_REF] noticed that the number (n R is our notation) of randomized trace estimates needed to obtain sufficiently good estimates is surprisingly small. The cost of such inferences is then reduced from order n 3 to order n 2 in general (that is, for full and not structured matrices). Much greater computational gains can actually be obtained in other contexts; see the final section.

The purpose of this paper is to give theoretical explanations of such behaviors when n R is a fixed number (for example equal to 10); and we do this by an asymptotic analysis in the simple context studied in [START_REF] Chen | Infill asymptotics for a stochastic process model with measurement error[END_REF] (abbreviated as CSY henceforth): in (1.1), Z is a classical Ornstein-Uhlenbeck process, that is, a one-dimensional zero-mean Gaussian process whose covariance function is the exponential function:

E(Z(s)Z(t)) = b exp{-θ|t -s|}.
(1.7)

Note that we essentially adopt the same notations as in CSY except that the magnitude of the covariance function is denoted here by b (in place of σ 2 used in CSY). We consider infill (or "fixed domain") asymptotics, that means that the s(i)s becomes dense in a compact interval as n increases. Furthermore, as in CSY we consider equally spaced sites s(i) = i/n, i = 0, . . . , n.

Infill asymptotic frameworks may be more useful than the classical time series frameworks to explain some empirical facts when one is faced with strong

D.A. GIRARD
correlations in the underlying process. This is emphasized in [START_REF] Zhang | Inconsistent estimation and asymptotically equivalent interpolation in model-based geostatistics[END_REF], [START_REF] Zhang | Toward reconciling two asymptotic frameworks in spatial statistics[END_REF]. For example, a clear explanation of the practical difficulties of estimating b 0 and θ 0 simultaneously, is provided by the important remark: it is known (e.g. [START_REF] Ying | Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process[END_REF]) that as long as θb = θ 1 b 1 , the couples (θ, b)

and (θ 1 , b 1 ) are not distinguishable from a single sample path Z(t), t ∈ [0, 1] of the Ornstein-Uhlenbeck process with covariance (1.7).

As was also noted by [START_REF] Zhang | Toward reconciling two asymptotic frameworks in spatial statistics[END_REF] the available results under infill asymptotics are considerably narrower in scope than for increasing domain. This is even more true when the measurements are obtained with errors or there is a so-called nugget effect. In two notable exceptions, analogs of Theorem 2.1 below are proved for the Brownian motion plus white noise model and for its mth order spline generalization, by [START_REF] Stein | A comparison of generalized cross validation and modified maximum likelihood for estimating the parameters of a stochastic process[END_REF] and [START_REF] Kou | On the efficiency of selection criteria in spline regression[END_REF]. Note that, of course, in the model of CSY, randomized-traces are not useful for computing ML estimates since, as is well known, for this model, the exact likelihood (and the score) are calculable in O(n) operations by standard procedures akin to Kalman filtering (e.g. Harvey (1994 section 3.4)). Before going on, let us notice, however, that in the context of a simple additive multidimensional extension of this model, these randomized procedures are particularly suitable: this will be discussed in the final section.

In order to simplify the presentation, we assume that the variance of the white noise is known. Note that, for this variance, one could easily construct a lot of estimators which have the same asymptotic behavior as the ML estimate and are easy to compute. As in CSY, we assume that we know lower (> 0)

and upper bounds for b 0 and θ 0 so that the (approximate) likelihoods can be

maximized over D = [b, b] × [θ, θ] with b > 0, θ > 0.
As in CSY, two cases are distinguished depending on whether θ 0 is known or not. In the second case, in view of the above remark on the non-identifiability of the couple (b 0 , θ 0 ) and the neat result in CSY on the estimation of their product, we focus on the estimation of the single parameter b 0 θ 0 .

One of the main results of this paper is that any consistent estimate obtained by solving the randomized likelihood equation converges to the true parameter with the same rate as the estimate obtained with the exact likelihood, even with n R = 1, and with an asymptotic variance only inflated by a factor 1 + 1/n R .

However, quite often, the likelihood equation, even computed exactly, may have several roots. In such cases, it is indispensable to select a root which globally maximizes the likelihood since consistency is then guaranteed (cf. Theorems 2.2, 2.4 rephrased from CSY and Theorem 2.5).

A second type of results thus concerns a randomized version of the global log likelihood function. From the expression (1.6), it is natural to propose the following definition, in an integral form: having generated w and chosen a "boundary" point b 1 (although b 1 is not necessarily at the boundary of the search domain D), -2 times this randomized log likelihood function is defined by:

R l b 1 (b, θ) = y ′ (I -A θ (b)) y+ b b 1 w ′ A θ (s)w s ds-logdet [I -A θ (b 1 )]+(n+1)log(2π).
(1.8)

As for the score (1.6), this expression is the particular case n R = 1 of an averaged version, also denoted by R l (note that b 1 will often be omitted), directly

obtained with (1/n R ) n R r=1 w r′ A θ (s)w r in place of w ′ A θ (s)w.
Evaluating this criterion is relatively easy as soon we have at hand an efficient algorithm for the computation of any conditional mean A θ (b)y, excepted for the log-determinants at the boundary values (b 1 , θ) (see the final section for comments on the approximation of the integral by discrete sum). Of course, in the case θ 0 known, there is no need to compute logdet [I -A θ 0 (b 1 )] since this is a constant term in the objective function (1.8). This computational simplification is also available in the case where θ is constrained to be a predetermined value θ 1 in the search domain.

In this paper, we show that consistency is still guaranteed (for the product θ 1 times the constrained maximizer in the case θ 0 unknown) by maximizing these randomized likelihoods.

Our results are stated in Section 3. Before that, in order to make easy the comparisons with the non-randomized versions, we essentially recall in Section 2 the main results of CSY. Section 2.1 and Section 3.1 concern the estimation of b 0 assuming θ 0 to be known. Section 2.2 and Section 3.2 concern the estimation of the product b 0 θ 0 . Proofs are given in Section 4. In the final section, we connect the proposal (1.8) with two techniques already used in the literature, and we discuss possible applications and extensions of our results.
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"Asymptotic background" for the exact likelihood principle

First, recall that it is easily seen that, in the case θ 0 known, the standard Fisher information for the magnitude parameter has the following simple expression

E 1 2 ∂ 2 l ∂b 2 (b 0 , θ 0 ) = var 1 2 S θ 0 (b 0 ) = trA 2 θ 0 (b 0 ) 2b 0 2 for the generic model (1.2)-(1.
3); and an asymptotic equivalent for this information, as n → +∞, in the CSY context (1.7) that we study in Sections 2, 3 and 4 under the assumption

s(i) = i/n, i = 0, . . . , n, is c(b 0 , θ 0 )n 1/2 with c(b 0 , θ 0 ) > 0.
So the occurrences of the power n 1/4 in the following statements, in place of the usual n 1/2 of the i.i.d. case (or θ = +∞), are natural.

Let us recall that we assume that the true parameter is in the interior of the

search domain D which is either [b, b] or [b, b] × [θ, θ] with b > 0, θ > 0.
2.1. Case θ 0 known.

From the work of CSY, we easily deduce than their asymptotic normality results can be stated in the following slightly more general form, since they were, there, restricted to the exact ML estimate:

Theorem 2.1.(CSY) Let b be any candidate estimate obtained by solving the likelihood equation at θ 0 , possibly up to o p (n 1/4 ), viz. satisfying

S θ 0 ( b) = o p (n 1/4 ) with S θ 0 (b) defined from (1.5). If b → b 0 in probability then n 1/4 ( b -b 0 ) → D N (0, 4 √ 2θ 0 -1/2 b 3/2 0 ).
Now we rephrase the first consistency result of CSY. Let bML denote any minimizer of -2 times the log likelihood function (i.e. of l(•, θ 0 ) defined from (1.4)).

Theorem 2.2.(CSY) b := bML satisfies the conditions of Theorem 2.1.

2.2. Case θ 0 unknown.

In CSY an asymptotic behavior identical to the behavior of bθ 0 of the case θ 0 known above, is proved for the product of LE estimators, precisely:

Theorem 2.3.(CSY) Let ( b, θ) be any couple of candidate estimates obtained by solving the likelihood equation possibly up to o p (n 1/4 ), viz. satisfying

S θ( b) = o p (n 1/4 ) with S θ (b) defined in (1.5). If bθ → b 0 θ 0 in probability then n 1/4 ( bθ -b 0 θ 0 ) → D N (0, 4 √ 2(b 0 θ 0 ) 3/2 ).
Now, the following theorem is the important result that the ML principle, which was already justified in the time series framework (e.g. Zhang and Zimmerman ( 2005)), is also justified here to estimate the identifiable product b 0 θ 0 .

Let ( bML , θML ) denote any couple minimizer, over D, of l(•, •) defined in (1.4).

Theorem 2.4.(CSY) ( b, θ) := ( bML , θML ) satisfies the conditions of Theorem 2.3.

We now claim a result which was not stated in CSY (however see [START_REF] Ying | Asymptotic properties of a maximum likelihood estimator with data from a Gaussian process[END_REF] for the case of no measurement error) which is useful here for the computational simplification outlined in the Introduction (penultimate paragraph). Let θ 1 > 0 be an arbitrarily fixed constant. Let bML (θ 1 ) denote any minimizer of l defined in (1.4) restricted to θ = θ 1 , i.e.

l( bML (θ 1 ), θ 1 ) = inf b∈[b,b]
l(b, θ 1 ).

Theorem 2.5. Assume that b 0 θ 0 /θ 1 is in the interior of [b, b]. Then ( b, θ) := ( bML (θ 1 ), θ 1 ) satisfies the conditions of Theorem 2.3.

Results

The context is the same as the one of Section 2. Of course the simulated 

w ′ A θ (s)w s - trA θ (s) s ds = o p (n 1/4+α )
uniformly in (b, θ) ∈ D.

Remark 3.1. The resulting order of convergence for the global difference R l b 1 -l will be seen sufficient. Of course an extension of this result to the case b 1 = 0 would be very interesting for the practice (since the boundary log-determinants in R l b 1 would then be trivially 0) but we think that the assumption b 1 > 0 is important; this can be seen by analyzing the behavior of the continuous integrand

at the limit value b = 0, noting that b -1 A θ (b) = b + K(θ) -1 -1 approaches K(θ)
; indeed the minimal order of w ′ K(θ)w -trK(θ) is easily seen to be the much larger o p (n 1+α ) instead of o p (n 1/4+α ).

3.1. Case θ 0 known.

We first state an analog of Theorem 2.1 for consistent roots of the randomized score. Note that the same n R vectors ws are used for all (b, θ), in (1.6) or (1.8).

Theorem 3.1. Let R b be any candidate estimate obtained by solving the randomized likelihood equation at θ 0 , possibly up to o p (n 1/4 ), viz. satisfying

R S θ 0 ( R b) = o p (n 1/4 ) with R S θ 0 (b) defined, in the case n R = 1, from (1.6). If R b → b 0 in probability then n 1/4 ( R b -b 0 ) → D N 0, 1 + n -1 R 4 √ 2θ 0 -1/2 b 3/2 0 .
Remark 3.2. In the quite different context of nonparametric estimation of deterministic functions by kernel methods, results which have a roughly similar appearance are given in Girard (1998) for randomized GCV, except that, there, the obtained relative increase in variance was strictly lower than 1 + 1/n R . Now we claim that the consistency property is intact with randomized traces.

Let bRML denote a minimizer of -2 times the randomized log likelihood function (i.e. of R l b 1 (•, θ 0 ) defined from (1.8) with b 1 any fixed "boundary" value > 0).

Theorem 3.2. For any fixed n R ≥ 1, R b := bRML satisfies the conditions of Theorem 3.1.

3.2.

Case θ 0 unknown.

The analog of Theorem 2.3 for any consistent couple of roots for the scalar randomized score is the following:

Theorem 3.3. Let ( R b, R θ) be any couple of candidate estimates obtained by solving the randomized likelihood equation possibly up to o p (n 1/4 ), viz. satisfying

R S R θ( R b) = o p (n 1/4 ) with R S θ (b) defined, in the case n R = 1, in (1.6). If R bR θ → b 0 θ 0 in probability then n 1/4 ( R bR θ -b 0 θ 0 ) → D N 0, 1 + n -1 R 4 √ 2(b 0 θ 0 ) 3/2 .
We now claim two consistency results.

Let b 1 > 0 be an arbitrarily fixed value for the boundary point used in (1.8).

Let ( bRML , θRML ) denote any couple minimizer, over D, of R l := R l b 1 defined in (1.8).

Theorem 3.4. For any fixed n R ≥ 1, ( R b, R θ) := ( bRML , θRML ) satisfies the conditions of Theorem 3.3.

The randomized analog of Theorem 2.5, which is a consistency result allowing a misspecified model, also holds. Let θ 1 > 0 be an arbitrarily fixed constant. Let bRML (θ 1 ) denote any minimizer of R l defined in (1.8

) restricted to θ = θ 1 R l( bRML (θ 1 ), θ 1 ) = inf b∈[b,b]
R l(b, θ 1 ).

Theorem 3.5. Assume that b 0 θ 0 /θ 1 is in the interior of [b, b]. Then, for any fixed n R ≥ 1, ( R b, R θ) := ( bRML (θ 1 ), θ 1 ) satisfies the conditions of Theorem 3.3.
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Proofs

Let us first recall basic results of CSY. These authors exhibit approximations for the exact likelihood and for its derivative w.r.t. b which are much more manageable. Define ρ θ := exp{-θ/n}, λ b,θ := b(1 -ρ 2 θ ) + (1 -ρ θ ) 2 . We also define ρ 0 := ρ θ 0 and λ 0 := λ b 0 ,θ 0 the true parameters. Note that CSY uses the notation λ θ for λ b,θ , λ for λ b,θ 0 and ρ for ρ 0 .

CSY gives, in their Lemma 1, a quasi-diagonalized formula for the exact log likelihood. Note that this was stated in the case θ fixed at θ 0 but it is clear in CSY that this formula holds globally of course with ρ θ , λ b,θ in place of ρ, λ in their Lemma 1 (note that one must also use T θ in place of T θ 0 where T θ denotes the n × (n + 1) bidiagonal matrix satisfying (T θ y) k = y k+1 -ρ θ y k for any vector y). To exploit this as in CSY, we need to recall the definition of

γ k := 2 1 -cos πk n + 1 , k = 1, . . . , n, (4.1)
which are the eigenvalues of the n × n tridiagonal Toeplitz matrix with 2 on the diagonal and -1 on the two neighboring off-diagonals. Let u k , k = 1, . . . , n denote the corresponding eigenvectors.

Proofs of preliminary results

To prove Lemma 3.1, we first state a diagonalized approximation which holds with a largely sufficient accuracy: there exist i.i.d. R W k ∼ N (0, 1), k = 1, . . . , n, such that, for all α > 0, for all b, θ,

w ′ A θ (b)w b - trA θ (b) b = (1 -ρ 2 θ ) n k=1 R W k 2 ρ θ γ k + λ b,θ - n k=1 1 ρ θ γ k + λ b,θ + o p (n α ) (4.2)
Here One of the steps in the proofs of CSY is the claim that, if W k , k = 1, . . . , n, are i.i.d. N (0, 1), then, for any α > 0,

n k=1 W k 2 -1 ρ θ γ k + λ b,θ = o p (n 5/4+α
). (4.3) (generalizing their Lemma 3(i)). So Lemma 3.1 is obtained by applying the mean value theorem and noting that 1 -ρ θ 2 = 2θ/n+O(n -2 ). The proof of (4.3) is not detailed in CSY. We think that the following comments might be useful for the reader : the fact that it holds pointwise is easy to see, by Chebyshev inequality, since the Lemma 3 of SCY (concerning the behavior of trA θ (b) and trA 2 θ (b) and which is stated there for the case θ fixed at θ 0 ) also holds, of course, with ρ 0 (the β in SCY) replaced by ρ θ and λ b,θ 0 (the λ in CSY) replaced by λ b,θ provided appropriate simple changes are made for the constants. Next, one way to prove the required uniformity is to use a particular Lipschitz property of the weights of the (W k 2 -1)'s, as functions of b and θ, precisely sup

(b,θ) =(b ′ ,θ ′ ) |g n,k (b, θ) -g n,k (b ′ , θ ′ )| (b, θ) -(b ′ , θ ′ ) ≤ M sup (b,θ) |g n,k (b, θ)| (4.4)
where g n,k denotes (ρ θ γ k + λ b,θ ) -1 , • is the Euclidean distance, the sup are over D, and M is independent of k, because it is known that this property is sufficient to translate a pointwise convergence in probability to a uniform one (see e.g. [START_REF] Strook | Multidimensional Diffusion Processes[END_REF] or Corollary A of [START_REF] Wu | Asymptotic theory of nonlinear least squares estimation[END_REF]). Indeed the property (4.4) can be checked via appropriate bounds over D for the partial derivatives of g n,k w.r.t. to b and θ; the details are tedious and thus omitted.

Starting from the observations

ρ θ = 1 - θ n + O(n -2 ), λ b,θ = 2bθ n + O(n -2 ), (4.5) 
the following comments explain how to easily deduce Theorem 2.5 from the results of SCY. A key intermediate result in the proof of their Theorem 3 is the following:

S θ (b) = -1 -ρ 2 θ n k=1 (ρ 0 γ k + λ 0 )W k 2 (ρ θ γ k + λ b,θ ) 2 + 1 -ρ 2 θ n k=1 1 ρ θ γ k + λ b,θ + o p (n 1/4 ) (4.6)
where W k = u k ′ T θ 0 y does not depend on θ or b. Now with (4.5) and appropriate
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uniform convergence results like (4.3), it can be checked that

S θ (b) = - 2θ n n k=1 γ k + 2b 0 θ 0 n W k 2 γ k + 2bθ n 2 + 2θ n n k=1 1 γ k + 2bθ n + o p (n 1/4 ) (4.7)
(because the score will be seen to be of order n 1/4 at the true parameter, this uniform approximation indicates in passing that the product bθ is a natural choice for reparametrization of the numerical search). Let us denote l(b, θ)

= n k=1 γ k + 2b 0 θ 0 n W k 2 γ k + 2bθ n + n k=1 log γ k + 2bθ n (4.8)
the ideal (not exactly observed) likelihood. The consistency toward b 0 of the minimizer of l(b, θ 0 ) could be obtained exactly as in the detailed proof of CSY for l(b, θ 0 ). A key intermediary result is that

l(b, θ 0 ) -l(b 0 , θ 0 ) ≥ n 1/3 k=1 γ k + 2b 0 θ 0 n γ k + 2bθ n -1 -log γ k + 2b 0 θ 0 n γ k + 2bθ n + o p (n 1/4+α
), (4.9)

and an analysis of the deterministic sum allows CSY to conclude (cf. their proof of Theorem 1). Now by observing that, denoting Sθ (b) := (∂ l/∂b)(b, θ), that is, the sums term at the right side of (4.7)

l(s, θ 1 ) -l(b 0 θ 0 θ 1 , θ 1 ) = l(s, θ 1 ) -l(b 0 θ 0 θ 1 , θ 1 ) + s b 0 θ 0 θ 1 S θ 1 (t) -Sθ 1 (t) dt (4.10) = l(s θ 1 θ 0 , θ 0 ) -l(b 0 , θ 0 ) + o p (n 1/4+α ). (4.11)
Thus from (4.9) applied to b := sθ 1 /θ 0 , we have bML (θ 1 ) → b 0 θ 0 /θ 1 in probability.

The second condition (stationarity of the likelihood l(•, θ 1 ) at bML (θ 1 )) is satisfied with a probability tending to 1 since b 0 θ 0 /θ 1 is assumed in the interior of [b, b].

4.2 Proofs of Theorems 3.2, 3.4 and 3.5

We only consider the general case of global minimization of R l, that is, θ 0 unknown. The proofs for the other cases are similar. To prove Theorem 3.4 the first essential argument is the following: by examining the detailed proof in CSY, we observe that the proof of consistency for RML estimates can be reduced to the proof of

R l(b, θ) -R l(b 0 , θ 0 ) ≥ n 1/3 k=1 ρ 0 γ k + λ 0 ρ θ γ k + λ b,θ -1 -log ρ 0 γ k + λ 0 ρ θ γ k + λ b,θ + o p (n 1/4+α ).
(4.12)

The second essential argument is then Lemma 3.1 whose application gives enough accuracy to deduce (4.12) from its non-randomized analog proved in CSY.

4.3 Proofs of Theorems 3.1 and 3.3

As usual the asymptotic laws of the (approximate) roots are obtained via Taylor approximation. A simplifying feature of the CSY model is that the third derivative can be uniformly bounded in probability. First a simpler approximate form for the randomized score, similar as the approximate form (that we denote by Sθ (b)) stated for S θ (b) in (4.7), can be obtained with exactly the same proof:

there exist i.i.d. R W k ∼ N (0, 1), k = 1, . . . , n, independent of the W k 's such that R Sθ (b) = - 2θ n n k=1 γ k + 2b 0 θ 0 n W k 2 γ k + 2bθ n 2 + 2θ n n k=1 R W k 2 γ k + 2bθ n (4.13) satisfies R S θ (b) -R Sθ (b) = o p (n 1/4
). We consider, to simplify the notation, the case θ 0 known (extension for the product bθ, when θ 0 is unknown will be seen to be immediate) and we drop the index θ 0 in the following. The first condition of Theorem 3.1 is thus also equivalent to R S( R b) = o p (n 1/4 ). By Taylor expansion of R S(•) at b 0 and the second condition of Theorem 3.1, there exists b ⋆ which tends to b 0 in probability, such that

o p (n 1/4 ) = R S(b 0 ) + R b -b 0 R S′ (b 0 ) + 1 2 R b -b 0 2 R S′′ (b ⋆ )
Theorem 3.1 can be classically proved by combining the three following properties: First, R S(b 0 ) satisfies a CLT theorem similar as S(b 0 ) excepted that the variance is increased by a factor 1 +

1/n R . Second, R S′ (b 0 ) is uniformly equiv- alent to the same c(b 0 , θ 0 )n 1/2 as S′ (b 0 ). Third, R b -b 0 R S′′ (b ⋆ ) = o p (n 1/2 ).
The first and the second properties are easily shown to hold true, similarly as for 

| R S′′ (b)| ≤ 6 2θ 0 n 3 sup b∈[b,b]    n k=1 γ k + 2b 0 θ 0 n W k 2 γ k + 2bθ 0 n 4 + n k=1 R W k 2 γ k + 2bθ 0 n 3    ≤ M n 3 n k=1 W k 2 + R W k 2 γ k + 2b 0 θ 0 n 3 = O p (n 1/2 )
where the second inequality, with M independent of n, results from Lemma 3(iii) of CSY and the last equality results from n k=1 (γ k + 2bθ n ) -3 ∼ const n 7/2 and Markov inequality.

Discussion

Concerning the randomized likelihood function defined in (1.8), a connection with two other works is in order. This approximation of the log-determinant has some similarities with techniques, today called path sampling, introduced by [START_REF] Ogata | A Monte Carlo method for an objective Bayesian procedure[END_REF] for implementing ML hyperparameter estimation in Gaussian (or Gaussian approximation of) Bayesian models of large size, like those encountered in image analysis. There the integral expression for a log-determinant is approximated by a weighted sum (from e.g. the trapezoidal rule of numerical integration) of simulated averages ((1/n R ) n R r=1 s -1 w r′ A θ (s)w r in our notation) on a grid of s-values, where the n R inner products may be generated by a MCMC technique.

From the symmetry of A θ (s), the expression of its eigenvalues (and those of its powers A k θ (s)) as functions of s, and the identity -b 0 (s + c) -1 ds = -∞ k=0 (1 + b -1 c) -k /k which holds for any b > 0, c > 0, it is direct to deduce that b 0 s -1 w ′ A θ (s)wds = ∞ k=0 w ′ A k θ (b)w/k. This integral can thus be computed by truncating this series, with the attractive property that computing the first k terms requires only k matrix-vector products invoking repeatedly the same A θ (b). Such a technique has already been introduced (without passing by the integral form) by [START_REF] Barry | A Monte Carlo estimator of the log determinant of large sparse matrices[END_REF] in the context of fitting conditional autoregressive (or CAR) models. Bounds for the bias incurred by truncating with few (e.g. 10) terms, and very encouraging numerical experiments analyzing the variability of these log-determinant estimators, can be found in that paper.

Concerning the choice of an algorithm to approximate the integrals by discrete sums or the choice of a truncation index in the power series approach, it seems quite hard to a priori control their impact on the statistical accuracy of the parameter estimates. To circumvent this difficulty, one may look after other methods (e.g. speudo-likelihoods) which would be able, at a reasonable cost, to produce a consistent, if not efficient, estimate, and this initial estimate would then be a starting point for a local search of an approximate root of the randomized likelihood equation (analogs of Theorems 3.1 and 3.3 might then be useful).

This deserves further study.

A simple example of multi-dimensional process is the additive model Y (s 1 , s 2 ) = Z 1 (s 1 ) + Z 2 (s 2 ) + e(s 1 , s 2 )

where Z 1 and Z 2 are two independent Gaussian processes and e represents the measurement error. CSY alluded to this example and wrote that, even if we assume the same Ornstein-Uhlenbeck probability measures (parametered by b and θ) for the two one-dimensional components, the maximum likelihood estimators for this model appear to be more elusive. On the other hand, it is known that any conditional mean A θ (b)y can be efficiently computed, even with very large n, by iterative techniques called backfitting. Thus the proposed randomized likelihood techniques are particularly suitable. It would be thus interesting to establish the asymptotic behaviors of the produced estimates of b and θ in these settings. In view of the arguments used for the proofs in Section 4.3, it is expected that, at least in the case θ 0 known, the increase of variance by the factor 1 + 1/n R should also hold.

  is an example of the so-called influence matrices in the spline literature. Now, simple manipulations of the density function (1.2) shows that -2 times the log likelihood function is l(b, θ) = y ′ [I -A θ (b)] y -logdet [I -A θ (b)] + (n + 1)log(2π) (1.4) and that its derivative w.r.t. the magnitude factor b (a score function) is S θ (b) = -1 b y ′ A θ (b) [I -A θ (b)] y -trA θ (b) .

  vector(s) w(s) is (are) assumed independent of the observation y. We first state a result on the global accuracy of the randomized likelihood function (1.8) as an approximation of the exact one on the whole domain. Since logdet[I -A θ (b)]logdet [I -A θ (b 1 )] = -b b 1 s -1 trA θ (s)ds, it is stated in the following form: Lemma 3.1. For any given b 1 > 0, for all α > 0, we have b b 1

  and in the following the occurrences of o(•), O(•) or o p (•) terms which are function of b or (b, θ) will always denote terms uniformly convergent over, respectively, fixed [b, b] or D = [b, b] × [θ, θ] with b > 0, θ > 0. Starting from their Lemma 1 and an analysis of the term of index k = 0 in the exact quasidiagonalized formula which has n + 1 terms, CSY actually gave a more general result than (4.2), concerning the score and stated in their (3.37), (3.41).