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Introduction

Recent years have witnessed increasing interest in supply chain (SC) management problems [START_REF] Croom | Supply chain management: An analytical framework for critical literature review[END_REF]. However, no sufficient attention has been paid to planning and control models and performance measurements of these new structures for which coordination is more important (Walters 2005). Previously, industrial dynamics theory had been used to examine SC dynamic behaviour [START_REF] Forrester | Industrial Dynamics[END_REF][START_REF] Towill | Supply chain dynamics[END_REF]. Forrester proved that small variations in customer demand caused demand variations amplification along an SC and created system instability. This phenomenon is called the "bullwhip effect." One of the root causes of the bullwhip effect is the use of inadequate forecasting methods, which do not correctly quantify the degree of uncertainty in the market demand [START_REF] Chen | The bullwhip effect: Managerial insights on the impact of forecasting and information on variability in a supply chain[END_REF].

Supply chain planning Systems (SCPS) processes the information on demand and turns it into coordinated signals for all the supply chain entities. These signals are relayed to the supply chain partners through private or public network [START_REF] Vollmann | Manufacturing Planning And Control Systems[END_REF]. SCPS play a key role in propagating the amplified signal on demand and uncertainty.

Landeghem and Vanmaele argue that tactical planning is the most appropriate level in a supply chain planning system to provide buffers against uncertainty based on the time period over which they fluctuate [START_REF] Landeghem | Robust planning: A new paradigm for demand chain planning[END_REF]. On the one hand, the SC infrastructure is fixed by strategic level. On the other hand, there is often insufficient time to react to demand variations at the operational level because of the planning constraints. They conclude that demand uncertainty can be handled best at the tactical level.

Tactical levels set the global quantities through the supply chain as well as the availability of the resources in SC. The tactical plan compares alternatives and various indicators aggregated in weighted-cost functioning and selects the best plan [START_REF] Vollmann | Manufacturing Planning And Control Systems[END_REF].

Decisions on inventories, transportation, production, and capacity are simultaneously discussed as a trade-off between costs. Important results are the planned capacity and the level of seasonal inventory. These decisions cannot be made by short-term scheduling because of a shorter planning horizon. Supposing a linear relationship among costs, quantities, and constant parameters, that kind of decision making can easily be modelled by linear programming (LP). Advanced planning systems (APS) widely use these techniques to optimize tactical plan models [START_REF] Fleischmann | Advanced planning[END_REF].

LP is a method known to be sensitive to changes in parameters. Sensitivity analysis, used in this context, determines parameter ranges for which a solution remains optimal [START_REF] Koltaï | The difference between the managerial and mathematical interpretation of sensitivity analysis results in linear programming[END_REF]. However, it studies each parameter while keeping the others unchanged.

The manager cannot study suboptimal but less sensitive solutions of the simultaneous variations of the factors. Moreover, few APS give such information [START_REF] Stadtler | Supply Chain Management and Advanced Planning: Concepts Models, Software and Case Studies[END_REF]. So, these parameters and weights representing managers' policies have to be set properly in order to increase decisions' robustness.

Stochastic programming could be used to maximize or minimize the expected value of our objective function as Leung proved [START_REF] Leung | A robust optimization for stochastic aggregate production planning[END_REF]), but such an approach still does not succeed in solving general, real-sized problems [START_REF] Mulvey | A new scenario decomposition method for large-scale stochastic optimization[END_REF].

In supply chains where costs are a primary focus and flexibility is limited, one important factor in cost containment is the reduction of the number of schedule changes and an increase in planning robustness. The way uncertainty is processed by SCPS needs to be addressed more effectively. In this paper, we propose a planning process that improves robustness of tactical plan costs subject to controllable and uncontrollable parameters.

Taguchi worked out a method using fractional plans. It makes it possible to determine the effects of the factors of a system easily (see Figure 1) [START_REF] Taguchi | Orthogonal arrays and linear graph[END_REF]. By using the Taguchi method, we can offer a robust optimal solution to uncontrollable factors such as demand.

[Insert figure 1 about here] This paper is organized as follows. In the next section, an SC structure and a tactical planning process are defined. Measures and approaches of robustness are discussed in Section 3. In Section 4, a generic LP model is developed. The tactical planning simulator that incorporates the LP model is presented. The case study, experimental design, and results are analyzed in Section 5.

Supply chain description and tactical planning process

We first describe the general SC structure considered in this article and then specify the tactical planning process we plan to model.

Supply chain structure

The studied SC is a three-level multi-facilities SC producing q finished goods, g=1, …, q (see Figure 2). It is composed of the following:

• n suppliers plants, s=1, …, n • m plants, p=1, …, m • o warehouses, w=1, …, o
These q finished goods are produced in the m plants from q critical components produced and supplied by the n suppliers from one raw material. A raw material is used to make a component. It takes one period to produce a component from a raw material and a finished good from a component. Transportation lead time is one period. Each supplier's and plant's production is constrained by the number of working hours, material availability, and storage capacity. Warehouses can store a limited number of finished goods because of bulk constraints.

[Insert figure 2 about here]

Tactical planning process [Insert figure 3 about here]

A simplified tactical planning process is shown in Figure 3. At each rescheduling cycle, new forecasts are established according to the modifications in demand for the first period.

Then all the decision variables (inventory, backorders, transported quantities, production level, operators and overtime) are adjusted by optimization of an LP model such as those used in advanced planning systems. This model is formulated in section 4. The new plan maximises profitability, but is not concerned with modifications made in the productiondistribution and supply plans. These practices induce strong disturbances on the productive system and on the partners in the SC by generating the bullwhip effect. The overcosts created by these variations are not taken into account in the global optimization of the system.

Stability and robustness measures

In order to quantify robustness, several approaches are possible.

Stability definition

One approach tries to find a decision policy that reduces the number of changes to the plan while keeping the key performance measures fixed at their target level. This approach was used to deal with Material Requirements Planning (MRP) "nervousness" to improve plan "stability" [START_REF] Blackburn | Comparison of strategies to dampen nervousness in MRP systems[END_REF][START_REF] Yano | Interaction between frequency of rescheduling and the role of safety stock in material requirements planning systems[END_REF][START_REF] Ho | Evaluating the impact of operating environments on MRP system nervousness[END_REF][START_REF] Minifie | Interaction effects on MRP nervousness[END_REF], Sridaharan and Laforge 1990[START_REF] Jensen | Measuring and improving planning stability of reorder point lot-sizing policies[END_REF][START_REF] Kadipasaoglu | Alternative approaches for reducing schedule instability in multi-stage manufacturing under demand uncertainty[END_REF][START_REF] Heisig | Planning stability under (s, S) inventory control rules[END_REF]. For example, Kadipasaoglu and Sridharan show the difficulties induced by the nervousness because of uncertainty in demand, purchasing or in the dynamic calculation of lot size in MRP systems [START_REF] Kadipasaoglu | Alternative approaches for reducing schedule instability in multi-stage manufacturing under demand uncertainty[END_REF]. "Nervousness" has been defined as a lack of stability in the material requirements planning (Orlicky 1975, De Kok and[START_REF] De Kok | Nervousness in inventory management: Comparison of basic control rules[END_REF]. [START_REF] Van Donselaar | The impact of material coordination concepts on planning stability in supply chains[END_REF] compare the nervousness of the plan generated by MRP with that of their heuristic to improve stability of purchased orders. The considered indicator is the number of "reschedulings" encountered within the periods: if a quantity appears or disappears during a period, the indicator is incremented; however, if quantities are only modified, the indicator remains at the same level. The instability of a plan is defined by the number of modifications made on the levels of decision variables between two successive versions of the plan [START_REF] Pujawan | Schedule nervousness in a manufacturing system: A case study[END_REF]).

The term "stability" is thus related to the number of changes in a plan from one generation to the next. Depending on planning typology, the stability indicator can be linked to one or more different decision variables.

Several strategies have been proposed to increase the stability of plans using MRP systems:

• extend the planning horizon [START_REF] Carlson | The effectiveness of extending the horizon in rolling production schedules[END_REF]),

• freeze the master schedule within the planning horizon (Zhao and Lee 1993),

• ensure that buffer or safety stocks are in place [START_REF] Blackburn | Comparison of strategies to dampen nervousness in MRP systems[END_REF]),

• differentiate between large and small modifications [START_REF] Ho | Evaluating the impact of operating environments on MRP system nervousness[END_REF].

Robustness definition

Another approach tries to find the policy that yields the most stable outcome, that is, with low variability of the key performance measures such as service level or total supply chain inventory [START_REF] Lee | Worst-case formulations of model predictive control for systems with bounded parameters[END_REF].

The term "robustness" is generally associated with that of "risk" and "decision making" [START_REF] Kleijnen | Short-term robustness of production management systems: A case study[END_REF]Gaury 2003, Durieux and[START_REF] Durieux | Comparison of several design solutions of a real industrial manufacturing system using simulation and risk analysis[END_REF]. The underlying idea of system robustness is generally that the measured functions do not diverge significantly from a given value (Mulvey et al. 1995, Yu and[START_REF] Yu | A robust optimization model for stochastic logistic problems[END_REF]. Robustness is calculated by the standard deviation of each of the measured indicators.

The most common approach when studying robustness of a system is the well known Taguchi method [START_REF] Taguchi | Orthogonal arrays and linear graph[END_REF]. Its main principle is the following: instead of trying to eliminate or to reduce the causes for product (or process) performance variability, it aims at adjusting the design of a product (or a process), so that it is insensitive to the effects of uncontrollable variations [START_REF] Fowlkes | Engineering methods for robust product design: using Taguchi methods ® in technology and product development[END_REF]). Taguchi's methodology is based on the use of crossed designs of experiments and a quadratic loss function or a signal to noise ratio (S/N). This S/N ratio takes into account both the variability in the response data and the closeness of the average response to a target value [START_REF] Mezgar | Design and real-time reconfiguration of robust manufacturing systems by using design of experiments and artificial neural networks[END_REF]). The higher this indicator, the better the compromise is. It can be calculated in different ways depending on the situation: function to minimize, to maximize, or to reach a target.

Robustness studies and some approaches have been proposed in several areas such as quality management, manufacturing design (Lim et al. 1996, Durieux and[START_REF] Durieux | Comparison of several design solutions of a real industrial manufacturing system using simulation and risk analysis[END_REF], scheduling [START_REF] Davenport | A survey of techniques for scheduling with uncertainty[END_REF]Beck 2000, Artigues et al. 2005), control policies of production system [START_REF] Kleijnen | Short-term robustness of production management systems: A case study[END_REF] or operational design of supply chain [START_REF] Shang | Operational design of a supply chain system using the Taguchi method, response surface methodology, simulation, and optimization[END_REF]). However, in our knowledge, there is no work on robustness consideration when constructing tactical plan of supply chain network.

Several definitions exist for "robustness" of tactical plan. Zäpfel (Zäpfel 1998) and Roy [START_REF] Roy | A missing link in OR-DA: robustness analysis[END_REF]) consider a tactical plan as robust if an operational plan can be calculated for all the possible sets of demand. This definition is used by Lasserre and Mercé (Lasserre and Mercé 1990) in their work on plans breakdown.

In a very different context from ours, Kleijnen and Gaury study the robustness of a kanban loop according to two functions: the expected value of the work-in-process and the delivery rate [START_REF] Kleijnen | Short-term robustness of production management systems: A case study[END_REF]. In our study, the robustness of the tactical plan will be calculated by the standard deviation of the sum of the costs of decisions implemented at each period, because one of the main objectives of tactical planning is to be coherent about budgeting. Other performance indicators could have been chosen according to different planning typologies:

• Net margin • Capital in inventories or safety stock level • Service level and so on • … As in our problem, the objective is to minimize the sum of the resulting costs of the decisions implemented at each period, the signal/noise ratio, S/N, will be measured by ( 1), where y is the robust indicator [START_REF] Taguchi | Orthogonal arrays and linear graph[END_REF]. (1)

LP model and tactical planning simulator

LP model

The model described below is a classical linear program such as those used in advanced planning systems. It represents a decision situation in which loads and capacities have to be adjusted through a SC.

Indexes h: horizon of the tactical plan

t: index of the period of the plan t = 1, 2 …, h l: index for location, w for warehouses, p for plants, and s for suppliers i: index for item, g for finished goods, c for components, and m for raw materials 4.1.2 Parameters F wgt : demand forecast for period t calculated in warehouse w for finished good g V i : volume of item i expressed in volume unit S li : storage volume of item i at location l expressed in units of capacity t l : maximum number of overtime hours at location l per operator

x l : number of regular hours per operator at location l W li : number of hours to produce an item i at location l W w : capacity of warehouse w expressed in volume units 4.1.3 Variables I lit : inventory at the end of period t in location l for item i B wgt : backorders at the end of period t in warehouse w for finished good g R lit : quantity of item i received in period t at location l T klit : quantity of item i transported in period t from location k to location l Q lit : quantity of item i produced in period t at location l O lt : number of operators at location l in period t H lt : number of operators hired at location l in period t L lt : number of operators laid off at location l in period t T lt : number of overtime hours at location l in period t 
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(

) ( ) 
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Equations ( 3), ( 4), ( 5), ( 6), and ( 7) are respectively inventory balance at warehouses, transportation balance and transportation delay (one period) at location l for item i, inventory balance of item i produced at location l, inventory balance of item j received at location l, and operator balance at location l. Equations ( 8), ( 9), (10), and (11) represent respectively capacity constraint at warehouses, storage constraint at location l, overtime constraint, and capacity constraint at plants. Equation ( 12) models component availability constraint, bill of materials hypothesis, and production lead-time of one period.

Tactical planning simulator

[Insert figure 4 about here] At each period p, the tactical plan is established by optimization with Cplex, the LP solver from ILOG. When this plan is calculated, the first period, p, of this plan is implemented (production, transportation, and hiring or overtime). The actual demand for period p in warehouse w for finished good g is established from the estimated demand from period F wgt , to which we add a noise. This noise is a random number that follows a normal distribution with a mean equal to 0 and a standard deviation equal to a quarter of F wgt . The choice of this standard deviation corresponds with an interval in which the actual demand ranges between 0 and 2 times the forecast. Knowing the actual demand, the costs of implemented decisions for period p are calculated. The change between the forecasted plan and the actual plan is overstock or backorders due to the forecast error.

To do the next iteration, new forecasts have to be calculated (Figure 4). A single exponential smoothing has been used. Another forecasting method could lead to better forecasts, but because we are seeking to study robustness, we must create a sufficient degree of uncertainty in order to generate some variability. The smoothing constant was fixed at 0.3. As Lee and Yu showed in their work, by fixing the constant at this level, the forecasts are sensitive to changes in the demand [START_REF] Lee | Worst-case formulations of model predictive control for systems with bounded parameters[END_REF].

Experimental design, results, and analysis

We first describe the context in which we use experimental design to define "robust" policies. Those experimental designs are explained in the second part, and the results are analyzed in the last one.

The studied supply chain: Vallourec automotive division

The Vallourec Group is a world leader in the production of seamless steel tubes and components for all industries. Vallourec's automotive and industry division produces tubular products to satisfy the needs of equipment manufacturers and automakers.

[Insert figure 5 about here] This division can be modeled as a three-level multi-facilities supply chain (see Figure 5).

The first plant, which is called "the supplier," produces welded tubes from slabs for two factories. These two factories draw the tubes through a series of dies of decreasing diameter until the desired gauge is attained. The products are stored in warehouses located near the customers for just-in-time deliveries using a vendor management inventory policy. We will focus on the two main families of cold-drawn tubes.

The studied SC is consequently composed of one supplier of raw material, two plants, two warehouses, and two products (g=2, n=1, m=2, o=2). This case must be considered as a benchmark. We studied with it four policies to demonstrate if it is possible to find one combination that improves robustness. The undertaken experimental design tries to give some answers on the policies to implement in Vallourec's SC to induce some robustness.

Once we demonstrated this property on this benchmark, we could evaluate that combination of policies in others contexts.

Decision making description and experimental design

We study the impact of four main different parameters and policies and their effect on the total cost robustness on demand variability. The policies we analyze are the main "tactics" from which supply chain managers can generally choose to establish their tactical plans:

• Factor A: hiring and layoff costs, the human resource policy. At Level 1, hiring and layoff costs are arbitrarily high in such way the solver will stabilize workforce level. At level 2, they are low so as to allow flexibility in labor quantity.

• Factor B: inventory costs in warehouses, which influence inventory policy. At level 1, they are low to allow inventory build-up if necessary. At level 2, they are high in order to drive the solver to establish a low inventory policy.

• Factor C: backorder costs in warehouses, service level policy. With low backorder costs (level 1) the solver will authorize backorders if necessary and will conduct to poor-level service. With high costs, the solver will not allow backorders and then helps to maximize this indicator.

• Factor D: overtime costs in supplier and plants, the capacity policy. If theses costs are at a high level, the solver prevents the manager from using extra-capacity (level 1). At a low level (level 2), the solver will proposes to the decision-maker to use overtime if necessary.

The first objective is to find the trade-off that gives a good compromise on robustness and costs among these four policies. Another objective is to understand the effect of these factors and consequently to establish some guidelines (best practices) useful for the managers.

[Insert figure 6 about here] We used the L 8 (2 7 ) table (see Figure 6) to execute our experimental design because we used 4 factors with 2 levels and choose to study 3 interactions. We made 10 replications of the same experiment in order to measure the variability caused by demand with the same set of parameters. The signal/noise ratio can then be measured (see Figure 7).

[Insert figure 7 about here]

Results and analysis

The experiment results are given in Figure 7 and the effect of the different policies are given in Figure 8. The range is the difference between the largest and the smallest values observed for an experiment.

The effects are calculated as the difference between the total cost average and the average of the experiments at the modality level.

It is interesting to observe that for the "backorder cost," that is, factor C, the one concerning modality 2 leads to a significant minimization of tactical planning cost. The analysis of the S/N ratio shows that this modality is a good choice because the higher this ratio, the better the solution. This modality also reduces the range indicator.

A variance analysis has been performed using the software PlanExpert. The results are shown in Figure 9. Because the differences between the levels of modalities of each factor are in the same range, factor C's influence is considered as significant. Interaction AC is also significant.

[Insert figure 9 about here] These results show that factor C and factor A should respectively be fixed at modality 2 and 1 to reduce the tactical plan costs and to increase robustness in obtaining these costs. That can be accomplished by choosing a policy with a stable level of operators and high service level. The other factors do not influence significantly the result and can be fixed according to the manager's wishes. Consequently, an equation can be written to approximate the optimal value given by the studied system: minimum average cost = average + A1 + B1 + C2 + D1. This means that if managers choose these factor modalities, they will obtain the following minimum average cost for their tactical plan: minimum average cost = 27064-360-160-6618-186 = 19740. An experiment of confirmation was run with a new set of demands to corroborate these results. This experiment gives an average of 19821, a standard deviation of 919, and an S/N ratio equal to -8.6.

The very low difference between the predicted optimal cost and the cost obtained by the experiment of confirmation shows that the control factors have an important effect on the average minimum cost. In this case, we can conclude that the parameters for the tactical plan were fixed at good modality levels. Nevertheless, the similar predictive model applied resulted in a standard deviation of 1057. Compared to 919, we can think that some noise factors have an effect on the variability of our system.

To highlight the possible noise factors and to evaluate their effects, we implemented an orthogonal array. We used, as before, an L 8 (2 7 ) table for the controllable factors and an L 4 (2 3 ) table for the chosen noise factors (see Figures 10 and11); for confidentiality reasons, we present here only two noise factors: transportation and production costs. These factors are effectively uncontrollable because they vary in accordance with the oil or energy costs, and consequently they affect, in an unpredictable way, manager strategies.

[Insert figures 10 and 11 about here]

Figure 12 shows the effects of the controllable and noise factors on the cost of the plans.

We can easily observe that the effects of the controllable factors are the same as before. We observe also that the noise factors affect robustness differently: an increase of transportation costs leads to a small increase of the plan cost but increases the variability and the range of the total costs; production costs influence highly the average cost of the plan without having an impact on variability. We note that the ratio S/N is the same for these two factors: the S/N ratio depends on the effect on the range for A', whereas it is influenced by the average for B'.

[Insert figure 12 about here]

The result of such experimental design, taking into account noise factors, leads to comparing different policies in terms of their total costs and also their impact in terms of robustness. These experiments lead us to establish several equations that describe the behavior of Vallourec's supply chain. These equations are used to compare tactical plans during the sales and operations plan process.

Conclusion

In this paper, we point out the importance of tactical planning to find optimal priorities and global resource capacities but we also give a robust plan.

We use an experimental design to study the influence of different policies on tactical planning cost robustness. It is implemented for a multi-facilities supply-chain of Vallourec that has been used as a benchmark. We find for it policies' modalities that allow minimizing total costs while increasing cost robustness to demand variability in that context. Future works could extend our work to others benchmarks and try to establish "best practices" for tactical plans according to economic context parameters and enterprise typology.

These management policies take into account decision variables and noise factors.

Nevertheless, the main difficulty consists in establishing factor modalities, especially when these values must be regularly updated because of unpredictable cost variations.

Hence, new techniques of dynamic calculation of the tactical plan must be envisaged, as our analysis work has shown, by using a robust optimization. Because of the human, financial, and strategic constraints induced by tactical planning, the optimization criteria as well as the optimization model will need to be adapted in order to increase robustness of a tactical plan in another environment than that studied. Further works must be done in that direction.

Zäpfel G. Customer-order-driven production: an economical concept for responding to demand uncertainty, International Journal of Production Economics, 56/57, 1998, 699-709.

Zhao, X., Lee, T.S., Freezing the master production schedule for material requirements planning systems under demand uncertainty, Journal of Operations Management, 1993, 11(2), 185-205. 

  Cs li : cost of storage per unit of item i at location l Cb wg : cost of backorders per unit of finished good g at warehouse w CT kli : cost of transportation from location k to location l per unit of item i Cpli: cost of production per unit of item i at location l Cw l : wages per operator per period at location l Ch l : cost of hiring an operator at location l Cl l : layoff cost of an operator at location l Ct l : cost per overtime hour at location l 4.1.5 Objective function The objective function (2) is computed from of storage and backorders costs at warehouses, transportation costs from plants to warehouses, costs of plants (storages, production, wages, etc.), and transportation costs from supplying facilities to plants and costs of facilities producing the raw materials (storages, production, wages, etc.).
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