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This paper addresses the problem of tactical planning robustness of a three-level multi-

facilities supply chain. Robustness of uncontrollable factors such as demand is an 

increasing concern because of the key role played in supply chain planning. This study 

aims at proposing an approach based on an experimental design and the use of signal/noise 

ratio as developed by Taguchi when establishing tactical plans. LP model, such as those 

used in advanced planning systems, is developed to solve tactical planning concerns. By 

adjusting policy parameters, such as overtime, inventory level costs, and so on, decision-

maker can determine an optimal tactical plan while considering the robustness to uncertain 

demand. This approach enhances the compromise between minimized costs and improved 

robustness. This methodology has been applied on a case study of an aggregate plan based 

on a Vallourec steel tube company. 

Keywords: Supply chain planning; tactical planning; robustness; process modeling; APS systems. 

1 Introduction 

Recent years have witnessed increasing interest in supply chain (SC) management 

problems (Croom et al. 2000). However, no sufficient attention has been paid to planning 

and control models and performance measurements of these new structures for which 
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coordination is more important (Walters 2005). Previously, industrial dynamics theory had 

been used to examine SC dynamic behaviour (Forrester 1961, Towill 1991). Forrester 

proved that small variations in customer demand caused demand variations amplification 

along an SC and created system instability. This phenomenon is called the “bullwhip 

effect.” One of the root causes of the bullwhip effect is the use of inadequate forecasting 

methods, which do not correctly quantify the degree of uncertainty in the market demand 

(Chen et al. 1998). 

Supply chain planning Systems (SCPS) processes the information on demand and turns it 

into coordinated signals for all the supply chain entities. These signals are relayed to the 

supply chain partners through private or public network (Vollmann et al. 1997). SCPS play 

a key role in propagating the amplified signal on demand and uncertainty. 

Landeghem and Vanmaele argue that tactical planning is the most appropriate level in a 

supply chain planning system to provide buffers against uncertainty based on the time 

period over which they fluctuate (Landeghem and Vanmaele 2002). On the one hand, the 

SC infrastructure is fixed by strategic level. On the other hand, there is often insufficient 

time to react to demand variations at the operational level because of the planning 

constraints. They conclude that demand uncertainty can be handled best at the tactical level. 

Tactical levels set the global quantities through the supply chain as well as the availability 

of the resources in SC. The tactical plan compares alternatives and various indicators 

aggregated in weighted-cost functioning and selects the best plan (Vollmann et al. 1997). 

Decisions on inventories, transportation, production, and capacity are simultaneously 

discussed as a trade-off between costs. Important results are the planned capacity and the 

level of seasonal inventory. These decisions cannot be made by short-term scheduling 
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because of a shorter planning horizon. Supposing a linear relationship among costs, 

quantities, and constant parameters, that kind of decision making can easily be modelled by 

linear programming (LP). Advanced planning systems (APS) widely use these techniques 

to optimize tactical plan models (Fleischmann et al. 2000). 

LP is a method known to be sensitive to changes in parameters. Sensitivity analysis, used in 

this context, determines parameter ranges for which a solution remains optimal (Koltaï and 

Terlaky 2000). However, it studies each parameter while keeping the others unchanged. 

The manager cannot study suboptimal but less sensitive solutions of the simultaneous 

variations of the factors. Moreover, few APS give such information (Stadtler and 

Kilger 2000). So, these parameters and weights representing managers’ policies have to be 

set properly in order to increase decisions’ robustness. 

Stochastic programming could be used to maximize or minimize the expected value of our 

objective function as Leung proved (Leung and Wu 2004), but such an approach still does 

not succeed in solving general, real-sized problems (Mulvey and Ruszczynski 1995). 

In supply chains where costs are a primary focus and flexibility is limited, one important 

factor in cost containment is the reduction of the number of schedule changes and an 

increase in planning robustness. The way uncertainty is processed by SCPS needs to be 

addressed more effectively. In this paper, we propose a planning process that improves 

robustness of tactical plan costs subject to controllable and uncontrollable parameters. 

Taguchi worked out a method using fractional plans. It makes it possible to determine the 

effects of the factors of a system easily (see Figure 1) (Taguchi 1987). By using the 

Taguchi method, we can offer a robust optimal solution to uncontrollable factors such as 

demand. 

[Insert figure 1 about here] 
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This paper is organized as follows. In the next section, an SC structure and a tactical 

planning process are defined. Measures and approaches of robustness are discussed in 

Section 3. In Section 4, a generic LP model is developed. The tactical planning simulator 

that incorporates the LP model is presented. The case study, experimental design, and 

results are analyzed in Section 5. 

2 Supply chain description and tactical planning process 

We first describe the general SC structure considered in this article and then specify the 

tactical planning process we plan to model. 

2.1 Supply chain structure 

The studied SC is a three-level multi-facilities SC producing q finished goods, g=1, …, q 

(see Figure 2). It is composed of the following: 

• n suppliers plants, s=1, …, n 
• m plants, p=1, …, m 
• o warehouses, w=1, …, o 
 
These q finished goods are produced in the m plants from q critical components produced 

and supplied by the n suppliers from one raw material. A raw material is used to make a 

component. It takes one period to produce a component from a raw material and a finished 

good from a component. Transportation lead time is one period. 

Each supplier’s and plant’s production is constrained by the number of working hours, 

material availability, and storage capacity. Warehouses can store a limited number of 

finished goods because of bulk constraints. 

[Insert figure 2 about here] 
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2.2 Tactical planning process 

[Insert figure 3 about here] 
 

A simplified tactical planning process is shown in Figure 3. At each rescheduling cycle, 

new forecasts are established according to the modifications in demand for the first period. 

Then all the decision variables (inventory, backorders, transported quantities, production 

level, operators and overtime) are adjusted by optimization of an LP model such as those 

used in advanced planning systems. This model is formulated in section 4. The new plan 

maximises profitability, but is not concerned with modifications made in the production-

distribution and supply plans. These practices induce strong disturbances on the productive 

system and on the partners in the SC by generating the bullwhip effect. The overcosts 

created by these variations are not taken into account in the global optimization of the 

system. 

3 Stability and robustness measures 

In order to quantify robustness, several approaches are possible. 

3.1 Stability definition 

One approach tries to find a decision policy that reduces the number of changes to the plan 

while keeping the key performance measures fixed at their target level. This approach was 

used to deal with Material Requirements Planning (MRP) “nervousness” to improve plan 

“stability” (Blackburn et al. 1986, Yano and Carlson 1987, Ho 1989, Minifie and Davis 

1990, Sridaharan and Laforge 1990, Jensen 1993, Kadipasaoglu and Sridharan 1995, 

Heisig 1998). For example, Kadipasaoglu and Sridharan show the difficulties induced by 

the nervousness because of uncertainty in demand, purchasing or in the dynamic 
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calculation of lot size in MRP systems (Kadipasaoglu and Sridharan, 1995). “Nervousness” 

has been defined as a lack of stability in the material requirements planning (Orlicky 1975, 

De Kok and Inderfurth 1997). Donselaar et al. (2000) compare the nervousness of the plan 

generated by MRP with that of their heuristic to improve stability of purchased orders. The 

considered indicator is the number of “reschedulings” encountered within the periods: if a 

quantity appears or disappears during a period, the indicator is incremented; however, if 

quantities are only modified, the indicator remains at the same level. The instability of a 

plan is defined by the number of modifications made on the levels of decision variables 

between two successive versions of the plan (Pujawan 2004). 

The term “stability” is thus related to the number of changes in a plan from one generation 

to the next. Depending on planning typology, the stability indicator can be linked to one or 

more different decision variables. 

Several strategies have been proposed to increase the stability of plans using MRP systems: 

• extend the planning horizon (Carlson 1982),  
• freeze the master schedule within the planning horizon (Zhao and Lee 1993), 
• ensure that buffer or safety stocks are in place (Blackburn et al. 1986), 
• differentiate between large and small modifications (Ho 1989). 

3.2 Robustness definition 

Another approach tries to find the policy that yields the most stable outcome, that is, with 

low variability of the key performance measures such as service level or total supply chain 

inventory (Lee and Yu 1997). 

The term “robustness” is generally associated with that of “risk” and “decision making” 

(Kleijnen and Gaury 2003, Durieux and Pierreval 2003). The underlying idea of system 

robustness is generally that the measured functions do not diverge significantly from a 
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given value (Mulvey et al. 1995, Yu and Li 2000). Robustness is calculated by the standard 

deviation of each of the measured indicators.  

The most common approach when studying robustness of a system is the well known 

Taguchi method (Taguchi 1987). Its main principle is the following: instead of trying to 

eliminate or to reduce the causes for product (or process) performance variability, it aims at 

adjusting the design of a product (or a process), so that it is insensitive to the effects of 

uncontrollable variations (Fowlkes and Creveling 1997). Taguchi’s methodology is based 

on the use of crossed designs of experiments and a quadratic loss function or a signal to 

noise ratio (S/N). This S/N ratio takes into account both the variability in the response data 

and the closeness of the average response to a target value (Mezgar et al. 1997). The higher 

this indicator, the better the compromise is. It can be calculated in different ways depending 

on the situation: function to minimize, to maximize, or to reach a target. 

Robustness studies and some approaches have been proposed in several areas such as 

quality management, manufacturing design (Lim et al. 1996, Durieux and Pierreval 2003), 

scheduling (Davenport and Beck 2000, Artigues et al. 2005), control policies of production 

system (Kleijnen and Gaury 2003) or operational design of supply chain (Shang et al. 

2004). However, in our knowledge, there is no work on robustness consideration when 

constructing tactical plan of supply chain network.  

Several definitions exist for "robustness" of tactical plan. Zäpfel (Zäpfel 1998) and Roy 

(Roy 1998) consider a tactical plan as robust if an operational plan can be calculated for all 

the possible sets of demand. This definition is used by Lasserre and Mercé (Lasserre and 

Mercé 1990) in their work on plans breakdown. 
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In a very different context from ours, Kleijnen and Gaury study the robustness of a kanban 

loop according to two functions: the expected value of the work-in-process and the delivery 

rate (Kleijnen and Gaury 2003). In our study, the robustness of the tactical plan will be 

calculated by the standard deviation of the sum of the costs of decisions implemented at 

each period, because one of the main objectives of tactical planning is to be coherent about 

budgeting. Other performance indicators could have been chosen according to different 

planning typologies: 

• Net margin 
• Capital in inventories or safety stock level 
• Service level and so on 
• … 
 
As in our problem, the objective is to minimize the sum of the resulting costs of the 

decisions implemented at each period, the signal/noise ratio, S/N, will be measured by (1), 

where y is the robust indicator (Taguchi 1987). 

²)1log(10/ yin
NS ∑−=  (1) 

4 LP model and tactical planning simulator 

4.1 LP model 

The model described below is a classical linear program such as those used in advanced 

planning systems. It represents a decision situation in which loads and capacities have to be 

adjusted through a SC. 

4.1.1 Indexes 
h: horizon of the tactical plan 

t: index of the period of the plan t = 1, 2 …, h 

l: index for location, w for warehouses, p for plants, and s for suppliers 
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i: index for item, g for finished goods, c for components, and m for raw materials 

4.1.2 Parameters 
Fwgt: demand forecast for period t calculated in warehouse w for finished good g 

Vi: volume of item i expressed in volume unit 

Sli: storage volume of item i at location l expressed in units of capacity 

tl: maximum number of overtime hours at location l per operator 

xl: number of regular hours per operator at location l 

Wli: number of hours to produce an item i at location l 

Ww: capacity of warehouse w expressed in volume units 

4.1.3 Variables 
Ilit: inventory at the end of period t in location l for item i 

Bwgt: backorders at the end of period t in warehouse w for finished good g 

Rlit: quantity of item i received in period t at location l 

Tklit: quantity of item i transported in period t from location k to location l 

Qlit: quantity of item i produced in period t at location l 

Olt: number of operators at location l in period t 

Hlt: number of operators hired at location l in period t 

Llt: number of operators laid off at location l in period t 

Tlt: number of overtime hours at location l in period t 

4.1.4 Costs 
Csli: cost of storage per unit of item i at location l 

Cbwg: cost of backorders per unit of finished good g at warehouse w 

CTkli: cost of transportation from location k to location l per unit of item i 

Cpli: cost of production per unit of item i at location l 
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Cwl: wages per operator per period at location l 

Chl: cost of hiring an operator at location l 

Cll: layoff cost of an operator at location l 

Ctl: cost per overtime hour at location l 

4.1.5 Objective function 
The objective function (2) is computed from of storage and backorders costs at warehouses, 

transportation costs from plants to warehouses, costs of plants (storages, production, wages, 

etc.), and transportation costs from supplying facilities to plants and costs of facilities 

producing the raw materials (storages, production, wages, etc.).  

( ) ( )
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4.1.6 Constraints 
wgtBIFRBI wgtwgtwgtwgtwgtwgt ,, 111 ∀−=−+− −−−  (3) 

litRT
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litklit ,, 1 ∀=∑ +

 (4) 

litITQI lit
k

lkitlitlit ,, 1 ∀=−+ ∑−

 (5) 

ltIQRI ljt
i

litljtljt , 1 ∀=−+ ∑−  (6) 

ptOLHO ltltltlt , 1 ∀=−+−  (7) 

wtWVI
g

wgwgt , ∀≤×∑
 (8) 
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ltPVI
i

liilit , ∀≤×∑
 (9) 

ltOtT ltllt , ∀×≤  (10) 

ltTOxQW ltltl
l

litli , ∀+×≤×∑  (11) 

ltIQ ljt
i

lit , 1 ∀≤ −∑
 (12) 

Equations (3), (4), (5), (6), and (7) are respectively inventory balance at warehouses, 

transportation balance and transportation delay (one period) at location l for item i, 

inventory balance of item i produced at location l, inventory balance of item j received at 

location l, and operator balance at location l. Equations (8), (9), (10), and (11) represent 

respectively capacity constraint at warehouses, storage constraint at location l, overtime 

constraint, and capacity constraint at plants. Equation (12) models component availability 

constraint, bill of materials hypothesis, and production lead-time of one period. 

4.2 Tactical planning simulator 

[Insert figure 4 about here] 
 

At each period p, the tactical plan is established by optimization with Cplex, the LP solver 

from ILOG. When this plan is calculated, the first period, p, of this plan is implemented 

(production, transportation, and hiring or overtime). The actual demand for period p in 

warehouse w for finished good g is established from the estimated demand from period 

Fwgt, to which we add a noise. This noise is a random number that follows a normal 

distribution with a mean equal to 0 and a standard deviation equal to a quarter of Fwgt. The 

choice of this standard deviation corresponds with an interval in which the actual demand 

ranges between 0 and 2 times the forecast. Knowing the actual demand, the costs of 
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implemented decisions for period p are calculated. The change between the forecasted plan 

and the actual plan is overstock or backorders due to the forecast error. 

To do the next iteration, new forecasts have to be calculated (Figure 4). A single 

exponential smoothing has been used. Another forecasting method could lead to better 

forecasts, but because we are seeking to study robustness, we must create a sufficient 

degree of uncertainty in order to generate some variability. The smoothing constant was 

fixed at 0.3. As Lee and Yu showed in their work, by fixing the constant at this level, the 

forecasts are sensitive to changes in the demand (Lee and Yu 1997). 

5 Experimental design, results, and analysis 

We first describe the context in which we use experimental design to define “robust” 

policies. Those experimental designs are explained in the second part, and the results are 

analyzed in the last one. 

5.1 The studied supply chain: Vallourec automotive division 

The Vallourec Group is a world leader in the production of seamless steel tubes and 

components for all industries. Vallourec’s automotive and industry division produces 

tubular products to satisfy the needs of equipment manufacturers and automakers. 

[Insert figure 5 about here] 
 

This division can be modeled as a three-level multi-facilities supply chain (see Figure 5). 

The first plant, which is called “the supplier,” produces welded tubes from slabs for two 

factories. These two factories draw the tubes through a series of dies of decreasing diameter 

until the desired gauge is attained. The products are stored in warehouses located near the 
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customers for just-in-time deliveries using a vendor management inventory policy. We will 

focus on the two main families of cold-drawn tubes. 

The studied SC is consequently composed of one supplier of raw material, two plants, two 

warehouses, and two products (g=2, n=1, m=2, o=2). This case must be considered as a 

benchmark. We studied with it four policies to demonstrate if it is possible to find one 

combination that improves robustness. The undertaken experimental design tries to give 

some answers on the policies to implement in Vallourec’s SC to induce some robustness. 

Once we demonstrated this property on this benchmark, we could evaluate that 

combination of policies in others contexts. 

5.2 Decision making description and experimental design 

We study the impact of four main different parameters and policies and their effect on the 

total cost robustness on demand variability. The policies we analyze are the main “tactics” 

from which supply chain managers can generally choose to establish their tactical plans: 

• Factor A: hiring and layoff costs, the human resource policy. At Level 1, hiring and 

layoff costs are arbitrarily high in such way the solver will stabilize workforce level. At 

level 2, they are low so as to allow flexibility in labor quantity. 

• Factor B: inventory costs in warehouses, which influence inventory policy. At level 1, 

they are low to allow inventory build-up if necessary. At level 2, they are high in order 

to drive the solver to establish a low inventory policy. 

• Factor C: backorder costs in warehouses, service level policy. With low backorder costs 

(level 1) the solver will authorize backorders if necessary and will conduct to poor-level 

service. With high costs, the solver will not allow backorders and then helps to 

maximize this indicator. 
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• Factor D: overtime costs in supplier and plants, the capacity policy. If theses costs are at 

a high level, the solver prevents the manager from using extra-capacity (level 1). At a 

low level (level 2), the solver will proposes to the decision-maker to use overtime if 

necessary. 

The first objective is to find the trade-off that gives a good compromise on robustness and 

costs among these four policies. Another objective is to understand the effect of these 

factors and consequently to establish some guidelines (best practices) useful for the 

managers. 

[Insert figure 6 about here] 
 

We used the L8(27) table (see Figure 6) to execute our experimental design because we used 

4 factors with 2 levels and choose to study 3 interactions. We made 10 replications of the 

same experiment in order to measure the variability caused by demand with the same set of 

parameters. The signal/noise ratio can then be measured (see Figure 7). 

[Insert figure 7 about here] 
 

5.3 Results and analysis 

The experiment results are given in Figure 7 and the effect of the different policies are 

given in Figure 8. 

[Insert figure 8 about here] 
 

The range is the difference between the largest and the smallest values observed for an 

experiment. 

The effects are calculated as the difference between the total cost average and the average 

of the experiments at the modality level. 
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It is interesting to observe that for the “backorder cost,” that is, factor C, the one concerning 

modality 2 leads to a significant minimization of tactical planning cost. The analysis of the 

S/N ratio shows that this modality is a good choice because the higher this ratio, the better 

the solution. This modality also reduces the range indicator. 

A variance analysis has been performed using the software PlanExpert. The results are 

shown in Figure 9. Because the differences between the levels of modalities of each factor 

are in the same range, factor C’s influence is considered as significant. Interaction AC is 

also significant. 

[Insert figure 9 about here] 
 

These results show that factor C and factor A should respectively be fixed at modality 2 and 

1 to reduce the tactical plan costs and to increase robustness in obtaining these costs. That 

can be accomplished by choosing a policy with a stable level of operators and high service 

level. The other factors do not influence significantly the result and can be fixed according 

to the manager’s wishes. Consequently, an equation can be written to approximate the 

optimal value given by the studied system: minimum average cost = average + A1 + B1 + 

C2 + D1. 

This means that if managers choose these factor modalities, they will obtain the following 

minimum average cost for their tactical plan: minimum average cost = 27064-360-160-

6618- 186 = 19740. 

An experiment of confirmation was run with a new set of demands to corroborate these 

results. This experiment gives an average of 19821, a standard deviation of 919, and an S/N 

ratio equal to –8.6.  
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The very low difference between the predicted optimal cost and the cost obtained by the 

experiment of confirmation shows that the control factors have an important effect on the 

average minimum cost. In this case, we can conclude that the parameters for the tactical 

plan were fixed at good modality levels. Nevertheless, the similar predictive model applied 

resulted in a standard deviation of 1057. Compared to 919, we can think that some noise 

factors have an effect on the variability of our system. 

To highlight the possible noise factors and to evaluate their effects, we implemented an 

orthogonal array. We used, as before, an L8(27) table for the controllable factors and an 

L4(23) table for the chosen noise factors (see Figures 10 and 11); for confidentiality reasons, 

we present here only two noise factors: transportation and production costs. These factors 

are effectively uncontrollable because they vary in accordance with the oil or energy costs, 

and consequently they affect, in an unpredictable way, manager strategies. 

[Insert figures 10 and 11 about here] 
 

Figure 12 shows the effects of the controllable and noise factors on the cost of the plans. 

We can easily observe that the effects of the controllable factors are the same as before. We 

observe also that the noise factors affect robustness differently: an increase of 

transportation costs leads to a small increase of the plan cost but increases the variability 

and the range of the total costs; production costs influence highly the average cost of the 

plan without having an impact on variability. We note that the ratio S/N is the same for 

these two factors: the S/N ratio depends on the effect on the range for A’, whereas it is 

influenced by the average for B’. 

[Insert figure 12 about here] 
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The result of such experimental design, taking into account noise factors, leads to 

comparing different policies in terms of their total costs and also their impact in terms of 

robustness. These experiments lead us to establish several equations that describe the 

behavior of Vallourec’s supply chain. These equations are used to compare tactical plans 

during the sales and operations plan process. 

6 Conclusion 

In this paper, we point out the importance of tactical planning to find optimal priorities and 

global resource capacities but we also give a robust plan. 

We use an experimental design to study the influence of different policies on tactical 

planning cost robustness. It is implemented for a multi-facilities supply-chain of Vallourec 

that has been used as a benchmark. We find for it policies’ modalities that allow 

minimizing total costs while increasing cost robustness to demand variability in that 

context. Future works could extend our work to others benchmarks and try to establish 

“best practices” for tactical plans according to economic context parameters and enterprise 

typology. 

These management policies take into account decision variables and noise factors. 

Nevertheless, the main difficulty consists in establishing factor modalities, especially when 

these values must be regularly updated because of unpredictable cost variations. 

Hence, new techniques of dynamic calculation of the tactical plan must be envisaged, as 

our analysis work has shown, by using a robust optimization. Because of the human, 

financial, and strategic constraints induced by tactical planning, the optimization criteria as 

well as the optimization model will need to be adapted in order to increase robustness of a 
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tactical plan in another environment than that studied. Further works must be done in that 

direction. 
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Figure 1. Experimental design according to Taguchi (Taguchi 1987) 
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Figure 2. Three-level supply chain 
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Figure 3. Simplified tactical planning process 
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Figure 4. Simulation process 
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Figure 5. Vallourec’s automotive and industry supply chain 
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Figure 6. Experimental design 
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Figure 7. Experimental design results 
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Figure 8. Effects of the studied factors on the different indicators 

 
Figure 9. Variance analysis with PlanExpert software 
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Figure 10. P-diagram of tactical plans simulator 
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Figure 11. Orthogonal array 
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Figure 12. Effects of the controllable and noise factors on the different indicators 

 
 


