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Abstract

The practical use of Quantified Boolean Formulae
(QBFs) often calls for more than solving the validity
problem@BF. For this reason we investigate the cor-
responding function problems whose expected outputs
are policies. QBFs which do not evaluate to true do
not have any solution policy, but can be of interest nev-
ertheless; for handling them, we introduce a notion of
partial policy. We focus on the representation of poli-
cies, considering QBFs of the forvtiX 3Y ®. Because

the explicit representation of policies for such QBFs can
be of exponential size, descriptions as compact as pos-
sible must be looked for. To address this issue, two ap-
proaches based on the decomposition and the compila-
tion of ® are presented.

Introduction

A Quantified Boolean Formula (QBF) consists of a classi-
cal propositional formula, called the matrix of the QBF, to-
gether with an ordered partition of its variables, corregpo
ing to quantifier alternations, called the prefix of the QBF.
Formally, such a QBF is closed, polite and prenex. Since
the validity problem for any QBF can be reduced in poly-
nomial time to the validity problem for a closed, polite and
prenex QBF, we focus on such QBFs in the following. For
instance3{a} V{b,d} 3{c} ((a A—=c) — (bAd))is a QBF.
Any (closed) QBF evaluates to true or false; it evaluates to
true if and only if the corresponding statement where quan-
tifiers on variables bear actually on thrath valuesof these
variables, holds, and in that case the QBF is said tadtie

(as it is the case for the latter instance)BF is the decision
problem consisting in determining whether a given QBF is
valid. It is the canonicaPSPACE-complete problem.

Solving the decision problemBF has become for a few
years an important research area in Al. Several explargation
for this can be provided, including the fact that many Al
problems whose complexity is located REPACE can be
reduced toQBF and then solved byBF solvers (see e.g.,
(Egly et al. 2000; Fargier, Lang, & Marquis 2000; Rintanen
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1999a; Pan, Sattler, & Vardi 2002; Besnatal. 2005));
furthermore, there are some empirical evidences from vari-
ous Al fields (including among others planning, nonmono-
tonic reasoning, paraconsistent inference) that a traosta
based approach can prove more “efficient” than domain-
dependent algorithms dedicated to such Al tasks. Accord-
ingly, many QBF solvers have been developed for the past
few years (see among others (Cadoli, Giovanardi, & Schaerf
1998; Rintanen 1999b; Feldmann, Monien, & Schamberger
2000; Rintanen 2001; Giunchiglia, Narizzano, & Tacchella
2001; Letz 2002; Zhang & Malik 2002; Benedetti 2005b;
GhasemZadeh, Klotz, & Meinel 2004; Pan & Vardi 2004;
Audemard & S& 2004) and three QBF evaluations have
been organized (Le Berre, Simon, & Tacchella 2003; Le
Berreet al. 2004; Narizzano, Pulina, & Tacchella 2006).

Obviously, QBFs can be viewed as planning problems un-
der incomplete knowledge and feedback as well as sequen-
tial two-player games with complete information. For in-
stance,3{a}V{b}3{c}V{d}® represents a game with two
players P; and P53, playing alternatively by assigning a
propositional variable:P5 starts by assigning a value &
then, assigns a value tiy etc. The goal of’5 is to have®
satisfied at the end of the game: tha§q }V{b}3{c}v{d} P
is a positive instance ofBF if and only if there exists a
winning strategy forP5. When the game is understood as
a game against nature (or as a planning problem with non-
deterministic actions or exogenous events), instantiatad
existentially (respectively universally) quantified \abies
correspond to plays by the agent (respectively by nature),
and winning strategies are policies (or conditional plans)
Clearly enough, when QBFs are used to represent such prob-
lems, what is expected is more than simply solvipgF.
Indeed, solving the decision problem only enables telling
whether there exists a winning strategy or a valid plan; in
practice, one would also like to determine such a plan (that
we call asolution policy or at least, an approximation of
it. Therefore, the aim becomes solving foaction problem
associated with QBFs, denoted bgBF.

While this function problem is nothing really new — it
has been considered before in (Kleinarihg, Subramani,
& Zhao 2003; Liberatore 2005), as well as in (Chen 2004)
in the close framework of quantified constraint satisfactio
problems (QCSPs) — this paper investigates new issues.
First, when no solution policy exists, we search far-



tial policieswhich solve the problem “as much as possible”.
Then, we introduceepresentation scheme$such policies.
Lastly, we investigate the search foompact policiesfo-
cusing on QBFs of the foriX Y ®. Because the explicit
representation of policies for such QBFs can be of exponen-
tial size, descriptions as compact as possible are looked fo

considered QBF and(k, ¢)| (resp.|V(k, ¢)|) the number of
groups of existential (resp. universal) quantifiers of tfBHQ
We now define formally the decision problepsF through
its positive instances:

Definition 2 (QBF) P =

(k,q, Xk, ..., X1, ®) is a positive

This issue is addressed by two approaches, based respeclnstance ofyBFif and only if one of the following conditions

tively on thedecompositiorand thecompilationof ®.

The rest of the paper is organized as follows. First, some
formal preliminaries are provided. Then, we define several
notions of policies for QBFs: total policies, partial padis,
sound and maximal sound policies. Then, we focus on the
problem of representing policies, and we present two ap-
proaches for representing and exploiting policies for QBFs
of the formVvX 3Y &. Finally, we discuss some related
work before concluding the paper.

Formal Preliminaries

In the following, PRO Pps denotes the propositional lan-
guage built up from a finite se®?S of symbols, the usual
connectives-, V, A, —, < and the Boolean constanis
L in the standard wayV ar(X) is the set of symbols from
PS occurring in formulaX. 7 is an instantiation of vari-
ables fromX C PS (also referred to as al -instantiation)
and2X is the set of all possiblé&-instantiations. Thus, if
X = {a,b,c}, T = (a,—b,c) is an X-instantiation. IfX
andY are two disjoint subsets dPRO Ppg, (Z,%) is the
concatenation of andy in this instantiation, each variable
of X (respectivelyt’) takes the value indicated by(respec-
tively 7). = denotes entailment and denotes equivalence.
For® € PROPpg andZ € 2%, we denote byb; the
formula obtained by conditionin@ by 7; this formula is
obtained from® by replacing occurrences of each variable
x from X by T (respectivelyl) if x €  (respectively-x €

z).

Definition 1 (quantified boolean formula) Letk be a pos-
itive integer andg € {3,V}. A quantified boolean formula
(QBF)is a (k + 3)-uple P = (k, q, Xk, ..., X1, ®) where
{X1,..., Xy} is a partition of the set of propositional vari-
ables occurring inb € PROPpg. k is the rank ofP andgq
the first quantifier of its prefix.

Example 1
(2,Y,{a,b},{c}, (aVb) A

Example 2

(3,3,{a}, {b},{c,d}, (a — (cAd)) A
QBF.

In theory, there is no need to specify the ranksince it
can be determined from the number of element® oHow-
ever, we keep it for the sake of readability. For similar rea-
sons, we also denote QBFs= (k, ¢, Xy, ..., X1, @) in the
following way:

(a—c)N(bVe)isaQBF

(b < —c)) is another

AXp VX, 1...VX1® if ¢ =3Jandk is even;
IXVXy_1...3X7® if g =3Jandkis odd,
VXp3dXg_q...3X1® if ¢ =Vandkis even;
VX, 3Xk 1...VX1® if ¢ =Vandkis odd.

QBF; 4 is the set of all QBFs of rank and first quantifier
g. We also notdast(k, q) the innermost quantifier of the
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is true:

1. k=0and® =T;

2. k£ > 1 andq = 3 and there exists atX-instantiation
7}, € 2%+ such that(k — 1,V, Xj_1,..., X1, P, ) is a
positive instance 0fBFy_1 v ;

3. k£ > 1 andq = V and for eachX-instantiation
7, € 2% (k- 1,3, Xp_1,..., X1, P, is a positive
instance oQBF;_1 3 .

In this definition,QBFy 4 is the subproblem adBF where
only formulae from QBF; , are considered.

Example 1 (continued).
(2,V,{a,b},{c}, (aVb)A
instance ofQBF.

(a — ¢)A(bVc)) is not a positive

Example 2 (continued).
(3,3, {a}, {b},{c,d}, (a — (cAd)) A
tive instance of)BF.

While @BF is the canonicaP SPACE-complete problem,
QBFi 3 (resp.QBFy ) is the canonicak}-complete (resp.
117 -complete) problem. In particulapBF; 5 (resp.QBFy v)
coincides with the satisfiability problesaT (resp. the va-
lidity problemvaL).

(b < —¢)) is a posi-

Policies

Intuitively, a policy is a function mapping instantiation$
each group of universally quantified variables into ingtant
tion of the group of existentially quantified variables imme
diately following it.

Definition 3 (total policy) The setl’'P(k, q, Xy, ..., X1) of
total policiesfor QBFs from QBE , is defined inductively
as follows:

e TP(0,9) ={)\};
o TP(k,3,Xp,.... X1)
= {fk JTe—1 | Te—1 € TP(k — ].,V, Xk'—la ...,Xl)};
. TPS( Y, Xp, oo, X
k HTP — 1 3 Xk 1,...,X1).

A represents thempty policy The operator “;” repre-
sents the sequential composition of policies. \ is typi-
cally abbreviated as. 2X* — TPk — 1,3, Xj_1,..., X1)
denotes the set of all total functions frart* to TP(k —
1) 37 Xk:—17 ceey Xl)

In particular, one can check that:

e apolicy of TP(1,3, X;) has the form(#y; \), i.e.,Z; (an
X, -instantiation);



e TP(1,V,X;) is reduced to a unique policy: the constant
function \x, = {#; — X\ | #; € 2%} which maps any
X;-instantiation tox:!

e apolicy of TP(2,3, Xo, X;) has the form(z3 ; Ax, );

e apolicy of TP(2,V, X, X;) is a total function fron2X2
to 2%1,

Example 3

A total policy of TP(3,3,{e, f},{a,b},{c,d}) is: =

(e,~f); 7', where
7' ((—a, b)) = (¢, d);

7' ((—a, b)) = (¢, d);
7' ((a, =b)) = (e, d);
7' ((a,b)) = (—¢,d).

Intuitively, performingr consists in first instantiating to

true andf to false, then observing the values takenland

b and then acting consequentiye., instantiatingc andd to
true if a is false, orc to false and{ to true otherwise.

Definition 4 (satisfaction) A total policy 7 of
TP(k,q, X, ..., X1) satisfiesP (k,q, Xk, ..., X1, ),
denoted byr = P, if and only if one of these conditions
holds:

e k=0, 1=\, and®=T;
kzl,q:Eandwf(f 7') with
7T):<k 1VXk1,.X1,(I) >,

e k>1,¢qg=VY,andforallz; € 2%+ we have
7(Z0) E (k— 1,3, X1,y X1, Bz, ).

Example 1 (continued).

There is no policy satisfyin@, v, {a, b}, {c}, (aVO) A (a —
c) A (bVc)).

Example 2 (continued).

(3,3,{a}, {b},{c,d}, (a — (cAd))A
by

(0) = (e, d)
(=b) = (c,d)

The following result shows how positive instance xafr
and total policies for QBFs are related:

Proposition 1 (folklore) P = (k,q, Xk,...,X1,®) is a
positive instance oBFy , if and only if there exists a total
policy m € TP(k,q, Xk, ..., X1) such thattr = P. Such a
« is called a solution policy foiP.

(b < —c)) is satisfied

T = "a;

This result is nothing really new and is proven easily; we
mention it because it enables us to define formally the func-
tion problemrQBFas follows:

Definition 5 (FQBF: function problem) Let P = (k, ¢,
Xk, ..., X1,P) be a QBF. Solving the function problem
FQBF , for P consists in finding a total policy such that

m = P, if there exists any, and in stating that no solution
policy exists forP otherwise. We noteQsF the function
problem associated to any QBF.

1Z, +— X is another notation fofZ;, \) which reflects in a
more salient way thatx, is a function (anyway, a function is a set

of pairs).
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Now, asking for a solution policy is often too much de-
manding. For instance, let us consider the following exam-

ple.

Example 4

= (2,Y,{a,b}, {c}, (a = ¢) A(b — —c)) is not valid be-
cause the instantiatiofu, b) makesd unsatisfiable. 1P is
understood as a game against nature, instantiations of exis
tentially (respectively universally) quantified variableor-
respond to plays by the agent (respectively by nature), and
winning strategies are policies (or conditional plans).ush
if nature plays(a, b), the agent cannot do anything leading
to the satisfaction ofb. On the other hand, if nature plays
anything but(a, b) then the agentando something satisfac-
tory, namely(a, =b) — ¢, (—a,b) — —c¢, (—ma,—b) — c (or
=c).

These policies are undefined for some possible instantia-
tions of groups of universally quantified variables, henee w
call thempartial policies

Definition 6 (partial policy) The setPP(k,q, X, ..., X1)
of partial policiesfor QBFs fromQBF;, , is defined induc-
tively as follows:

PP(0,q) ={X x};

PP(1,3,X;) = 2% U {x};

PP(1,Y,X;) =2% — {\, x};

e PP(k,3, X, ..., X1)
:{fk;ﬂ'k 1|1 EPP(/{J—l,V,Xk_l,..,Xl)}U{X};
° g{ Y, Xiyoory X1)
k—>PP —1E|Xk 1,...,X1).

x represents failure. Any partial policy fro®P(k —
1,4, Xx—1,..,X1) used to define a partial polieyof rankk
along the definition above is called anternal policyof . It
is auniversal internal policwheng = V, and arexistential
internal policyotherwise.

Observe that the set of partial policies for a givesF;, ,
includes the set of total policies for that class of QBFs and
is finite.

With each partial policyr we can associate atrég: if =
is a policy of PP (k, q, Xk, ..., X1) thenT is the tree whose
depth is equal tdv(k, ¢)|, whose leaves are labelled ly
A or by instantiations of{; if last(k,q) = 3 whose inter-
nal nodes (except the root) are labelled by instantiatidns o
groups of existentially quantified variables, and whoseesdg
are labelled by instantiations of groups of universallyrgita
fied variables. Such a tree representation for a partiatyoli
of example 1 is:

Example 1 (continued).
A partial policy; for P =
c)A(bVe))is:

(2,¥,{a, b}, {c}, (aVb)A(a —

(a,b) —c

| ay e
! (a, ﬂb) —c
(ma,—b) — x

and can be represented by the tree:



ab —ab a—b —a—b

c C c X

Clearly enough, one is not interested in any partial policy
for a given QBF, but only in sound ones:
Definition 7 (sound policy) A partial policyr € PP(k, g,
Xk, ..., X1) is soundfor P = (k, q, Xy, ..., X1, ®) if and
only if one of these conditions is satisfied:
l.k=0and(r=xor(r=Xandp = T));
2. ¢g=3dJandw = x;
3. (k,q) =(1,3), 7 =% andZ; E ¥;
4. (k,q) = (1,V) andVvz, € 2%, n(7F;) = x or
(ﬂ'(fl) = Aandi; |: (I)),
5.k >1,¢q = 3, 7 = Zp;mr_1 andm,_1 is sound for
<k - lvva Xk’*h (XX} X17 q)fk>:
6. k > 1, ¢ =V, and for anyz;, € 2X*, 7(%},) is sound for
(k—1,3, Xp-1,..., X1, Pz, ).
Equivalently, a policy is sound if and only if on every
path of its associated tree wheredoes not appear, the vari-

e ¢ =V, k> 1andforall#, € 2%, n(&) 2 7/ (T%).

7 is a maximal souncpolicy for a QBF P if and only if
« is sound forP and there is no sound policy for P such
that7’ J 7w andw 2 «'.

It is easy to show that the covering relatignis a partial
order (i.e., a reflexive and transitive relation over thedaget
partial policies).

Maximal sound policies minimize failure: a policy is
maximal sound if and only if each time appears on a
path of its associated tree, the variable assignments along
this path (on its nodes and branches) faldifgwhatever the
values of the unassigned variables); in other words, there
is no assignment of the existentially quantified variables a
this node for which there would still be a hope of seeing
eventually satisfied.

Example 1 (continued).

(2,¥,{a,b},{c}, (aVb)A(a — c)A(bVc)) has two maximal
sound policies:r; as reported before, and; identical tor
except that it map&-a, b) to —c.

Clearly, every QBRP has at least one maximal sound pol-
icy (just because it has at least one sound policy — and the
fact that the set of all partial policies fét is finite); further-

able assignments along this path (on its nodes and branchesy e i a solution policy fo exists, then solution policies

make® true.

Example 1 (continued).
The policyr; given above is sound. Another sound policy
for P is:

(a,b) — X

| (—a,b) — X
2= (a,7b) X
(ma,=b) — x

Contrastingly, the following partial policy foP is not
sound:

(a,b) —c

| (ma,b) e
™= (a,-b) ¢
(ﬁa7 ﬁb) = C

While only valid QBFs have solution policies, it is clear
that every QBFP = (k, ¢, Xy, ..., X7, ®) has a sound
partial policy. Indeed, iff = 3 thenw = x is a sound policy
for P, while if ¢ = V, then the policyr given bym(Zy) = x
for everyz, € 2%+ is a sound policy forP.

Intuitively, the best policies among the sound ones are
those built up from internal policies whese is used when
needed, only:

Definition 8 (maximal sound policy) Let = and 7’ be two
partial policies ofPP(q, k, X, ..., X1). w is at least as cov-
ering asr’, denoted byr I =/, if and only if one of the
following conditions is satisfied:
e k=0andm = \;
e g=Jandn’ = x ;
e ¢ =V, k=1andforallz, 2%, eitherr’(Z;) = x or
W(fl) =X\;
o g =73, =[Tr;m_1], 7 = [.%‘71;;772_1], and
Te—1 2 77;6,1 ;
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and maximal sound policies coincide.

Especially, every positive instance 8f = (3, X;, @) of
QBF 3 has as many maximal sound policiesdalas mod-
els, while every positive instance froger,; v has a unique
maximal sound policy, namelyy, . Every negative instance
of QBF; 3 has a unique maximal sound policy, namely
Every negative instance ajBF; vy has a uniqgue maximal
sound policyr such that: for everyr; € 2%, if 27 = @,
thenw (1) = A, elser(71) = x .

In the following, we are mainly interested in the represen-
tation issue for the solutions of the function problerasF
andsFQBE

Definition 9 (SFQBFE second function problem) Let P =
(k, q, Xk, ..., X1,®) be a QBF. Solving the second func-
tion problemsFQBF, , for P consists in finding a maximal
sound policyr for P. We notesFQBFthe second function
problem associated to any QBF.

Policy Representation

It is essential to distinguish between the notion of policy
per seand the notion ofepresentationr of a policy. Indeed,
policies may admit many different representations, and two
representations of the same policy can easily have differ-
ent sizes, and can be processed more or less efficiently (e.g.
computing the image () of an instantiationt by a given
policy for a QBF with first quantifiex’ can be more or less
computationally demanding).

A representation schems for policies is a finite set of
data structures representing policies. Associated with an
representation schemg is an interpretation functiods
suchthatforany € S, 7 = Is(o) is the policy represented
by 0. The simplest representation scheme isk@icitone:
the representation of a policy is the policy itself (so the co
responding interpretation function is identity). Accargly,



m also denotes the explicit representation of poficyVithin
the explicit representation of a poliey every universal in-
ternal policyr’ is represented explicitly as a set of pairs (this

for QBF; v would lead toNP = coNP, hence the polyno-
mial hierarchy to collapse. This example clearly shows how
different representations of the same policy may lead to dif

is the representation we used in the examples reported in theferent computational behaviours when the purpose is to use

previous sections). Another representation of a potidg

its tree representatidfi,. Observe that the tree representa-
tion of a policy is equivalent to the explicit one in the sense
that there exists a polytime algorithm which turns the ex-
plicit representation into the tree one, and the converse al

holds.

Another representation scheme for total policies consists
of circuits (Liberatore 2005): to each existentially quant
fied variablexr € X, ofa QBFP = (k,q, Xy, ..., X1, D) is
associated a circuif’, whose inputs are all the universally

quantified variable$” from U?:Hl X;. For each instantia-
tion 7 of those variables, gives the corresponding value
of .

The next proposition makes precise the connection be-
tween the decision problemsF and the function problem
FQBF. It shows that explicit representations of total policies
are certificatesfor QBF, i.e., data structures from which a
polytime verification of the validity of positive instances
possible. To be more precise:

Proposition 2 There is a polytime algorithm whose in-
put consists of (a) the explicit representation of a pol-
icy # € TP(k, ¢, Xg, ..., X;) and (b) a QBFP
(k,q, Xk, ..., X1, ®), and which returnd if 7 is a solution
policy for P and0 otherwise.

Proof: The proof is by induction ork. The base case
is for k = 0. = is a solution policy forP = (0, ¢, ®)
if and only if ® is valid. SinceVar(®) = §, checking
whether® is valid can be done in polynomial time in the
size of ®. Now assume that the property holds for every
k = i > 0. Let us show that it holds fok = ¢ + 1.
LetP = (i +1,q, X;y1,..., X1, ®) be a QBF. Ifg = 3,
thenm = @, 1;m; with m; € TP(i,V, X, ..., X1) satisfies
P if and only if m; satisfies(i,V, X, ..., X1, ®z_ ). Since
¢z, can be computed in time polynomial in the size of
$ and X4, the induction hypothesis leads directly to the
expected conclusion. Finally, if = V, thenw satisfiesP
if and only if for every#;;, € 2Xi+1, the policy 7 (%;11)
fromTP(i,3, X, ..., X) satisfies(i, 3, X, ..., X1, Pz, ).
Sincer = {(Z;41,7(Zi41)) | Tir1 € 2541}, the induction
hypothesis completes the proof. |
For every positive instanc = (1,3, X1, ®) of QBF; 3
(i.e., everysAT instance), a solution policyt for P can
be represented explicitly by any model &fover X;; ob-
viously, such representations of policies are certifickdes
QBF;,3. Now, for every positive instancB = (1,V, X5, @)
of QBF, v, the solution policyr for P is represented explic-
itly by the set{(#; — \) | #; € 2X1}; again, this rep-
resentation is a certificate f@BF, y. The same policyr

the policy.

Now, a policy is a function. Instead of representing a
policy using a data structure, we can also represent it us-
ing an algorithm which computes the functiokccordingly,
an algorithm is said to represent a solution policy for a QBF
P = {k, q, Xk, ..., X1, ®) if and only if given an instantia-
tion of all universally quantified variables &f it enables to
compute an instantiation of all existentially quantifiediva
ables of P such that the concatenation of the two instantia-
tions is a model ofb.

Interestingly, there exist polytime (algorithmic) repgas
tations of solution policies for some QBFs. In order to
present one of them, we first need the following notions.
A propositional fragmen¥ C PROPpg is said to enable
polytime conditioning (Darwiche & Marquis 2001) (resp.
polytime quantification elimination) if and only if there-ex
ists a polytime algorithm which, for any < 2% with
X C PS and any® € F computes a formula fronf®
equivalent to®; (resp. there exists a polytime algorithm
which, for anyX C PS, any quantifiet; and any® € F
computes a formula fronfF equivalent tog X ®). A propo-
sitional fragmentF C PRO Ppg is said to enable polytime
model finding (i.e. the function problem ferT) if and only
if there exists a polytime algorithm which, for ady € F
computes a model @b if @ is satisfiable, and returns that no
model exists otherwise.

Such fragments are valuable when the purpose is to decide
QBF and, more generally, to represent solution policies for
OBFs:

Proposition 3 Let P = (k, ¢, Xy, ..., X1, P) be a QBF
where ® belongs to a propositional fragmerff enabling
polytime conditioning, polytime model finding and polytime
guantification elimination. Then deciding whetheris a
positive instance apBF can be achieved in polynomial time.
Furthermore, there exist a polytime (algorithmic) repnese
tation of a solution policy for each vali.

Proof: In order to decide whetheP is valid, it is suffi-
cient to eliminate in polynomial time each quantification of
the prefix of P (from the innermost to the outermagk;,),

in & within the fragment and to check in polynomial time
whether or not the resulting formula has a model.Plfs
valid andk = 0, then we just return the policy = A. If P

is valid and its first quantifieg is existential, then it is suf-
ficient to remove in polynomial time all the quantifications
of the prefix of P in ® from the innermost to the outermost,
but the first one; X}, then to search in polynomial time for
a model of the resulting formula: each such maggls the
first element of a solution policy faP and the converse also
holds. If P is valid and its first quantifieg is universal, then

can be represented in an exponentially more succinct way given anX,k-instantiationzy, it is sufficient to compute in

by the name\x, of the constant function mapping an -
instanciation to\; obviously, such a (non-explicit) represen-
tation of = is not a certificate foBF; v, unlessP = NP;
furthermore, the existence of a certificate of polynomizé si
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polynomial time the first element af(Z;,) wherer is a solu-
tion policy for P. This can be done by considering the QBF
(k—1,3, X1k, ..., X1, Pz, ). A straightforward induction
completes the proof. |



In (Coste-Marquiset al. 2005), some of us have shown
that the fragment OBDD of ordered binary decision di-
agrams enable polytime quantification elimination for the
guantification bearing on the last variable w.rt. Since
OBDD. was already known to satisfy polytime condition-
ing and model finding, this is sufficient to take advantage of
the approach described above to represent solution policie
for valid QBFs whose matrix is from OBDD and whose
prefix is compatible w.r.&.

The Case ofsFQBR,y

We now focus on the practical resolution $¥QBF, v, the
second function problem for QBFs fropBF; v, which aims

at computing a maximal sound policy for a givéhfrom
QBF2y. Why the choice ok = 2 andg = V? It is impor-
tant, before investigating more complerQBF; , problems,

to focus on the problems at the first levels (which are already
complex enough, as we will see). The case 1 for QBFy ,

7(Z) can be computed in time polynomial in See for in-
stance the policy description schemB given in the next
subsection. This argues towards using implicit representa
tion schemes for policies, but still, the existence of a poly
nomially compact and tractable representation scheme for
maximal sound policies cannot be ensured:

Proposition 4 If a polynomially compact and tractable
representation schem& for maximal sound policies for
QBFR, v exists, thetNP C P/poly holds.

Proof: Suppose that there exists a representation sclkieme
such that there exists a polysize functi®z and a poly-
time algorithm Dgs such thatRs maps each QBRP =
(2,¥, XY, ®) to a tractable representation= Rgs(P) of
a maximal sound policy = Is(o) for P and such thaDs
computesr(¥) = Ds(o, Z) for anyz € 2%,

Let us associate to any CNF formilzof PRO Ppg such
thatVar(X) = {pi1,...,pn} the following instancePs, of

has received an enormous attention since it corresponds to QBF2.v:

the satisfiability problem and the validity problem (depend
ing ong) for propositional formulae. However, it is not very
interesting from the point of view of policy representation
as shown beforesrFQBFR; 5 is not really new either, since it
reduces to an abduction problem: indeed, it consists in find-
ing an instantiatiorr’; such thatbz, is valid; this problem
has been considered many times. Things are different with
SFQBR,y, since (i) finding maximal sound policies becomes
here relevant and (ii) the size of the representation of a pol
icy becomes a crucial issue.

Polynomially compact and tractable schemes

In the case oBFQBF, v, a partial policy forP = (2, V, X,

Y, ®) is any mappingr from 2% to 2¥" U {x}. Ideally, we

are looking for representation schemes for maximal sound
policies that are both polynomially compact and tractable:

Definition 10 (polynomially compact scheme)A  policy
representation schemé& for maximal sound policies for
QBF, v is said to bepolynomially compacif and only if
there is a polysize functioRs that associates each = (2,
vV, X, Y, ®) € QBR, v to a representatiorr € S of a
maximal sound policy for P.

Definition 11 (tractable scheme)A policy representation
schemeS for maximal sound policies for QBFy is said
to betractableif and only if there exists a polytime algo-
rithm Dg such that for any € S, Ds computest(Z) =
Ds(o, ) for anyz € 2%, whererr = Is(o).

Clearly, the explicit representation scheme for maximal
sound policies is not polynomially compact in the general
case. Forinstance, there exist instances of QBBr which
any solution policy is injective, as in the following exarapl
(from (Fargier, Lang, & Marquis 2000)):

Example 5
War, e} oy} Ny (1 < 30)-

However, it is possible to encode the solution policies
for the set of QBFs of this example (withvarying), using
data structures of size polynomial inn and from which
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VLIV(S A NI Vi) A (L v —pi))

i=1

withV = Var(3), L =, {l;},1;} C PS\ V. Observe
that the size of?s; is linear in the size of.

Now, if S is tractable, then there exists a polytime algo-
rithm for deciding clausal entailment froid. Indeed, for
any clausey built upon the variables df, we haveX = v
if and only if ¥ A —y is unsatisfiable. Each possible sat-
isfiable term—~ corresponds to a vectarof 2- such that
Vp; € V, (1) if p; € —y thenl} € land—I; € [, (2) if
—p; € —y then—l} € l'andl; € [, and (3) ifp; & —
and—p; ¢ — then—IF € I'and—l € I. Therefore, for
any non-valid clause onV, we haveX | ~ if and only
if (5 A A (=L V p) A (=17 V —p;));is unsatisfiable.
Accordingly, given any maximal sound polieyfor Ps; and
any non-valid clausg onV, we haveX = « if and only if
() = x.

Let o = Rs(Pg). Since Rs is polysize, the map-
ping ¥ — Rgs(Ps) also is polysize. If the representa-
tion schemeS for = were tractable then checking whether
w(f) = x could be done in polynomial time (just check

—

whetherDs(o,1) = x), therefore deciding whethét |= ~
could also be achieved in polynomial time. As a conse-
guence, we would gelNP C P/poly (Selman & Kautz
1996). |

The inclusionNP C P/poly is considered very unlikely,
because it implies that the polynomial hierarchy collapses
at the second level (Karp & Lipton 1980). Actually, the fact
that the existence of a polynomially compact and tractable
representation schemé& for maximal sound policies
for QBF, v exists entails that the polynomial hierarchy
collapses at the second level can also be proved in a more
direct way. Indeed, suppose that there exists a represen-
tation schemeS such that there exists a polysize function
Rs and a polytime algorithnDs such thatRs maps each
QBF P (2,V,X,Y,®) to a tractable representation



o = Rs(P) of a maximal sound policy = Is(o) and such
thatDs computesr () = Ds(o, Z) for any# € 2X. Letus
now consider the following nondeterministic algorithm for
solving QBF; v:

Input: a QBF P=
1. guess o = Rs(P);
2. check that Is(o) is a solution policy for
P.

(2,V,X,Y, ®).

Provided thatRs exists, guessing in step 1. only re-
quires polynomial time (since its size must be polynomial in
the input size). Let us recall th#t is a positive instance of
QBFR, v if and only if it has a solution policy (Proposition 1),
and that if a solution policy exists, then any maximal sound
policy is a solution policy. Now, provided thdds exists,
when the input isP ando has been guessed, the problem
of determining whetherr = Is(o) is nota solution policy
for P is in NP: just guesst € 2% and check in polynomial
time usingDgs thatn(Z) = Ds(o,Z) = x. Accordingly,
step 2. can be achieved using one call tdN&horacle. Sub-
sequently, the algorithm above shows that, v is in X5,
henceX! = TI, and the polynomial hierarchy collapses at
the second level.

Proposition 4 generalizes Theorem 5 from (Liberatore
2005) in two directions: considering maximal sound poli-
cies (instead of the proper subset of it consisting of solu-
tion policies), and considering any tractable represemtat
scheme (and not only the so-called directional representa-
tion scheme as in (Liberatore 2005)).

Given Proposition 4, it seems reasonable to look for rep-
resentations of policies, which aes concise as possible
and especially more concise than the explicit representa-
tions, provided that they are tractable:

Definition 12 (tractable representation) A representation
o of a policyr fora QBF P = (2,V, X,Y,®) € QBRy
is said to betractableif and only if there exists an algo-
rithm Dgs , such that for any? € 2X, Ds , computes
7(Z) = Ds (%) in time polynomial ino| + |Z|.

The decomposition approach
It is based on two simple observations:

1. Itis often needless looking for a specificinstantiation
for each X-instantiation: someY -instantiations may
cover large sets ofX-instantiations, which can be de-
scribed in a compact way, for instance by a propositional
formula.

It may be the case that some sets of variables froare
more or less independent givéaw.r.t. & and therefore
that their assigned values can be computed sepafately.

Definition 13 (subdecision) An instantiation ofsome(not
necessarily all) variables df (or equivalently, a satisfiable
term~y onY) is called asubdecision 3¥ is the set of all

2As briefly evoked in (Rintanen 1999a) (Section 6), such inde-

pendence properties can also prove helpful in the practical solving
of instances 06BF.
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subdecisions. Any mapping: 2% — 3Y assigning a sub-
decision to eachX -instantiation is called ssubpolicyfor
vX3Y ®. Similarly as for policies, we can also defipar-

tial subpolicieshat assign a subdecision to a subsedf
Themergingof subdecisions is the commutative and asso-
ciative internal operator o3 U {x } defined by:

® A=Ay =

® Vy.X = X.yy = X,

e if vy, 74 are two terms oY, then

vy Ay i vy AN is satisfiable

!/
Wy = { X otherwise

Here, the empty decisiokis assimilated to the empty term.
Themergingof two subpoliciesr, 72 is defined by:

VT € 2%, (11 © mo)(F) = m1(F).m2(T).

Definition 14 (policy description) The policy description
scheme PDs a representation scheme for maximal sound
policies for QBFE v, defined inductively as follows:

e Mandx areinPD;

any satisfiable termyy onY is in PD;

e if px is a propositional formula built onX and o1, o2
are inPD, then
if ox then o1 else oy

isinPD

if o1 ando, are inPD, theno; ® o4 is in PD.

Now, the partial subpolicyr = Ipp(o) induced by a de-
scriptiono € PDis defined inductively as follows; for every
7 e 2X:

° IPD( )(f) andeD(x)(f) = X,
e Ipp(w)(@) =y
o Ipp(if px then o el se 09)(Z)
{ Ipp(0)(Z) if T ox
Ipp(o2)(2) if & —px

° IPD(O']_ O) 0'2) = IPD(UI) O] IPD(UQ)'3

To simplify notations,
if o then o else x
is abbreviated into
if o then o
and

i f <p1then o1
else if oy then oo
else ...
else if ¢, then o,

is abbreviated int€ase ¢;: o1; ... o, o, End

Example 6
LetP = V{fﬂl, xg}EI{yl, yg} ®, where

D =x1 A A (y1 < (21 & x2))

Let o if x1 < x5 then y; else -y, oo
if x; then -y ando = o1 © os.

*We slightly abuse notations here, usiagboth for merging
policies and for merging policy descriptions.



The corresponding policiesr; = Ipp(o1), m =
IPD(O'Q) andm = m @ mp = IPD(O'l ® 0’2) are given

by

1 T Vs
($1, 132) 1 | e | (v, —ye)
(r1,m22) | 1 | e | (2y1, ~y2)
(_L’El,xg) —Y1 X X
(—x1,~wo) [ 1 X X

my is a subpolicy forP; w5 is a partial subpolicy forP. We
can check thatr is a maximal sound policy faP.

Proposition 5 PD is a tractable representation scheme for
maximal sound policies for QBF.

Proof: It is clear from its definition that for alf € 2%,
Ipp (%) is computable in polynomial time; l1dDpp be the
algorithm that compute$pp (0)(Z) from o andZ. Dpp
computest(¥) = Dpp(o, ) for any# € 2%, wherer =
Ipp(o). ThereforePD is a tractable representation scheme
for maximal sound policies for QBf,. u

Example 5 (continued).
A tractable representation iRPD of the solution policy for

the QBFV{z1,.... 20} {1, .., yn} Niy (25 < ;) IS
o=0i_((if z then y)o(f -z; then —y;))

Note, however, thaPD is not necessarily polynomially
compact.

We first establish the following, which tells precisely
when a partial policy fo X3Y ® is sound.

Proposition 6 LetP =VX3Y ®.

1. A partial policyr for P is sound forP if and only if for
everys € 2%, (%) = i # x implies(Z, %) = .

2. Asound policyr for P is maximal sound foP if and only
if for everyz € 2%, 7(%) = x impliesz = —®.

Proof: Remark first thatr € PP(2,V, X,Y) if and only if,
by definition,n is a mapping fron2* to 2¥ U {x}.

1. Applying point 5 of Definition 7 leads to the equivalent
formulation: 7 is sound forP if and only if for all Z € 2%,
7(Z) is sound fordY.®z. Now, again after Definition 7,
7(Z) is sound fordY.®z if and only if eithern(Z) = x
or 7(Z) = ®z. Putting things together we have thats
sound forP if and only if for all 7 € 2%, eitherr (%) = x

or (zZ,n(¥)) E @.
2. Letw be a sound policy foP.
= Assume that there exists & € 2% such thatr(z*) =
x andZ* £ —®, which means that there existga e

2Y suchthatz*, ) = ®. We now build the following
partial policyr’ for P:

for everyz € 2% /(%) = {

We have immediately that’ I = holds, but not
7« 3 7/, that is,~/ O =. Moreover,n’ is sound for
P. Therefores is not maximal sound foP.
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< Assume thatr is not maximal sound forP, which
means that there exists a sound partial pofitysuch
that 7’ strictly coversr, i.e., 7/ O w. The fact that
7' 3 7 means that
(a) for everyz € 2%, 7/(¥) = x implies7(Z) = x,
and
(b) there exists am* € 2% such thatr’(7*) # x and
7 (Z*) = x. Consider thist*. Sincer’(¥*) # x, there
is ay™ such thatr’(2*) = ¢, and sincer’ is sound for
P, it must be the case that

L) (@,7) @
Therefore,#* [~ —®, that is, there is & € 2% such
thatw(Z) = x andZ & —®.
[ |

Putting points (1) and (2) together, and after some rewrit-
ing, we have:

Corollary 1 7 is maximal sound foP if and only if for all
7 € 2%, either

(@) (&) =~y for someyy € 3Y, and(Z,vy) | @, or

(b) 7(%) = x and there is noyy € 3Y s. t.(7,7y) = @.

Proposition 7 Let P = (2,¥,X,Y,®) and let
{et. 01, 0n ey } be2p formulae such that

O = (¢ /\90%/)\/...\/(905(/\905).
LetJ = {j | ) is satisfiabl¢ = {ji,...,j,} and for

everyj € J, lety; |= gp}/. Then the policy represented by
the description

o =Case o} 7, ...
is a maximal sound policy faP.
Proof: First, note thal/?_, (o* A ¢)) is logically equiva-
lentto\/,. (X Apl), because ¢ J implies thatp;* Ao}
is unsatisfiable. Therefore, without loss of generalitycae
assume thaf = {1,...,q}, thatis, foralli € {1,...,q},
<p}” is satisfiable. For every € {1,...,p}, lety; such that
Ui = ) . Now, let

o =Case ¢ ;... ¥, End

For allZ, let f(#) = min{i | ¥ = ¢ }, with the convention
f(#) = cif & = —~pX foralli =1,...,p. Then we have
IPD(O')(f) = gf(gg) if f(f) 75 0, andeD(a)(:E) = X
otherwise. Using Proposition 6, this immediately shows tha
I(0) is sound forP.

Now, suppose thafpp (o) is not a maximal sound pol-
icy for P. Then there exists a sound poligyfor P strictly
coveringlpp (o), i.e., such thatr O Ipp (o). The fact that
m 1 Ipp(c) means that
(a) for everyz € 2%, n(¥) = x implies Ipp(0)(Z) = X,
and
(b) there exists am* € 2% such thatr(7*) # x and
Ipp(o)(Z*) = x. Consider thist*. Sincen(Z*) # x,
there is ay* such thatr(z*) = ¢*, and sincer is sound for
P, it must be the case that

L) (@, 7) = @
Now, I(o)(z*) = x implies thatf(z*) = oo, that is,
Q)7 = = A A
Since® is logically equivalent td/?_, (o A ¢)), (2) im-
pliesz* = —~®, which contradicts (1). Hencefortli(o) is
a maximal sound policy foP.

;@31 ¥, End



The interest of Proposition 7 is that ondehas been de-
composed in such a way, the resolution of the instance of
SFQBFgiven by P = VX 3Y ® comes down to solving in-
stances oBAT. Furthermore, it is always possible to find
such a decomposition — just take all instantiationsXaf
@ = Vyean (7 B2, o

Of course, such a decomposition is interesting only if it
is not too large, i.e., if it leads to a reasonable number of
SAT instances to solve. Le¥V(®) the minimal number of
pairs of such a decomposition: the best cas&'{®) =
1 and the worst isV (®) = 2n(XLYD Finding a good
decomposition actually amounts to break the links between
X andY in @, the ideal case being when there are no links
between them, i.e., whebh = px A ¢y (0Or equivalently,X
andY are marginally conditionally independent with respect
to & (Darwiche 1997; Lang, Liberatore, & Marquis 2002)).

Example 7
Let P = V{a,b}3{c, d}®, where

O =((a—=b)Ac)V(aN-cAd))
The description of a maximal sound policy #Bris
oc=Case (a<b):(cd);a: (—cd) End

The associated polickpp (o) is

Ea, b)b) — (¢, d)
Iep(@) = | (0,20 = (me,d)
(_‘a" _‘b) = (C, d)

Furthermore, Proposition 7 immediately tells how to
compute a maximal sound policy in polynomial time for
vX3Y ® when is in DNF, which implies the following:

Corollary 2 When® is a DNF formula, a maximal sound
policy forvX3Y ® is computable in polynomial time.

Interestingly, the problem of computing of maximal
sound policy (i.e., a solution policy when theX3Y @ is
positive) is easierthan the decision problem of deciding
whethery X3Y ® is a positive instance (the lattergeNP-
complete wherd is a DNF formula).

The next decomposition result makes possible to com-
pute subpolicies independently on disjoints subset¥” pf
and then merge those subpolicies.

Proposition 8 Let{Y7,Y>} be a partition ofY” such that
Y; and Y5 are conditionally independent giveX with re-
spect to®, which means that there exist two formulde
and &, of respectively? RO Px_y, and PRO Pxy, such
that® = &, A 5. Thenn is a maximal sound policy for
vX3Y ® if and only if there exist two subpolicies, 2,
maximal sound fovX3Y ®, and YX3Y &, respectively,
such thatr = m; © .

Proof: Assumed = &, A &5, where®, and®, are respec-
tively in PRO Pxy, andPRO Px )y, .

= Let 7 be a maximal sound policy fatXVY ®,. Define
now m; as follows:
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1. if (&) # x thenm (Z) is the restriction ofr onY7;

2. if 7(Z) = x and@ & =P, thenm (Z) = %, for some
71 such that(@, 1) = @4;

3. if 7(¥) = x and¥ = —®, thenm (Z) = x;

and similarly formo, replacingY; and® by, respectively,
Y> and®,. 71 (resp.ms) is a policy forv.X3Y &, (resp.
VX 3IY ®y). We first check thatr = m; ® 75. Indeed:

— if 7(&) = x then, sincer is maximal sound, we have
Z = —~®. Now, assume that; ® (%) # x. Then
m1 (%) # x andms(Z) # x, which implies that there
existsy; € 2¥1 andg, € 2¥2 such that(Z, 1) = @1
and(Z, y») = P2, becauser; andm, are sound. The
latter implies that there exisig € 2¥* andi, € 2¥2
such tha‘(f, gl,gg) ): P N Do, i.e.,(f, gl,gg) ': P,
which contradicts? = —~®. Hencer © ma (%) # X.

Then, we check that; andm, are maximal sound for,
respectivelyvVX3Y ®; andvVX3Y ®5. The construction
of m; ensures thaf = —~®; holds whenever (¥) = X,
which, by Proposition 6, implies that; is maximal and
sound. The proof fof is similar.

Assume there exist two subpolicies, w2, maximal
sound forv.X3Y ®; and forV.X3Y &, respectively, such
thatr = m; © ma.
(a) Let us first show that is sound. Letr € 2X such
thatn(Z) # x. Sincen(Z) # x, we haver(Z) = ¥
for somey € 2Y. Lety; andi, be the projections off
onY; andY;, respectively. Since (%) = 71 (Z). 72 (%),
we necessarily have, (¥) = 7, andme(Z) = 7>. Now,
m is sound forvX3Y ®,, therefore, by Proposition 6,
Q) (#,41) E ®1. Similarly, (2) (Z,42) E ®2. (1) and
(2) imply that (Z,9) = @1 A @4, that is, (7,¥) | ©.
This being true for allf € 2% such thatr(z) # x, we
conclude thatr is sound.
(b) Let us show now that is maximal sound. Suppose it
is not. Then, by Proposition 6, there exigts 2% such
thatw(Z) = x andz £ —®. ¥ |~ —® is equivalent to the
existence off € 2¥ such that(%, 7/) = ®. Letj; andi,
be the projections of onY; andY3, respectively. Then
(Z,9) = (&,%,92) = @, therefore(Z,y,) = @, and
(if, !jg) ): D,, i.e.,

(1) Z £ —®1 andZ £ P .
Now, sincer = 7 © o, w(Z¥) = x implies that either
m1(Z) = x or e (&) = x. Without loss of generality, as-
sumer; (Z) = x. This, together with (1) and Proposition
6, implies thatr; is not maximal sound foy X3Y;®,, a
contradiction.

Proposition 8 can be used efficiently to reduce an instance
of SFQBR, v into two (or several, when iterated) instances
of SFQBR,y With smaller sets”. Ideally, ® is already on
the desired form (i.e., there exists a partition that warks)
however, in general this is not the case and we have then to
find a candidate partitiofiYy, Y5 } which isalmostindepen-
dent w.r.t. & given X, and then break the links betwe&n
andY; through case-analysis on a set of variables fidm
which must be chosen as small as possible (for efficiency
reasons). The good point is that we can take advantage of



existing decomposition techniques to achieve that goal, es
pecially those based on the notion of decomposition tree (se
e.g. (Darwiche 2001)).

Example 8
Let P = (V{a,b}3c, d, e}, where

d=(((a=b)Ac)V(an-cANd))A ((aVb)— —e)

{¢,d} and {e} are independent givefia, b} given ®: in-

deed® = &1 ADy, where®; = ((a « b)Ac)V(aA—cAd))

is a formula of PRO Py, p.c.qy and®s = ((a V b) < —e) is

aformula of PRO Py, .} -

A maximal sound policy fov{a,b}3{c,d}®; is given in

Example 7. A maximal sound policy féfa,b}3{e} P, is

the policy induced by the descriptidase a V b :
—(aVD):eEnd.

Therefore, a maximal sound policy fét is the policy in-

duced by the following description:

[ Casea«—b:(c,d);a:(—¢d)End ]

[ CaseaVb:—e —(aVd):eEnd ].

_‘6,

O]

The compilation approach

The compilation approach consists in generating firgira-
piled formo of ® enabling polytime conditioning and model
finding:

Proposition 9 Let P = VX 3Y ® be a QBF and let be a
propositional formula equivalent t& and which belongs to
a propositional fragmenf enabling polytime conditioning
and polytime model findingr is a tractable representation
of a maximal sound policy faP.

Proof: Given an instantiation® € 2%, any model ofoz
computed in polytime by the algorithm (whose existence is
postulated above) is (if it exists) an instantiatigne 2" .
Now, we can show thaf = oz holds if and only if(3Y o)z

is valid (indeed, a central property of conditioning is that
instantiation® is an implicant of a formulal if and only if

the conditioning?¥ ; is valid). Now, (3Y o)z is valid if and
only if 3Y (oz) is valid (sinceX N'Y = (). Lastly, remark
that3Y (oz) is valid if and only ifoz is satisfiable. [

Note that there is no policy representation scheme here.

Actually, within this compilation-based approach,alone
does not represent any policy fét but a specific maximal
sound policy forP is fully characterized by the way a model
of oz is computed for each.

Among the target fragment® of interest are all polyno-
mial CNF classes fosAT problem, which enable polytime
conditioning. Indeed, for every formula from such a class,
polytime model enumeration is possible (see e.g. (Darwiche
& Marquis 2001)). Among the acceptable classes are the
Krom one, the Horn CNF one, and more generally the re-
namable Horn CNF one. Several other propositional frag-
ments can be considered, including the DNF one, the OBDD
one and more generally the DNNF one since each of them
satisfies the three requirements imposed in Proposition 9.

Even if there is no guarantee that for evepy the cor-
respondings is polysize (unless the polynomial hierarchy

2004) showed the practical interest of knowledge compila-
tion techniques for clausal entailment; clearly, such & con
clusion can be drawn as well when the purpose is the repre-
sentation of tractable policies for QBFs from QBF

Related Work

As illustrated in Proposition 1, a topic very close to the
notion of policy is the notion otertificate In the case
of @BF and under the usual assumption of complexity the-
ory, there is no way to represent in polynomial space or
to check in polynomial time a certificate of membership to
the class of positive or negative instancesoafr. One of
the practical consequence fQBF solver designers is the
impossibility to easily validate the answers of their solve
In the last two QBF evaluations (Le Beret al. 2004;
Narizzano, Pulina, & Tacchella 2006), one third of the
solvers submitted were found incorrect.

(Kleine Buning, Subramani, & Zhao 2003; Zhao & Bun-
ing 2005) investigate the properties of QBFs having pobysiz
solution policies of a specific kind (e.g., when eattari-
abley is a monotone term — or a boolean constant — built up
from V variables beforg in the prefix). Contrariwise to our
work, no restriction is put on the prefix of instances in their
study; on the other hand, it is not the case that every pesitiv
QBF (even when from QBfy) has a polysize solution pol-
icy; furthermore, they do not consider partial policiesisTh
shows their approach mainly orthogonal to ours.

(Benedetti 2005a) suggests to represent certificates for
positive instances afBF using a forest of OBDD. Accord-
ing to the author, in practice, the cost of verifying thatifier
cate is reasonable (both in terms of space and time). How-
ever, reconstructing the certificate from the solver'sdrac
may overcome the time needed to solve the problem.

(Chen 2004) defines the notion of decomposability of a set
of functions using policies in the QCSP framework; the main
purpose is to show that if an operatipris j-collapsible then
any constraint languade invariant under. is j-collapsible
(Theorem 7), from which tractability results for QCSP3 (
are derived. Neither the notion of partial policy nor thelpro
lem of their representation are considered in (Chen 2004).

Closer to our work, (Liberatore 2005) considers the rep-
resentation issue for solution policies using a circuidsh
representation scheme. The complexity of determining
whether a given QBF has a solution policy representation,
with size bounded by a given integéris identified and
shown hard, even in the cakés in unary notation. In some
sense, our work completes (Liberatore 2005) by focusing on
partial policies, generalizing some results and focusing o
other representation schemes.

Conclusion

In this paper we provided theoretical ground for solving
function problems associated with QBF, and algorithmic
techniques for solving (and representing solutions for) fo
mulaevVX 3 @ from QBF, v.

The specificities of our work are the following ones: de-

collapses at the second level), many experiments reported fine partial, but maximal sound policies for a QBF even

in (Schrag 1996; Boufkhaet al. 1997; Darwiche

e.g.,
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when it is not valid (other approaches would handle such



¥ by concluding that it is impossible to find a solution pol-
icy); address the issues of the size of partial policies and
their compact representation; focus on the specific problem
QBF2 v and show how technigues such as decomposition and
compilation can be fruitfully exploited for computing maxi
mal sound policies.

A next step would consist in determining from the practi-
cal side the performances of several representation scheme
for maximal sound policies. We plan to make some ex-
periments to measure how the size of the representation of
policies varies with various parameters (e.g., the numtfers
clauses and of variables in a CNF ®f the ratio%),
and to compare it with the coverage of the corresponding
policy (i.e., how manyr € 2% are not mapped tg).
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