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Abstract

We study the performances of an adaptive procedure based on a convex

combination, with data-driven weights, of term-by-term thresholded wavelet

estimators. For the bounded regression model, with random uniform design,

and the nonparametric density model, we show that the resulting estimator is

optimal in the minimax sense over all Besov balls under the L
2 risk, without

any logarithm factor.

1 Introduction

Wavelet shrinkage methods have been very successful in nonparametric function esti-

mation. They provide estimators that are spatially adaptive and (near) optimal over

a wide range of function classes. Standard approaches are based on the term-by-term

thresholds. A well-known example is the hard thresholded estimator introduced by

[21]. If we observe n statistical data and if the unknown function f has an expansion

of the form f =
∑

j

∑

k βj,kψj,k where {ψj,k, j, k} is a wavelet basis and (βj,k)j,k is the

associated wavelet coefficients, then the term-by-term wavelet thresholded method

consists in three steps:

1. a linear step corresponding to the estimation of the coefficients βj,k by some

estimators β̂j,k constructed from the data,
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2. a non-linear step consisting in a thresholded procedure Tλ(β̂j,k)1I{|β̂j,k|≥λj} where

λ = (λj)j is a positive sequence and Tλ(β̂j,k) denotes a certain transformation

of the β̂j,k which may depend on λ,

3. a reconstruction step of the form f̂λ =
∑

j∈Ωn

∑

k Tλ(β̂j,k)1I{|β̂j,k|≥λj}ψj,k where

Ωn is a finite set of integers depending on the number n of data.

Naturally, the performances of f̂λ strongly depend on the choice of the threshold

λ. For the standard statistical models (regression, density,...), the most common

choice is the universal threshold introduced by [21]. It can be expressed in the form:

λ∗ = (λ∗j)j where λ∗j = c
√

(log n)/n where c > 0 denotes a large enough constant. In

the literature, several technics have been proposed to determine the ’best’ adaptive

threshold. There are, for instance, the RiskShrink and SureShrink methods (see

[20, 21]), the cross-validation methods (see [45], [53] and [31]), the methods based

on hypothesis tests (see [1] and [2]), the Lepski methods (see [33]) and the Bayesian

methods (see [17] and [3]). Most of them are described in detailed in [45] and [4].

In the present paper, we propose to study the performances of an adaptive wavelet

estimator based on a convex combination of f̂λ’s. In the framework of nonparametric

density estimation and bounded regression estimation with random uniform design,

we prove that, in some sense, it is at least as good as the term-by-term thresh-

olded estimator f̂λ defined with the ’best’ threshold λ. In particular, we show that

this estimator is optimal, in the minimax sense, over all Besov balls under the L2

risk. The proof is based on a non-adaptive minimax result proved by [19] and some

powerful oracle inequality satisfied by aggregation methods. There are two steps in

our approach. A first step, called the training step, where non-adaptive thresholded

wavelet estimators are constructed for different thresholds. A second step, called

learning step, where an aggregation scheme is worked out to realize the adaptation

to the smoothness.

The exact oracle inequality of Section 2 is given in a general framework. Two

aggregation procedures satisfy this oracle inequality. The well known ERM (for

Empirical Risk Minimization) procedure (cf. [51], [38] and references therein) and an

exponential weighting aggregation scheme, which has been studied, among others, by

[5], [8], [40], [41] and [39]. There is a recursive version of this scheme studied by [13],

[54], [35] and [36]. In the sequential prediction problem, weighted average predictions

2



with exponential weights have been widely studied (cf. e.g. [52] and [15]). A recent

result of [42] shows that the ERM procedure is suboptimal for strictly convex losses

(which is the case for density and regression estimation when the integrated squared

risk is used). Thus, in our case it is better to combine the f̂λ’s, for λ lying in a

grid, using the aggregation procedure with exponential weights than using the ERM

procedure. Moreover, from a computation point of view the aggregation scheme with

exponential weights does not require any minimization step contrarily to the ERM

procedure.

The paper is organized as follows. Section 2 presents general oracle inequalities

satisfied by two aggregation methods. Section 3 describes the main procedure of the

study and investigates its minimax performances over Besov balls for the L2 risk.

All the proofs are postponed in the last section.

2 Oracle Inequalities

2.1 Framework

Let (Z, T ) a measurable space. Denote by P the set of all probability measures on

(Z, T ). Let F be a function from P with values in an algebra F . Let Z be a random

variable with values in Z and denote by π its probability measure. Let Dn be a

family of n i.i.d. observations Z1, . . . , Zn having the common probability measure

π. The probability measure π is unknown. Our aim is to estimate F (π) from the

observations Dn.

In our estimation problem, we assume that we have access to an ”empirical risk”.

It means that there exists Q : Z ×F 7−→ R such that the risk of an estimate f ∈ F
of F (π) is of the form

A(f) = E [Q(Z, f)] .

In what follows, we present several statistical problems which can be written in this

way. If the minimum over all f in F

A∗ def
= min

f∈F
A(f)

is achieved by at least one function, we denote by f ∗ a minimizer in F . In this paper
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we will assume that minf∈F A(f) is achievable, otherwise we replace f ∗ by f ∗
n, an

element in F satisfying A(f ∗
n) ≤ inff∈F A(f) + n−1.

In most of the cases f ∗ will be equal to our aim F (π) up to some known additive

terms. We don’t know the risk A, since π is not available from the statistician, thus,

instead of minimizing A over F we consider an empirical version of A constructed

from the observations Dn. The main interest of such a framework is that we have

access to an empirical version of A(f) for any f ∈ F . It is denoted by

An(f) =
1

n

n
∑

i=1

Q(Zi, f). (1)

We exhibit three statistical models having the previous form of estimation.

Bounded Regression: Take Z = X × [0, 1], where (X ,A) is a measurable

space, Z = (X, Y ) a couple of random variables on Z, with probability distribution

π, such that X takes its values in X and Y takes its values in [0, 1]. We assume that

the conditional expectation E[Y |X] exists. In the regression framework, we want to

estimate the regression function

f ∗(x) = E [Y |X = x] , ∀x ∈ X .

Usually, the variable Y is not an exact function of X. Given is an input X ∈ X ,

we are not able to predict the exact value of the output Y ∈ [0, 1]. This issue can

be seen in the regression framework as a noised estimation. It means that in each

spot X of the input set, the predicted label Y is concentrated around E [Y |X] up to

an additional noise with null mean denoted by ζ . The regression model can then be

written as

Y = E [Y |X] + ζ.

Take F the set of all measurable functions from X to [0, 1]. Define ||f ||2L2(P X) =
∫

X
f 2(x)dPX(x) for all functions f in L2(X ,A, PX) where PX is the probability

measure of X. Consider

Q((x, y), f) = (y − f(x))2, (2)

for any (x, y) ∈ X × R and f ∈ F . Pythagore’s Theorem yields

A(f) = E [Q((X, Y ), f)] = ||f ∗ − f ||2L2(P X) + E
[

ζ2
]

.
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Thus f ∗ is a minimizer of A(f) and A∗ = E[ζ2].

Density estimation: Let (Z, T , µ) be a measured space. Let Z be a random

variable with values in Z and denote by π its probability distribution. We assume

that π is absolutely continuous w.r.t. to µ and denote by f ∗ one version of the

density. Consider F the set of all density functions on (Z, T , µ). We consider

Q(z, f) = − log f(z),

for any z ∈ Z and f ∈ F . We have

A(f) = E [Q(Z, f)] = K(f ∗|f) −
∫

Z

log(f ∗(z))dπ(z).

Thus, f ∗ is a minimizer of A(f) and A∗ = −
∫

Z
log(f ∗(z))dπ(z).

Instead of using the Kullback-Leiber loss, one can use the quadratic loss. For this

setup, consider F the set L2(Z, T , µ) of all measurable functions with an integrated

square. Define

Q(z, f) =

∫

Z

f 2dµ− 2f(z), (3)

for any z ∈ Z and f ∈ F . We have, for any f ∈ F ,

A(f) = E [Q(Z, f)] = ||f ∗ − f ||2L2(µ) −
∫

Z

(f ∗(z))2dµ(z).

Thus, f ∗ is a minimizer of A(f) and A∗ = −
∫

Z
(f ∗(z))2dµ(z).

Classification framework: Let (X ,A) be a measurable space. We assume

that the space Z = X × {−1, 1} is endowed with an unknown probability measure

π. We consider a random variable Z = (X, Y ) with values in Z with probability

distribution π. We denote by PX the marginal of π on X and η(x) = P(Y = 1|X = x)

the conditional probability function of Y = 1 knowing that X = x. Denote by F
the set of all measurable functions from X to R. Let φ be a function from R to R.

For any f ∈ F consider the φ−risk

A(f) = E[Q((X, Y ), f)],

where the loss is given by Q((x, y), f) = φ(yf(x))for any (x, y) ∈ X × {−1, 1}.
Most of the time a minimizer f ∗ of the φ−risk A over F or its sign is equal to

the Bayes rule f ∗(x) = Sign(2η(x) − 1), ∀x ∈ X (cf. [56]).
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In this paper we obtain an oracle inequality in the general framework described

at the beginning of this Subsection. Then, we use it in the density estimation and

the bounded regression frameworks. For applications of this oracle inequality in the

classification setup, we refer to [41] and [40].

Now, we introduce an assumption which improve the quality of estimation in our

framework. This assumption has been first introduced by [43], for the problem of

discriminant analysis, and [50], for the classification problem. With this assumption,

parametric rates of convergence can be achieved, for instance, in the classification

problem (cf. [50], [48]).

Margin Assumption(MA): The probability measure π satisfies the margin as-

sumption MA(κ, c,F0), where κ ≥ 1, c > 0 and F0 is a subset of F if

E[(Q(Z, f) −Q(Z, f ∗))2] ≤ c(A(f) −A∗)1/κ,

for any function f ∈ F0.

In the bounded regression setup, it is easy to see that any probability distribution

π on X × [0, 1] naturally satisfies the margin assumption MA(1, 16,F1), where F1 is

the set of all measurable functions from X to [0, 1]. In density estimation with the

integrated squared risk, all probability measures π on (Z, T ) absolutely continuous

w.r.t. the measure µ with one version of its density a.s. bounded by a constant

B ≥ 1, satisfies the margin assumption MA(1, 16B2,FB) where FB is the set of all

non-negative function f ∈ L2(Z, T , µ) bounded by B.

Actually, the margin assumption is linked to the convexity of the underlying

loss. In density and regression estimation it is naturally satisfied with the better

margin parameter κ = 1, but, for non-convex loss (for instance in classification)

this assumption does not hold naturally (cf. [42] for a discussion on the margin

assumption and for examples of losses which does not satisfied naturally the margin

assumption with parameter κ = 1).

2.2 Aggregation Procedures

Let’s work with the notations introduced in the beginning of the previous Subsection.

The aggregation framework considered, among others, by [34], [54], [13],[46], [49],

[5], [6] is the following: take F0 a finite subset of F , our aim is to mimic (up to an
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additive residual) the best function in F0 w.r.t. the risk A. For this, we consider

two aggregation procedures.

The Aggregation with Exponential Weights aggregate (AEW) over F0 is defined

by

f̃ (AEW )
n

def
=

∑

f∈F0

w(n)(f)f, (4)

where the exponential weights w(n)(f) are defined by

w(n)(f) =
exp (−nAn(f))

∑

g∈F0
exp (−nAn(g))

, ∀f ∈ F0. (5)

We consider the Empirical Risk Minimization procedure (ERM) over F0 defined

by

f̃ (ERM)
n ∈ Arg min

f∈F0

An(f). (6)

2.3 Oracle Inequalities

In this Subsection we state an exact oracle inequality satisfied by the ERM proce-

dure and the AEW procedure (in the convex case) in the general framework of the

beginning of Subsection 2.1. From this exact oracle inequality we deduce two others

oracle inequalities in the density estimation and the bounded regression framework.

We introduce a quantity which is going to be our residual term in the exact oracle

inequality. We consider

γ(n,M, κ,F0, π, Q) =















(

B(F0,π,Q)
1
κ log M

β1n

)1/2

if B(F0, π, Q) ≥
(

log M
β1n

)
κ

2κ−1

(

log M
β2n

)
κ

2κ−1

otherwise,

where B(F0, π, Q) denotes minf∈F0
(A(f) −A∗), κ ≥ 1 is the margin parameter, π is

the underlying probability measure, Q is the loss function,

β1 = min
( log 2

96cK
,
3
√

log 2

16K
√

2
,

1

8(4c+K/3)
,

1

576c

)

. (7)

and

β2 = min
(1

8
,
3 log 2

32K
,

1

2(16c+K/3)
,
β1

2

)

, (8)

where the constant c > 0 appears in MA(κ, c,F0).
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Theorem 1. Consider the general framework introduced in the beginning of Subsec-

tion 2.1. Let F0 denote a finite subset of M elements f1, . . . , fM in F , where M ≥ 2

is an integer. Assume that the underlying probability measure π satisfies the mar-

gin assumption MA(κ, c,F0) for some κ ≥ 1, c > 0 and |Q(Z, f) − Q(Z, f ∗)| ≤ K

a.s., for any f ∈ F0, where K ≥ 1 is a constant. The Empirical Risk Minimization

procedure (6) satisfies

E[A(f̃ (ERM)
n ) − A∗] ≤ min

j=1,...,M
(A(fj) − A∗) + 4γ(n,M, κ,F0, π, Q).

Moreover, if f 7−→ Q(z, f) is convex for π-almost z ∈ Z, then the AEW procedure

satisfies the same oracle inequality as the ERM procedure.

Now, we give two corollaries of Theorem 1 in the density estimation and bounded

regression framework.

Corollary 1. Consider the bounded regression setup. Let f1, . . . , fM be M functions

on X with values in [0, 1]. Let f̃n denote either the ERM or the AEW procedure. For

β2 defined in (8) and for any ǫ > 0, we have

E[||f ∗ − f̃n||2L2(P X)] ≤ (1 + ǫ) min
j=1,...,M

(||f ∗ − fj ||2L2(P X)) +
4 logM

ǫβ2n
.

Corollary 2. Consider the density estimation framework. Assume that the under-

lying density function f ∗ to estimate is bounded by B ≥ 1. Let f1, . . . , fM be M

functions bounded from above and below by B. Let f̃n denote either the ERM or the

AEW procedure. For β2 defined in (8) and any ǫ > 0, we have

E[||f ∗ − f̃n||2L2(µ)] ≤ (1 + ǫ) min
j=1,...,M

(||f ∗ − fj ||2L2(µ)) +
4 logM

ǫβ2n
. (9)

In both of the last Corollaries, the ERM and the AEW procedures can both be

used to mimic the best fj among the fj ’s. Nevertheless, from a computational point

of view the AEW procedure does not require any minimization step contrarily to

the ERM procedure. Moreover, from a theoretical point of view the ERM procedure

can not mimic the best fj among the fj ’s as fast as the cumulative aggregate with

exponential weights (it is an average of AEW procedures). For a comparison between

these procedures we refer to [42]. The constants of aggregation multiplying the

residual term in Theorem 1 and in both of the following Corollaries come from the

proof and are certainly not optimal. We did not make any serious attempt to optimize

them.
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3 Multi-thresholding wavelet estimator

In the present section, we propose an adaptive estimator constructed from aggre-

gation technics and wavelet thresholding methods. For the density model and the

regression model with uniform random design, we show that it is optimal in the

minimax sense over a wide range of function spaces.

3.1 Wavelets and Besov balls

We consider an orthonormal wavelet basis generated by dilation and translation of

a compactly supported ”father” wavelet φ and a compactly supported ”mother”

wavelet ψ. For the purposes of this paper, we use the periodized wavelets bases on

the unit interval. Let

φj,k = 2j/2φ(2jx− k), ψj,k = 2j/2ψ(2jx− k)

be the elements of the wavelet basis and

φper
j,k (x) =

∑

l∈Z

φj,k(x− l), ψper
j,k (x) =

∑

l∈Z

ψj,k(x− l),

there periodized versions, defined for any x ∈ [0, 1], j ∈ N and k ∈ {0, . . . , 2j − 1}.
There exists an integer τ such that the collection ζ defined by ζ = {φper

j,k , k = 0, ..., 2τ−
1; ψper

j,k , j = τ, ...,∞, k = 0, ..., 2j−1} constitutes an orthonormal basis of L2([0, 1]).

In what follows, the superscript ”per” will be suppressed from the notations for

convenience. For any integer l ≥ τ , a square-integrable function f ∗ on [0, 1] can be

expanded into a wavelet series

f ∗(x) =

2l−1
∑

k=0

αl,kφl,k(x) +

∞
∑

j=l

2j−1
∑

k=0

βj,kψj,k(x),

where αj,k =
∫ 1

0
f ∗(x)φj,k(x)dx and βj,k =

∫ 1

0
f ∗(x)ψj,k(x)dx. Further details on

wavelet theory can be found in [44] and [18].

Now, let us define the main function spaces of the study. Let M ∈ (0,∞),

s ∈ (0, N), p ∈ [1,∞) and q ∈ [1,∞). Let us set βτ−1,k = ατ,k. We say that a

function f ∗ belongs to the Besov balls Bs
p,q(M) if and only if the associated wavelet
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coefficients satisfy

[

∞
∑

j=τ−1

[

2j(s+1/2−1/p)
(

2j−1
∑

k=0

|βj,k|p
)1/p]q]1/q

≤M, if q ∈ [1,∞),

with the usual modification if q = ∞. We work with the Besov balls because of their

exceptional expressive power. For a particular choice of parameters s, p and q, they

contain the Hölder and Sobolev balls (see [44]).

3.2 Term-by-term thresholded estimator

In this Subsection, we consider the estimation of an unknown function f ∗ in L2([0, 1])

from a general situation. We only assume to have n observations gathered in the

data set Dn from which we are able to estimate the wavelet coefficients αj,k and

βj,k of f ∗ in the basis ζ . We denote by α̂j,k and β̂j,k such estimates. Finally, let us

mention that all the constants of our study are independent of f ∗ and n.

Definition 1 (Term-by-term thresholded estimator). Let j1 be an integer sat-

isfying (n/ logn) ≤ 2j1 < 2(n/ logn). For any integer l ≥ τ , let λ = (λl, ...λj1) be a

vector of positive integers. Let us consider the estimator f̂λ : Dn × [0, 1] → R defined

by

f̂λ(Dn, x) =

2τ−1
∑

k=0

α̂τ,kφτ,k(x) +

j1
∑

j=τ

2j−1
∑

k=0

Υλj
(β̂j,k)ψj,k(x), (10)

where for all u ∈ (0,∞) the operator Υu is such that there exist two constants

C1, C2 > 0 satisfying

|Υu(x) − y|2 ≤ C1(min(y, C2u)
2 + (|x− y|2)1I{|x−y|≥2−1u}), (11)

for any x ∈ R and y ∈ R.

The inequality (11) holds for the hard thresholding rule Υhard
u (x) = x1I{|x|>u}, the

soft thresholding rule Υsoft
u (x) = sign(x)(|x| −u)1I{|x|>u} (see [21], [22] and [19]) and

the non-negative garrote thresholding rule ΥNG
u (x) = (x− u2/x) 1I{|x|>u} (see [26]).

If we consider the minimax point of view over Besov balls under the integrated

squared risk, then [19] makes the conditions on α̂j,k, β̂j,k and the threshold λ such that

the estimator f̂λ(Dn, .) defined by (10) is optimal for numerous statistical models.

This result is recalled in Theorem 2 below.
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Theorem 2 (Delyon and Juditsky (1996)). Let us consider the general statistical

framework described in the beginning of the present section. Suppose that the two

following assumptions hold.

• Moments inequality: There exists a constant C > 0 such that, for any j ∈
{τ − 1, ..., j1}, k ∈ {0, ..., 2j − 1} and n large enough, we have

E(|β̂j,k − βj,k|4) ≤ Cn−2, where we take β̂τ−1,k = α̂τ,k. (12)

• Large deviation inequality: There exist two constants C > 0 and ρ∗ > 0 such

that, for any a, j ∈ {τ, ..., j1}, k ∈ {0, ..., 2j − 1} and n large enough, we have

P

(

2
√
n|β̂j,k − βj,k| ≥ ρ∗

√
a
)

6 C2−4a. (13)

Let us consider the term-by-term thresholded estimator f̂vjs
(Dn, .) defined by (10)

with the threshold

vjs = (ρ∗(j − js)+)j=τ,...,j1,

where js is an integer such that n1/(1+2s) ≤ 2js < 2n1/(1+2s). Then, there exists a

constant C > 0 such that, for any p ∈ [1,∞], s ∈ (1/p,N ], q ∈ [1,∞] and n large

enough, we have:

sup
f∈Bs

p,q(L)

E[‖f̂vjs
(Dn, .) − f ∗‖2

L2([0,1])] 6 Cn−2s/(2s+1).

The rate of convergence Vn = n−2s/(1+2s) is minimax for numerous statistical

models, where s is a regularity parameter. For the density model and the regression

model with uniform design, we refer the reader to [19] for further details about the

choice of the estimator β̂j,k and the value of the thresholding constant ρ∗. Starting

from this non-adaptive result, we use aggregation methods to construct an adaptive

estimator at least at good in the minimax sense as f̂vjs
(Dn, .).

3.3 Multi-thresholding estimator

Let us divide our observations Dn into two disjoint subsamples Dm, of size m, made

of the first m observations andD(l), of size l, made of the last remaining observations,

where we take

l = ⌈n/logn⌉ and m = n− l.

11



The first subsample Dm, sometimes called ”training sample”, is used to construct

a family of estimators (in our case this is thresholded estimators) and the second

subsample D(l), called the ”training sample”, is used to construct the weights of the

aggregation procedure.

Remark 1. From a theoretical point of view we can take m = l which means that

we use as many observations for the estimation step as for the learning step. But,

in practice it is better to use a greater part of the observations for the construction

of the estimators and the last observations for the aggregation procedure, because

if the basis estimators that we aggregate, are not good, then the obtained aggregate

is likely to be as bad as the prior estimators. Another interesting thing is that we

can split the whole sample Dn in many different ways. For instance we can take m

observations randomly in Dn to form the training subsample and the last remaining

observations for the learning subsample. We can also take an average of different

aggregates constructed from different splits of the initial sample Dn and by a simple

argument of convexity it is easy to prove that the averaged aggregate has a better risk

than the others aggregates constructed only from one split.

Definition 2. Let us consider the term-by-term thresholded estimator described in

(10). Assume that we want to estimate a function f ∗ from [0, 1] with values in [a, b].

Consider the projection function

ha,b(y) = max(a,min(y, b)), ∀y ∈ R. (14)

We define the multi-thresholding estimator f̃n : [0, 1] → [a, b] at a point x ∈ [0, 1]

by the following aggregate

f̃n(x) =
∑

u∈Λn

w(l)(ha,b(f̂vu(Dm, .)))ha,b(f̂vu(Dm, x)), (15)

where Λn = {0, ..., logn}, vu = (ρ(j − u)+)j=τ,...,j1, ∀u ∈ Λn and ρ is a positive

constant depending on the model worked out and

w(l)(ha,b(f̂vu(Dm, .))) =
exp

(

−lA(l)(ha,b(f̂vu(Dm, .)))
)

∑

γ∈Λn
exp

(

−lA(l)(ha,b(f̂vγ (Dm, .)))
) , ∀u ∈ Λn,

12



where A(l)(f) = 1
l

∑n
i=m+1Q(Zi, f) is the empirical risk constructed from the l last

observations, for any function f and for the choice of a loss function Q depending

on the model considered (cf. (2) and (3) for examples).

The principle of the construction of the multi-thresholding estimator f̃n is to

use aggregation technics to easily construct an adaptive optimal estimator of f ∗. It

realizes a kind of ’adaptation to the threshold’ by selecting the best threshold vu for

u describing the set Λn. Since we know that there exists an element in Λn depending

on the regularity of f ∗ such that the non-adaptive estimator f̂vu(Dm, .) is optimal

in the minimax sense (see Theorem 2), the multi-thresholding estimator is optimal

independently of the regularity of f ∗.

4 Performances of the multi-thresholding estima-

tor

This section is devoted to the minimax performances of the multi-thresholding esti-

mator defined in (15) under the L2([0, 1]) risk over Besov balls. Firstly, we consider

the framework of the density model. Secondly, we focus our attention on the bounded

regression with uniform random design. Finally, we compare these results with some

well-known wavelet thresholded procedures.

4.1 Density model

In the density estimation model, Theorem 3 below investigates rates of convergence

achieved by the multi-thresholding estimator (defined by (15)) under the L2([0, 1])

risk over Besov balls.

Theorem 3. Let us consider the problem of estimating f ∗ from the density model.

Assume that there exists B ≥ 1 such that the underlying density function f ∗ to

estimate is bounded by B. Let us consider the multi-thresholding estimator defined

in (15) where we take a = 0, b = B, ρ such that

ρ2

8B + (8ρ/(3
√

2))(‖ψ‖∞ +B)
≥ 4(log 2)

13



and

α̂j,k =
1

n

n
∑

i=1

φj,k(Xi), β̂j,k =
1

n

n
∑

i=1

ψj,k(Xi). (16)

Then, there exists a constant C > 0 such that

sup
f∗∈Bs

p,q(L)

E[‖f̃n − f ∗‖2
L2([0,1])] 6 Cn−2s/(2s+1),

for any p ∈ [1,∞], s ∈ (p−1, N ], r ∈ [1,∞] and integer n.

The rate of convergence Vn = n−2s/(1+2s) is minimax over Bs
p,q(L). Further details

about the minimax rate of convergence over Besov balls under the L2([0, 1]) risk for

the density model can be found in [19] and [29]. For further details about the density

estimation via adaptive wavelet thresholded estimators, see [23], [19] and [47]. See

also [30] for a practical study.

4.2 Bounded regression

In the framework of the bounded regression model with uniform random design, The-

orem 4 below investigates the rate of convergence achieved by the multi-thresholding

estimator defined by (15) under the L2([0, 1]) risk over Besov balls.

Theorem 4. Let us consider the problem of estimating the regression function f ∗

in the bounded regression model with random uniform design. Let us consider the

multi-thresholding estimator (15) with ρ such that

ρ2

8 + (8ρ/(3
√

2))(‖ψ‖∞ + 1)
≥ 4(log 2)

and

α̂j,k =
1

n

n
∑

i=1

Yiφj,k(Xi), β̂j,k =
1

n

n
∑

i=1

Yiψj,k(Xi). (17)

Then, there exists a constant C > 0 such that, for any p ∈ [1,∞], s ∈ (p−1, N ],

q ∈ [1,∞] and integer n, we have

sup
f∗∈Bs

p,q(L)

E[‖f̃n − f ∗‖2
L2([0,1])] 6 Cn−2s/(2s+1).

14



The rate of convergence Vn = n−2s/(1+2s) is minimax over Bs
p,q(L). The multi-

thresholding estimator has better minimax properties than several other wavelet

estimators developed in the literature. To the authors’s knowledge, the result ob-

tained, for instance, by the hard thresholded estimator (see [21]), by the global

wavelet block thresholded estimator (see [37]), by the localized wavelet block thresh-

olded estimator (see [9, 12, 10], [28, 27], [24, 25], [16] and [11]) and, in particular,

the penalized Blockwise Stein method (see [14]) are worse than the one obtained by

the multi-thresholding estimator and stated in Theorems 3 and 4. This is because,

on the difference of those works, we obtain the optimal rate of convergence without

any extra logarithm factor.

In fact, the multi-thresholding estimator has similar minimax performances than

the empirical Bayes wavelet methods (see [55] and [32]) and several term-by-term

wavelet thresholded estimators defined with a random threshold (see [33] and [7]).

Finally, it is important to mention that the multi-thresholding estimator does

not need any minimization step and is relatively easy to implement.

5 Proofs

Proof of Theorem 1. We recall the notations of the general framework introduced

in the beginning of Subsection 2.1. Consider a loss function Q : Z × F 7−→ R, the

risk A(f) = E[Q(Z, f)], the minimum risk A∗ = minf∈F A(f), where we assume,

w.o.l.g, that it is achieved by an element f ∗ in F and the empirical risk An(f) =

(1/n)
∑n

i=1Q(Zi, f), for any f ∈ F . The following proof is a generalization of the

proof of Theorem 1 in [39].

We first start by a ’linearization’ of the risk. Consider the convex set

C =
{

(θ1, . . . , θM) : θj ≥ 0 and

M
∑

j=1

θj = 1
}

and define the following functions on C

Ã(θ)
def
=

M
∑

j=1

θjA(fj) and Ãn(θ)
def
=

M
∑

j=1

θjAn(fj)

which are linear versions of the risk A and its empirical version An.

15



Using the Lagrange method of optimization we find that the exponential weights

w
def
= (w(n)(fj))1≤j≤M are the unique solution of the minimization problem

min
(

Ãn(θ) +
1

n

M
∑

j=1

θj log θj : (θ1, . . . , θM) ∈ C
)

,

where we use the convention 0 log 0 = 0. Take ̂ ∈ {1, . . . ,M} such that An(f̂) =

minj=1,...,M An(fj). The vector of exponential weights w satisfies

Ãn(w) ≤ Ãn(e̂) +
logM

n
,

where ej denotes the vector in C with 1 for j-th coordinate (and 0 elsewhere).

Let ǫ > 0. Denote by ÃC the minimum minθ∈C Ã(θ). We consider the subset of C

D def
=

{

θ ∈ C : Ã(θ) > ÃC + 2ǫ
}

.

Let x > 0. If

sup
θ∈D

Ã(θ) − A∗ − (Ãn(θ) −An(f ∗))

Ã(θ) − A∗ + x
≤ ǫ

ÃC − A∗ + 2ǫ+ x
,

then for any θ ∈ D, we have

Ãn(θ) − An(f ∗) ≥ Ã(θ) − A∗ − ǫ(Ã(θ) −A∗ + x)

(ÃC − A∗ + 2ǫ+ x)
≥ ÃC − A∗ + ǫ,

because Ã(θ) − A∗ ≥ ÃC − A∗ + 2ǫ. Hence,

P

[

inf
θ∈D

(

Ãn(θ) −An(f ∗)
)

< ÃC − A∗ + ǫ

]

≤ P

[

sup
θ∈D

Ã(θ) − A∗ − (Ãn(θ) −An(f ∗))

Ã(θ) −A∗ + x
>

ǫ

ÃC −A∗ + 2ǫ+ x

]

. (18)

Observe that a linear function achieves its maximum over a convex polygon at

one of the vertices of the polygon. Thus, for j0 ∈ {1, . . . ,M} such that Ã(ej0) =

minj=1,...,M Ã(ej) (= minj=1,...,M A(fj)), we have Ã(ej0) = minθ∈C Ã(θ). We obtain

the last inequality by linearity of Ã and the convexity of C. Let ŵ denotes either the

exponential weights w or e̂. According to (18), We have

Ã(ŵ) ≤ min
j=1,...,M

Ãn(ej) +
logM

n
≤ Ãn(ej0) +

logM

n

16



So, if Ã(ŵ) > AC + 2ǫ then ŵ ∈ D and thus, there exists θ ∈ D such that Ãn(θ) −
Ãn(f ∗) ≤ Ãn(ej0) − Ãn(f ∗) + (logM)/n. Hence, we have

P

[

Ã(ŵ) > ÃC + 2ǫ
]

≤ P

[

inf
θ∈D

Ãn(θ) −An(f ∗) ≤ Ãn(ej0) − An(f ∗) +
logM

n

]

≤ P

[

inf
θ∈D

Ãn(θ) −An(f ∗) < ÃC − A∗ + ǫ

]

+P

[

Ãn(ej0) − An(f ∗) ≥ ÃC −A∗ + ǫ− logM

n

]

≤ P

[

sup
θ∈C

Ã(θ) −A∗ − (Ãn(f) − An(f ∗))

Ã(θ) − A∗ + x
>

ǫ

ÃC −A∗ + 2ǫ+ x

]

+P

[

Ãn(ej0) − An(f ∗) ≥ ÃC −A∗ + ǫ− logM

n

]

.

If we assume that

sup
θ∈C

Ã(θ) − A∗ − (Ãn(θ) − An(f ∗))

Ã(θ) − A∗ + x
>

ǫ

ÃC −A∗ + 2ǫ+ x
,

then, there exists θ(0) = (θ
(0)
1 , . . . , θ

(0)
M ) ∈ C, such that

Ã(θ(0)) −A∗ − (Ãn(θ(0)) − An(f ∗))

Ã(θ(0)) −A∗ + x
>

ǫ

ÃC − A∗ + 2ǫ+ x
.

The linearity of Ã yields

Ã(θ(0)) − A∗ − (Ãn(θ(0)) −An(f ∗))

Ã(θ(0)) − A∗ + x
=

∑M
j=1 θ

(0)
j [A(fj) − A∗ − (An(fj) − An(f ∗))
∑M

j=1 θ
(0)
j [A(fj) − A∗ + x]

and since, for any numbers a1, . . . , aM and positive numbers b1, . . . , bM , we have

∑M
j=1 aj

∑M
j=1 bj

≤ max
j=1,...,M

(

aj

bj

)

,

then, we obtain

max
j=1,...,M

A(fj) −A∗ − (An(fj) − An(f ∗))

A(fj) −A∗ + x
>

ǫ

AF0
− A∗ + 2ǫ+ x

,

where AF0

def
= minj=1,...,M A(fj) (= ÃC).
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Now, we use the relative concentration inequality of Lemma 1 to obtain

P

[

max
j=1,...,M

A(fj) −A∗ − (An(fj) − An(f ∗))

A(fj) − A∗ + x
>

ǫ

AF0
−A∗ + 2ǫ+ x

]

≤ M

(

1 +
4c(AF0

− A∗ + 2ǫ+ x)2x1/κ

n(ǫx)2

)

exp

(

− n(ǫx)2

4c(AF0
− A∗ + 2ǫ+ x)2x1/κ

)

+M

(

1 +
4K(AF0

− A∗ + 2ǫ+ x)

3nǫx

)

exp

(

− 3nǫx

4K(AF0
− A∗ + 2ǫ+ x)

)

.

Using the margin assumption MA(κ, c,F0) to upper bound the variance term and

applying Bernstein’s inequality, we get

P

[

An(fj0) − An(f ∗) ≥ AF0
− A∗ + ǫ− logM

n

]

≤ exp

(

− n(ǫ− (logM)/n)2

2c(AF0
− A∗)1/κ + (2K/3)(ǫ− (logM)/n)

)

,

for any ǫ > (logM)/n. From now, we take x = AF0
− A∗ + 2ǫ, then, for any

(logM)/n < ǫ < 1, we have

P

(

Ã(ŵ) > AF0
+ 2ǫ

)

≤ exp

(

− n(ǫ− logM/n)2

2c(AF0
−A∗)1/κ + (2K/3)(ǫ− (logM)/n)

)

+ M

(

1 +
32c(AF0

− A∗ + 2ǫ)1/κ

nǫ2

)

exp

(

− nǫ2

32c(AF0
− A∗ + 2ǫ)1/κ

)

+ M

(

1 +
32

3nǫ

)

exp

(

−3nǫ

32

)

.

If ŵ denotes e̂ then, Ã(ŵ) = Ã(e̂) = A(f̃ (ERM)). If ŵ denotes the vector of

exponential weights w and if f 7−→ Q(z, f) is convex for π-almost z ∈ Z, then,

Ã(ŵ) = Ã(w) ≥ A(f̃
(AEW )
n ). If f 7−→ Q(z, f) is assumed to be convex for π-almost

z ∈ Z then, let f̃n denote either the ERM procedure or the AEW procedure, other-

wise, let f̃n denote the ERM procedure f̃
(ERM)
n . We have for any 2(logM)/n < u < 1,

E[A(f̃n)−AF0
] ≤ E

[

Ã(ŵ) − AF0

]

≤ 2u+2

∫ 1

u/2

[T1(ǫ) +M(T2(ǫ) + T3(ǫ))] dǫ, (19)

where

T1(ǫ) = exp

(

− n(ǫ− (logM)/n)2

2c(AF0
− A∗)1/κ + (2K/3)(ǫ− (logM)/n)

)

,

18



T2(ǫ) =

(

1 +
16c(AF0

− A∗ + 2ǫ)1/κ

nǫ2

)

exp

(

− nǫ2

16c(AF0
− A∗ + 2ǫ)1/κ

)

and

T3(ǫ) =

(

1 +
8K

3nǫ

)

exp

(

−3nǫ

8K

)

.

We recall that β1 is defined in (7). Consider separately the following cases (C1)

and (C2).

(C1) The case AF0
− A∗ ≥ ((logM)/(β1n))κ/(2κ−1).

Denote by µ(M) the unique solution of µ0 = 3M exp(−µ0). Then, clearly

(logM)/2 ≤ µ(M) ≤ logM . Take u such that

(nβ1u
2)/(AF0

−A∗)1/κ = µ(M).

Using the definition of case (1) and of µ(M) we get u ≤ AF0
− A∗. Moreover,

u ≥ 4 logM/n, then

∫ 1

u/2

T1(ǫ)dǫ ≤
∫ (AF0

−A∗)/2

u/2

exp

(

− n(ǫ/2)2

(2c +K/6)(AF0
− A∗)1/κ

)

dǫ

+

∫ 1

(AF0
−A∗)/2

exp

(

− n(ǫ/2)2

(4c+K/3)ǫ1/κ

)

dǫ.

Using Lemma 2 and the inequality u ≤ AF0
− A∗, we obtain

∫ 1

u/2

T1(ǫ)dǫ ≤
8(4c+K/3)(AF0

−A∗)1/κ

nu
exp

(

− nu2

8(4c+K/3)(AF0
− A∗)1/κ

)

.

(20)

We have 16c(AF0
− A∗ + 2u) ≤ nu2 thus, using Lemma 2, we get

∫ 1

u/2

T2(ǫ)dǫ ≤ 2

∫ (AF0
−A∗)/2

u/2

exp

(

− nǫ2

64c(AF0
−A∗)1/κ

)

dǫ

+2

∫ 1

(AF0
−A∗)/2

exp

(

−nǫ
2−1/κ

128c

)

dǫ

≤ 2148c(AF0
− A∗)1/κ

nu
exp

(

− nu2

2148c(AF0
− A∗)1/κ

)

. (21)

We have 16(3n)−1 ≤ u ≤ AF0
−A∗, thus,

∫ 1

u/2

T3(ǫ)dǫ ≤
16K(AF0

−A∗)1/κ

3nu
exp

(

− 3nu2

16K(AF0
− A∗)1/κ

)

. (22)
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From (20), (21), (22) and (19) we obtain

E

[

A(f̃n) −AF0

]

≤ 2u+ 6M
(AF0

−A∗)1/κ

nβ1u
exp

(

− nβ1u
2

(AF0
− A∗)1/κ

)

.

The definition of u leads to E

[

A(f̃n) −AF0

]

≤ 4
√

(AF0
−A∗)1/κ log M

nβ1

.

(C2)The case AF0
−A∗ ≤ ((logM)/(β1n))κ/(2κ−1).

We now choose u such that nβ2u
(2κ−1)/κ = µ(M), where µ(M) denotes the unique

solution of µ0 = 3M exp(−µ0) and β2 is defined in (8). Using the definition of case (2)

and of µ(M) we get u ≥ AF0
−A∗ (since β1 ≥ 2β2). Using the fact that u > 4 logM/n

and Lemma 2, we have

∫ 1

u/2

T1(ǫ)dǫ ≤
2(16c+K/3)

nu1−1/κ
exp

(

− 3nu2−1/κ

2(16c+K/3)

)

. (23)

We have u ≥ (128c/n)κ/(2κ−1) and using Lemma 2, we obtain

∫ 1

u/2

T2(ǫ)dǫ ≤
256c

nu1−1/κ
exp

(

−nu
2−1/κ

256c

)

. (24)

Since u > 16K/(3n) we have

∫ 1

u/2

T3(ǫ)dǫ ≤
16K

3nu1−1/κ
exp

(

−3nu2−1/κ

16K

)

. (25)

From (23), (24), (25) and (19) we obtain

E

[

A(f̃n) − AF0

]

≤ 2u+ 6M
exp

(

−nβ2u
(2κ−1)/κ

)

nβ2u1−1/κ
.

The definition of u yields E

[

A(f̃n) − AF0

]

≤ 4
(

log M
nβ2

)
κ

2κ−1

. This completes the proof.

Lemma 1. Consider the framework introduced in the beginning of Subsection 2.1.

Let F0 = {f1, . . . , fM} be a finite subset of F . We assume that π satisfies MA(κ, c,F0),

for some κ ≥ 1, c > 0 and |Q(Z, f) − Q(Z, f ∗)| ≤ K a.s., for any f ∈ F0, where

K ≥ 1 is a constant. We have for any positive numbers t, x and any integer n

P

[

max
f∈F

A(f) − An(f) − (A(f ∗) − An(f ∗))

A(f) −A∗ + x
> t

]

≤M

((

1 +
4cx1/κ

n(tx)2

)

exp

(

−n(tx)2

4cx1/κ

)

+

(

1 +
4K

3ntx

)

exp

(

−3ntx

4K

))

.
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Proof. We use a ”peeling device”. Let x > 0. For any integer j, we consider

Fj = {f ∈ F : jx ≤ A(f) − A∗ < (j + 1)x} .

Define the empirical process

Zx(f) =
A(f) − An(f) − (A(f ∗) −An(f ∗))

A(f) −A∗ + x
.

Using Bernstein’s inequality and margin assumption MA(κ, c,F0) to upper bound

the variance term, we have

P

[

max
f∈F

Zx(f) > t

]

≤
+∞
∑

j=0

P

[

max
f∈Fj

Zx(f) > t

]

≤
+∞
∑

j=0

P

[

max
f∈Fj

A(f) −An(f) − (A(f ∗) − An(f ∗)) > t(j + 1)x
]

≤ M
+∞
∑

j=0

exp
(

− n[t(j + 1)x]2

2c((j + 1)x)1/κ + (2K/3)t(j + 1)x

)

≤ M
(

+∞
∑

j=0

exp
(

− n(tx)2(j + 1)2−1/κ

4cx1/κ

)

+ exp
(

− (j + 1)
3ntx

4K

))

≤ M
(

exp

(

−nt
2x2−1/κ

4c

)

+ exp

(

−3ntx

4K

)

)

+M

∫ +∞

1

(

exp

(

−nt
2x2−1/κ

4c
u2−1/κ

)

+ exp

(

−3ntx

4K
u

)

)

du.

Lemma 2 completes the proof.

Lemma 2. Let α ≥ 1 and a, b > 0. An integration by part yields

∫ +∞

a

exp (−btα) dt ≤ exp(−baα)

αbaα−1

Proof of Corollaries 1 and 2. In the bounded regression setup, any probability

distribution π on X × [0, 1] satisfies the margin assumption MA(1, 16,F1), where F1

is the set of all measurable functions from X to [0, 1]. In density estimation with the

integrated squared risk, any probability measure π on (Z, T ), absolutely continuous

w.r.t. the measure µ with one version of its density a.s. bounded by a constant
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B ≥ 1, satisfies the margin assumption MA(1, 16B2,FB) where FB is the set of all

non-negative function f ∈ L2(Z, T , µ) bounded by B. To complete the proof we use

that for any ǫ > 0,

(B(F0, π, Q) logM

β1n

)1/2

≤ ǫB(F0, π, Q) +
logM

β2nǫ

and in both cases f 7−→ Q(z, f) is convex for any z ∈ Z.

Proof of Theorem 3. We apply Theorem 2, with ǫ = 1, to the multi-

thresholding estimator f̂n defined in (15). Since the density function f ∗ to estimate

takes its values in [0, B], Card(Λn) = log n and m ≥ n/2, we have, conditionally to

the first subsample Dm,

E[‖f ∗ − f̂n‖2
L2([0,1]) |Dm]

≤ 2 min
u∈Λn

(||f ∗ − h0,B(f̂vu(Dm, .))||2L2([0,1])) +
4(log n) log(log n)

β2n

≤ 2 min
u∈Λn

(||f ∗ − f̂vu(Dm, .)||2L2([0,1])) +
4(logn) log(logn)

β2n
,

where h0,B is the projection function introduced in (14) and β2 is given in (8). Now,

for any s > 0, let us consider js an integer in Λn such that n1/(1+2s) ≤ 2js < 2n1/(1+2s).

Since the estimators α̂j,k and β̂j,k defined by (16) satisfy the inequalities (12) and

(13), Theorem 2 implies that, for any p ∈ [1,∞], s ∈ (1/p,N ], q ∈ [1,∞] and n large

enough, we have

sup
f∗∈Bs

p,q(L)

E[‖f̃ − f ∗‖2
L2([0,1])] = sup

f∗∈Bs
p,q(L)

E[E[‖f̃ − f ∗‖2
L2([0,1]) |Dm]]

≤ 2 sup
f∗∈Bs

p,q(L)

E[min
u∈Λn

(||f ∗ − f̂vu(Dm, .)||2L2([0,1])] +
4(logn) log(log n)

β2n

≤ 2 sup
f∗∈Bs

p,q(L)

E[||f ∗ − f̂vjs
(Dm, .)||2L2([0,1])] +

4(logn) log(logn)

β2n

≤ Cn−2s/(1+2s).

This completes the proof of Theorem 3.

Proof of Theorem 4. The proof of Theorem 4 is similar to the proof of Theorem

3. We only need to prove that, for any j ∈ {τ, ..., j1} and k ∈ {0, ..., 2j − 1}, the

estimators α̂j,k and β̂j,k defined by (17) satisfy the inequalities (12) and (13). First
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of all, let us notice that the random variables Y1ψj,k(X1), ..., Ynψj,k(Xn) are i.i.d and

that there m−th moment, for m ≥ 2, satisfies

E(|ψj,k(X1)|m) ≤ ‖ψ‖m−2
∞ 2j(m/2−1)

E(|ψj,k(X1)|2) = ‖ψ‖m−2
∞ 2j(m/2−1).

For the first inequality (cf. inequality (12)), Rosenthal’s inequality (see [29,

p.241]) yields, for any j ∈ {τ, ..., j1},

E(|β̂j,k − βj,k|4) ≤ C(n−3
E(|Y1ψj,k(X1)|4) + n−2[E(|Y1ψj,k(X1)|2)]2)

≤ C‖Y ‖4
∞‖ψ‖4

∞(n−32j1 + n−2) ≤ Cn−2.

For second inequality (cf. inequality (13)), Bernstein’s inequality yields

P

(

2
√
n|β̂j,k − βj,k| ≥ ρ

√
a
)

≤ 2 exp
(

− ρ2a

8σ2 + (8/3)Mρ
√
a/(2

√
n)

)

,

where a ∈ {τ, ..., j1}, ρ ∈ (0,∞),

M = ‖Y ψj,k(X) − βj,k‖∞ ≤ 2j/2‖Y ‖∞‖ψ‖∞ + ‖f ∗‖2
L2([0,1])

≤ 2j1/2(‖ψ‖∞ + 1) ≤ 21/2(n/ log n)1/2(‖ψ‖∞ + 1),

and

σ2 = E(|Y1ψj,k(X1) − βj,k|2) ≤ E(|Y1ψj,k(X1)|2) ≤ ‖Y ‖2
∞ ≤ 1.

Since a ≤ log n, we complete the proof by seeing that for ρ large enough, we have

exp
(

− ρ2a

8σ2 + (8/3)Mρ
√
a/(2

√
n)

)

≤ 2−4a.
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