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We study the performances of an adaptive procedure based on a convex combination, with data-driven weights, of term-by-term thresholded wavelet estimators. For the bounded regression model, with random uniform design, and the nonparametric density model, we show that the resulting estimator is optimal in the minimax sense over all Besov balls under the L 2 risk, without any logarithm factor.

Introduction

Wavelet shrinkage methods have been very successful in nonparametric function estimation. They provide estimators that are spatially adaptive and (near) optimal over a wide range of function classes. Standard approaches are based on the term-by-term thresholds. A well-known example is the hard thresholded estimator introduced by [START_REF] Donoho | Adaptating to unknown smoothness via wavelet shrinkage[END_REF]. If we observe n statistical data and if the unknown function f has an expansion of the form f = j k β j,k ψ j,k where {ψ j,k , j, k} is a wavelet basis and (β j,k ) j,k is the associated wavelet coefficients, then the term-by-term wavelet thresholded method consists in three steps:

1. a linear step corresponding to the estimation of the coefficients β j,k by some estimators βj,k constructed from the data, 1 2. a non-linear step consisting in a thresholded procedure T λ ( βj,k )1I {| βj,k |≥λ j } where λ = (λ j ) j is a positive sequence and T λ ( βj,k ) denotes a certain transformation of the βj,k which may depend on λ, 3. a reconstruction step of the form fλ = j∈Ωn k T λ ( βj,k )1I { | βj,k |≥λ j } ψ j,k where Ω n is a finite set of integers depending on the number n of data.

Naturally, the performances of fλ strongly depend on the choice of the threshold λ. For the standard statistical models (regression, density,...), the most common choice is the universal threshold introduced by [START_REF] Donoho | Adaptating to unknown smoothness via wavelet shrinkage[END_REF]. It can be expressed in the form: λ * = (λ * j ) j where λ * j = c (log n)/n where c > 0 denotes a large enough constant. In the literature, several technics have been proposed to determine the 'best' adaptive threshold. There are, for instance, the RiskShrink and SureShrink methods (see [START_REF] Donoho | Ideal spatial adaptation via wavelet shrinkage[END_REF][START_REF] Donoho | Adaptating to unknown smoothness via wavelet shrinkage[END_REF]), the cross-validation methods (see [START_REF] Nason | Choice of the Threshold Parameter in Wavelet Function Estimation[END_REF], [START_REF] Weyrich | Wavelet shrinkage and generalized crossvalidation for image denoising[END_REF] and [START_REF] Jansen | Noise reduction by wavelet thresholding[END_REF]), the methods based on hypothesis tests (see [START_REF] Abramovich | Adaptive thresholding of wavelet coefficients[END_REF] and [START_REF] Abramovich | Adapting to unknown sparsity by controlling the false discovery rate[END_REF]), the Lepski methods (see [START_REF] Juditsky | Wavelet estimators: adapting to unknown smoothness[END_REF]) and the Bayesian methods (see [START_REF] Chipman | Adaptive Bayesian wavelet shrinkage[END_REF] and [START_REF] Abramovich | Wavelet thresholding via a Bayesian approach[END_REF]). Most of them are described in detailed in [START_REF] Nason | Choice of the Threshold Parameter in Wavelet Function Estimation[END_REF] and [START_REF] Antoniadis | Wavelet Estimators in Nonparametric Regression: A Comparative Simulation Study[END_REF].

In the present paper, we propose to study the performances of an adaptive wavelet estimator based on a convex combination of fλ 's. In the framework of nonparametric density estimation and bounded regression estimation with random uniform design, we prove that, in some sense, it is at least as good as the term-by-term thresholded estimator fλ defined with the 'best' threshold λ. In particular, we show that this estimator is optimal, in the minimax sense, over all Besov balls under the L 2 risk. The proof is based on a non-adaptive minimax result proved by [START_REF] Delyon | On minimax wavelet estimators[END_REF] and some powerful oracle inequality satisfied by aggregation methods. There are two steps in our approach. A first step, called the training step, where non-adaptive thresholded wavelet estimators are constructed for different thresholds. A second step, called learning step, where an aggregation scheme is worked out to realize the adaptation to the smoothness.

The exact oracle inequality of Section 2 is given in a general framework. Two aggregation procedures satisfy this oracle inequality. The well known ERM (for Empirical Risk Minimization) procedure (cf. [START_REF] Vapnik | Statistical Learning Theory[END_REF], [START_REF] Koltchinskii | Local Rademacher Complexities and Oracle Inequalities in Risk Minimization[END_REF] and references therein) and an exponential weighting aggregation scheme, which has been studied, among others, by [START_REF] Barron | Information theory and mixing least-square regressions[END_REF], [START_REF] Bunea | Online prediction algorithms for aggregation of arbitrary estimators of a conditional mean[END_REF], [START_REF] Lecué | Simultaneous adaptation to the margin and to complexity in classification[END_REF], [START_REF] Lecué | Optimal oracle inequality for aggregation of classifiers under low noise condition[END_REF] and [START_REF] Lecué | Optimal rates of aggregation in classification[END_REF]. There is a recursive version of this scheme studied by [START_REF] Catoni | Statistical Learning Theory and Stochastic Optimization[END_REF], [START_REF] Yang | Mixing strategies for density estimation[END_REF], [START_REF] Juditsky | Recursive aggregation of estimators via the mirror descent algorithm with averaging[END_REF] and [START_REF] Juditsky | Learning by mirror averaging[END_REF]. In the sequential prediction problem, weighted average predictions with exponential weights have been widely studied (cf. e.g. [START_REF] Vovk | Aggregating Strategies[END_REF] and [START_REF] Cesa-Bianchi | Prediction, Learning, and Games[END_REF]). A recent result of [START_REF] Lecué | Suboptimality of Penalized Empirical Risk Minimization in Classification[END_REF] shows that the ERM procedure is suboptimal for strictly convex losses (which is the case for density and regression estimation when the integrated squared risk is used). Thus, in our case it is better to combine the fλ 's, for λ lying in a grid, using the aggregation procedure with exponential weights than using the ERM procedure. Moreover, from a computation point of view the aggregation scheme with exponential weights does not require any minimization step contrarily to the ERM procedure.

The paper is organized as follows. Section 2 presents general oracle inequalities satisfied by two aggregation methods. Section 3 describes the main procedure of the study and investigates its minimax performances over Besov balls for the L 2 risk.

All the proofs are postponed in the last section.

Oracle Inequalities

Framework

Let (Z, T ) a measurable space. Denote by P the set of all probability measures on (Z, T ). Let F be a function from P with values in an algebra F . Let Z be a random variable with values in Z and denote by π its probability measure. Let D n be a family of n i.i.d. observations Z 1 , . . . , Z n having the common probability measure π. The probability measure π is unknown. Our aim is to estimate F (π) from the observations D n .

In our estimation problem, we assume that we have access to an "empirical risk".

It means that there exists

Q : Z × F -→ R such that the risk of an estimate f ∈ F of F (π) is of the form A(f ) = E [Q(Z, f )] .
In what follows, we present several statistical problems which can be written in this way. If the minimum over all f in F

A * def = min f ∈F A(f )
is achieved by at least one function, we denote by f * a minimizer in F . In this paper we will assume that min f ∈F A(f ) is achievable, otherwise we replace

f * by f * n , an element in F satisfying A(f * n ) ≤ inf f ∈F A(f ) + n -1 .
In most of the cases f * will be equal to our aim F (π) up to some known additive terms. We don't know the risk A, since π is not available from the statistician, thus, instead of minimizing A over F we consider an empirical version of A constructed from the observations D n . The main interest of such a framework is that we have access to an empirical version of A(f ) for any f ∈ F . It is denoted by

A n (f ) = 1 n n i=1 Q(Z i , f ). ( 1 
)
We exhibit three statistical models having the previous form of estimation.

Bounded Regression: Take Z = X × [0, 1], where (X , A) is a measurable space, Z = (X, Y ) a couple of random variables on Z, with probability distribution π, such that X takes its values in X and Y takes its values in [0, 1]. We assume that the conditional expectation E[Y |X] exists. In the regression framework, we want to estimate the regression function

f * (x) = E [Y |X = x] , ∀x ∈ X .
Usually, the variable Y is not an exact function of X. Given is an input X ∈ X , 

Y = E [Y |X] + ζ.
Take F the set of all measurable functions from X to [0

, 1]. Define ||f || 2 L 2 (P X ) = X f 2 (x)dP X (x)
for all functions f in L 2 (X , A, P X ) where P X is the probability measure of X. Consider

Q((x, y), f ) = (y -f (x)) 2 , (2) 
for any (x, y) ∈ X × R and f ∈ F . Pythagore's Theorem yields

A(f ) = E [Q((X, Y ), f )] = ||f * -f || 2 L 2 (P X ) + E ζ 2 .
Thus f * is a minimizer of A(f ) and

A * = E[ζ 2 ].
Density estimation: Let (Z, T , µ) be a measured space. Let Z be a random variable with values in Z and denote by π its probability distribution. We assume that π is absolutely continuous w.r.t. to µ and denote by f * one version of the density. Consider F the set of all density functions on (Z, T , µ). We consider

Q(z, f ) = -log f (z),
for any z ∈ Z and f ∈ F . We have

A(f ) = E [Q(Z, f )] = K(f * |f ) - Z log(f * (z))dπ(z).
Thus, f * is a minimizer of A(f ) and

A * = -Z log(f * (z))dπ(z).
Instead of using the Kullback-Leiber loss, one can use the quadratic loss. For this setup, consider F the set L 2 (Z, T , µ) of all measurable functions with an integrated square. Define

Q(z, f ) = Z f 2 dµ -2f (z), (3) 
for any z ∈ Z and f ∈ F . We have, for any f ∈ F ,

A(f ) = E [Q(Z, f )] = ||f * -f || 2 L 2 (µ) - Z (f * (z)) 2 dµ(z).
Thus, f * is a minimizer of A(f ) and A * = -Z (f * (z)) 2 dµ(z).

Classification framework: Let (X , A) be a measurable space. We assume that the space Z = X × {-1, 1} is endowed with an unknown probability measure π. We consider a random variable Z = (X, Y ) with values in Z with probability distribution π. We denote by P X the marginal of π on X and η(x

) = P(Y = 1|X = x)
the conditional probability function of Y = 1 knowing that X = x. Denote by F the set of all measurable functions from X to R. Let φ be a function from R to R.

For any f ∈ F consider the φ-risk

A(f ) = E[Q((X, Y ), f )],
where the loss is given by Q((x, y), f ) = φ(yf (x))for any (x, y) ∈ X × {-1, 1}.

Most of the time a minimizer f * of the φ-risk A over F or its sign is equal to the Bayes rule f * (x) = Sign(2η(x) -1), ∀x ∈ X (cf. [START_REF] Zhang | Statistical behavior and consistency of classification methods based on convex risk minimization[END_REF]).

In this paper we obtain an oracle inequality in the general framework described at the beginning of this Subsection. Then, we use it in the density estimation and the bounded regression frameworks. For applications of this oracle inequality in the classification setup, we refer to [START_REF] Lecué | Optimal oracle inequality for aggregation of classifiers under low noise condition[END_REF] and [START_REF] Lecué | Simultaneous adaptation to the margin and to complexity in classification[END_REF]. Now, we introduce an assumption which improve the quality of estimation in our framework. This assumption has been first introduced by [START_REF] Mammen | Smooth discrimination analysis[END_REF], for the problem of discriminant analysis, and [START_REF] Tsybakov | Optimal aggregation of classifiers in statistical learning[END_REF], for the classification problem. With this assumption, parametric rates of convergence can be achieved, for instance, in the classification problem (cf. [START_REF] Tsybakov | Optimal aggregation of classifiers in statistical learning[END_REF], [START_REF] Steinwart | Fast Rates for Support Vector Machines using Gaussian Kernels[END_REF]).

Margin Assumption(MA):

The probability measure π satisfies the margin as-

sumption MA(κ, c, F 0 ), where κ ≥ 1, c > 0 and F 0 is a subset of F if E[(Q(Z, f ) -Q(Z, f * )) 2 ] ≤ c(A(f ) -A * ) 1/κ , for any function f ∈ F 0 .
In the bounded regression setup, it is easy to see that any probability distribution Actually, the margin assumption is linked to the convexity of the underlying loss. In density and regression estimation it is naturally satisfied with the better margin parameter κ = 1, but, for non-convex loss (for instance in classification)

π on X × [0,
this assumption does not hold naturally (cf. [START_REF] Lecué | Suboptimality of Penalized Empirical Risk Minimization in Classification[END_REF] for a discussion on the margin assumption and for examples of losses which does not satisfied naturally the margin assumption with parameter κ = 1).

Aggregation Procedures

Let's work with the notations introduced in the beginning of the previous Subsection.

The aggregation framework considered, among others, by [START_REF] Juditsky | Functional aggregation for nonparametric estimation[END_REF], [START_REF] Yang | Mixing strategies for density estimation[END_REF], [START_REF] Catoni | Statistical Learning Theory and Stochastic Optimization[END_REF], [START_REF] Nemirovski | Topics in Non-parametric Statistics[END_REF], [START_REF] Tsybakov | Optimal rates of aggregation[END_REF],

[5], [START_REF] Birgé | Model selection via testing: an alternative to (penalized) maximum likelihood estimators[END_REF] is the following: take F 0 a finite subset of F , our aim is to mimic (up to an additive residual) the best function in F 0 w.r.t. the risk A. For this, we consider two aggregation procedures.

The Aggregation with Exponential Weights aggregate (AEW) over F 0 is defined by f (AEW )

n def = f ∈F 0 w (n) (f )f, (4) 
where the exponential weights w (n) (f ) are defined by

w (n) (f ) = exp (-nA n (f )) g∈F 0 exp (-nA n (g)) , ∀f ∈ F 0 . (5) 
We consider the Empirical Risk Minimization procedure (ERM) over

F 0 defined by f (ERM ) n ∈ Arg min f ∈F 0 A n (f ). ( 6 
)

Oracle Inequalities

In this Subsection we state an exact oracle inequality satisfied by the ERM procedure and the AEW procedure (in the convex case) in the general framework of the beginning of Subsection 2.1. From this exact oracle inequality we deduce two others oracle inequalities in the density estimation and the bounded regression framework.

We introduce a quantity which is going to be our residual term in the exact oracle inequality. We consider

γ(n, M, κ, F 0 , π, Q) =        B(F 0 ,π,Q) 1 κ log M β 1 n 1/2 if B(F 0 , π, Q) ≥ log M β 1 n κ 2κ-1 log M β 2 n κ 2κ-1 otherwise, where B(F 0 , π, Q) denotes min f ∈F 0 (A(f ) -A * ), κ ≥ 1 is the margin parameter, π is the underlying probability measure, Q is the loss function, β 1 = min log 2 96cK , 3 √ log 2 16K √ 2 , 1 8(4c + K/3) , 1 576c . ( 7 
)
and

β 2 = min 1 8 , 3 log 2 32K , 1 2(16c + K/3) , β 1 2 , (8) 
where the constant c > 0 appears in MA(κ, c, F 0 ).

Theorem 1. Consider the general framework introduced in the beginning of Subsection 2.1. Let F 0 denote a finite subset of M elements f 1 , . . . , f M in F , where M ≥ 2 is an integer. Assume that the underlying probability measure π satisfies the mar-

gin assumption MA(κ, c, F 0 ) for some κ ≥ 1, c > 0 and |Q(Z, f ) -Q(Z, f * )| ≤ K a.
s., for any f ∈ F 0 , where K ≥ 1 is a constant. The Empirical Risk Minimization procedure ( 6) satisfies 8) and for any ǫ > 0, we have 

E[A( f (ERM ) n ) -A * ] ≤ min j=1,...,M (A(f j ) -A * ) + 4γ(n, M, κ, F 0 , π, Q). Moreover, if f -→ Q(z, f ) is convex for π-almost z ∈ Z,
E[||f * -fn || 2 L 2 (P X ) ] ≤ (1 + ǫ) min j=1,...,M (||f * -f j || 2 L 2 (P X ) ) + 4 log M ǫβ 2 n .
E[||f * -fn || 2 L 2 (µ) ] ≤ (1 + ǫ) min j=1,...,M (||f * -f j || 2 L 2 (µ) ) + 4 log M ǫβ 2 n . (9) 
In both of the last Corollaries, the ERM and the AEW procedures can both be used to mimic the best f j among the f j 's. Nevertheless, from a computational point of view the AEW procedure does not require any minimization step contrarily to the ERM procedure. Moreover, from a theoretical point of view the ERM procedure can not mimic the best f j among the f j 's as fast as the cumulative aggregate with exponential weights (it is an average of AEW procedures). For a comparison between these procedures we refer to [START_REF] Lecué | Suboptimality of Penalized Empirical Risk Minimization in Classification[END_REF]. The constants of aggregation multiplying the residual term in Theorem 1 and in both of the following Corollaries come from the proof and are certainly not optimal. We did not make any serious attempt to optimize them.

Multi-thresholding wavelet estimator

In the present section, we propose an adaptive estimator constructed from aggregation technics and wavelet thresholding methods. For the density model and the regression model with uniform random design, we show that it is optimal in the minimax sense over a wide range of function spaces.

Wavelets and Besov balls

We consider an orthonormal wavelet basis generated by dilation and translation of a compactly supported "father" wavelet φ and a compactly supported "mother" wavelet ψ. For the purposes of this paper, we use the periodized wavelets bases on the unit interval. Let

φ j,k = 2 j/2 φ(2 j x -k), ψ j,k = 2 j/2 ψ(2 j x -k)
be the elements of the wavelet basis and

φ per j,k (x) = l∈Z φ j,k (x -l), ψ per j,k (x) = l∈Z ψ j,k (x -l),
there periodized versions, defined for any x ∈ [0, 1], j ∈ N and k ∈ {0, . . . , 2 j -1}.

There exists an integer τ such that the collection ζ defined by ζ = {φ per j,k , k = 0, ..., 2 τ -1; ψ per j,k , j = τ, ..., ∞, k = 0, ..., 2 j -1} constitutes an orthonormal basis of L 2 ([0, 1]). In what follows, the superscript "per" will be suppressed from the notations for convenience. For any integer l ≥ τ , a square-integrable function f * on [0, 1] can be expanded into a wavelet series

f * (x) = 2 l -1 k=0 α l,k φ l,k (x) + ∞ j=l 2 j -1 k=0 β j,k ψ j,k (x), where α j,k = 1 0 f * (x)φ j,k (x)dx and β j,k = 1 0 f * (x)ψ j,k (x)dx.
Further details on wavelet theory can be found in [START_REF] Meyer | Ondelettes et Opérateurs[END_REF] and [START_REF] Daubechies | Ten Lectures on Wavelets[END_REF]. Now, let us define the main function spaces of the study. Let M ∈ (0, ∞),

s ∈ (0, N), p ∈ [1, ∞) and q ∈ [1, ∞). Let us set β τ -1,k = α τ,k .
We say that a function f * belongs to the Besov balls B s p,q (M) if and only if the associated wavelet coefficients satisfy

∞ j=τ -1 2 j(s+1/2-1/p) 2 j -1 k=0 |β j,k | p 1/p q 1/q ≤ M, if q ∈ [1, ∞),
with the usual modification if q = ∞. We work with the Besov balls because of their exceptional expressive power. For a particular choice of parameters s, p and q, they contain the Hölder and Sobolev balls (see [START_REF] Meyer | Ondelettes et Opérateurs[END_REF]).

Term-by-term thresholded estimator

In this Subsection, we consider the estimation of an unknown function

f * in L 2 ([0, 1])
from a general situation. We only assume to have n observations gathered in the data set D n from which we are able to estimate the wavelet coefficients α j,k and β j,k of f * in the basis ζ. We denote by αj,k and βj,k such estimates. Finally, let us mention that all the constants of our study are independent of f * and n.

Definition 1 (Term-by-term thresholded estimator). Let j 1 be an integer sat-

isfying (n/ log n) ≤ 2 j 1 < 2(n/ log n).
For any integer l ≥ τ , let λ = (λ l , ...λ j 1 ) be a vector of positive integers. Let us consider the estimator fλ :

D n × [0, 1] → R defined by fλ (D n , x) = 2 τ -1 k=0 ατ,k φ τ,k (x) + j 1 j=τ 2 j -1 k=0 Υ λ j ( βj,k )ψ j,k (x), ( 10 
)
where for all u ∈ (0, ∞) the operator Υ u is such that there exist two constants

C 1 , C 2 > 0 satisfying |Υ u (x) -y| 2 ≤ C 1 (min(y, C 2 u) 2 + (|x -y| 2 )1I {|x-y|≥2 -1 u} ), (11) 
for any x ∈ R and y ∈ R.

The inequality [START_REF] Cai | Block thresholding for density estimation: local and global adaptivity[END_REF] holds for the hard thresholding rule Υ hard u (x) = x1I {|x| u} , the soft thresholding rule Υ sof t u (x) = sign(x)(|x| -u)1I {|x| u} (see [START_REF] Donoho | Adaptating to unknown smoothness via wavelet shrinkage[END_REF], [START_REF] Donoho | Wavelet shrinkage: Asymptotia ?[END_REF] and [START_REF] Delyon | On minimax wavelet estimators[END_REF]) and the non-negative garrote thresholding rule Υ N G u (x) = (x -u 2 /x) 1I {|x| u} (see [START_REF] Gao | Wavelet shrinkage denoising using the nonnegative garrote[END_REF]). If we consider the minimax point of view over Besov balls under the integrated squared risk, then [START_REF] Delyon | On minimax wavelet estimators[END_REF] makes the conditions on αj,k , βj,k and the threshold λ such that the estimator fλ (D n , .) defined by [START_REF] Cai | Adaptive wavelet estimation: a block thresholding and oracle inequality approach[END_REF] is optimal for numerous statistical models. This result is recalled in Theorem 2 below.

Theorem 2 [START_REF] Delyon | On minimax wavelet estimators[END_REF]). Let us consider the general statistical framework described in the beginning of the present section. Suppose that the two following assumptions hold.

• Moments inequality: There exists a constant C > 0 such that, for any j ∈ {τ -1, ..., j 1 }, k ∈ {0, ..., 2 j -1} and n large enough, we have

E(| βj,k -β j,k | 4 ) ≤ Cn -2
, where we take βτ-1,k = ατ,k .

• Large deviation inequality: There exist two constants C > 0 and ρ * > 0 such that, for any a, j ∈ {τ, ..., j 1 }, k ∈ {0, ..., 2 j -1} and n large enough, we have

P 2 √ n| βj,k -β j,k | ≥ ρ * √ a C2 -4a . ( 13 
)
Let us consider the term-by-term thresholded estimator fv js (D n , .) defined by [START_REF] Cai | Adaptive wavelet estimation: a block thresholding and oracle inequality approach[END_REF] with the threshold

v js = (ρ * (j -j s ) + ) j=τ,...,j 1 ,
where j s is an integer such that n 1/(1+2s) ≤ 2 js < 2n 1/(1+2s) . Then, there exists a constant C > 0 such that, for any p ∈ [1, ∞], s ∈ (1/p, N], q ∈ [1, ∞] and n large enough, we have:

sup f ∈B s p,q (L) E[ fv js (D n , .) -f * 2 L 2 ([0,1]) ] Cn -2s/(2s+1) .
The rate of convergence V n = n -2s/(1+2s) is minimax for numerous statistical models, where s is a regularity parameter. For the density model and the regression model with uniform design, we refer the reader to [START_REF] Delyon | On minimax wavelet estimators[END_REF] for further details about the choice of the estimator βj,k and the value of the thresholding constant ρ * . Starting from this non-adaptive result, we use aggregation methods to construct an adaptive estimator at least at good in the minimax sense as fv js (D n , .). The first subsample D m , sometimes called "training sample", is used to construct a family of estimators (in our case this is thresholded estimators) and the second subsample D (l) , called the "training sample", is used to construct the weights of the aggregation procedure.

Multi-thresholding estimator

Remark 1. From a theoretical point of view we can take m = l which means that we use as many observations for the estimation step as for the learning step. But, in practice it is better to use a greater part of the observations for the construction of the estimators and the last observations for the aggregation procedure, because if the basis estimators that we aggregate, are not good, then the obtained aggregate is likely to be as bad as the prior estimators. Another interesting thing is that we can split the whole sample D n in many different ways. For instance we can take m observations randomly in D n to form the training subsample and the last remaining observations for the learning subsample. We can also take an average of different aggregates constructed from different splits of the initial sample D n and by a simple argument of convexity it is easy to prove that the averaged aggregate has a better risk than the others aggregates constructed only from one split.

Definition 2. Let us consider the term-by-term thresholded estimator described in [START_REF] Cai | Adaptive wavelet estimation: a block thresholding and oracle inequality approach[END_REF]. Assume that we want to estimate a function f * from [0, 1] with values in [a, b]. 

Consider the projection function

We define the multi-thresholding estimator fn :

[0, 1] → [a, b] at a point x ∈ [0, 1]
by the following aggregate

fn (x) = u∈Λn w (l) (h a,b ( fvu (D m , .)))h a,b ( fvu (D m , x)), (15) 
where Λ n = {0, ..., log n}, v u = (ρ(j -u) + ) j=τ,...,j 1 , ∀u ∈ Λ n and ρ is a positive constant depending on the model worked out and

w (l) (h a,b ( fvu (D m , .))) = exp -lA (l) (h a,b ( fvu (D m , .))) γ∈Λn exp -lA (l) (h a,b ( fvγ (D m , .))) , ∀u ∈ Λ n ,
where

A (l) (f ) = 1 l n i=m+1 Q(Z i , f
) is the empirical risk constructed from the l last observations, for any function f and for the choice of a loss function Q depending on the model considered (cf. ( 2) and ( 3) for examples).

The principle of the construction of the multi-thresholding estimator fn is to use aggregation technics to easily construct an adaptive optimal estimator of f * . It realizes a kind of 'adaptation to the threshold' by selecting the best threshold v u for u describing the set Λ n . Since we know that there exists an element in Λ n depending on the regularity of f * such that the non-adaptive estimator fvu (D m , .) is optimal in the minimax sense (see Theorem 2), the multi-thresholding estimator is optimal independently of the regularity of f * .

Performances of the multi-thresholding estimator

This section is devoted to the minimax performances of the multi-thresholding estimator defined in [START_REF] Cesa-Bianchi | Prediction, Learning, and Games[END_REF] under the L 2 ([0, 1]) risk over Besov balls. Firstly, we consider the framework of the density model. Secondly, we focus our attention on the bounded regression with uniform random design. Finally, we compare these results with some well-known wavelet thresholded procedures.

Density model

In the density estimation model, Theorem 3 below investigates rates of convergence achieved by the multi-thresholding estimator (defined by ( 15)) under the L 2 ([0, 1]) risk over Besov balls. 

ρ 2 8B + (8ρ/(3 √ 2))( ψ ∞ + B) ≥ 4(log 2)
and

αj,k = 1 n n i=1 φ j,k (X i ), βj,k = 1 n n i=1 ψ j,k (X i ). ( 16 
)
Then, there exists a constant C > 0 such that

sup f * ∈B s p,q (L) E[ fn -f * 2 L 2 ([0,1]) ] Cn -2s/(2s+1) , for any p ∈ [1, ∞], s ∈ (p -1 , N], r ∈ [1, ∞] and integer n.
The rate of convergence V n = n -2s/(1+2s) is minimax over B s p,q (L). Further details about the minimax rate of convergence over Besov balls under the L 2 ([0, 1]) risk for the density model can be found in [START_REF] Delyon | On minimax wavelet estimators[END_REF] and [START_REF] Härdle | Wavelet, Approximation and Statistical Applications[END_REF]. For further details about the density estimation via adaptive wavelet thresholded estimators, see [START_REF] Donoho | Density estimation by wavelet thresholding[END_REF], [START_REF] Delyon | On minimax wavelet estimators[END_REF] and [START_REF] Picard | Adaptive confidence interval for pointwise curve estimation[END_REF]. See also [START_REF] Herrick | Some new methods for wavelet density estimation[END_REF] for a practical study.

Bounded regression

In the framework of the bounded regression model with uniform random design, Theorem 4 below investigates the rate of convergence achieved by the multi-thresholding estimator defined by [START_REF] Cesa-Bianchi | Prediction, Learning, and Games[END_REF] under the L 2 ([0, 1]) risk over Besov balls. 

ρ 2 8 + (8ρ/(3 √ 2))( ψ ∞ + 1) ≥ 4(log 2)
and

αj,k = 1 n n i=1 Y i φ j,k (X i ), βj,k = 1 n n i=1 Y i ψ j,k (X i ). (17) 
Then, there exists a constant C > 0 such that, for any

p ∈ [1, ∞], s ∈ (p -1 , N],
q ∈ [1, ∞] and integer n, we have

sup f * ∈B s p,q (L)
The rate of convergence V n = n -2s/(1+2s) is minimax over B s p,q (L). The multithresholding estimator has better minimax properties than several other wavelet estimators developed in the literature. To the authors's knowledge, the result obtained, for instance, by the hard thresholded estimator (see [START_REF] Donoho | Adaptating to unknown smoothness via wavelet shrinkage[END_REF]), by the global wavelet block thresholded estimator (see [START_REF] Kerkyacharian | Lp adaptive density estimation[END_REF]), by the localized wavelet block thresholded estimator (see [START_REF] Cai | On adaptivity of Blockshrink wavelet estimator over Besov spaces[END_REF][START_REF] Cai | Incorporating information on neighboring coefficients into wavelet estimation[END_REF][START_REF] Cai | Adaptive wavelet estimation: a block thresholding and oracle inequality approach[END_REF], [START_REF] Hall | On the minimax optimality of block thresholded wavelet estimators[END_REF][START_REF] Hall | Block thresholding rules for curve estimation using kernel and wavelet methods[END_REF], [START_REF] Efromovich | Quasi-linear wavelet estimation[END_REF][START_REF] Efromovich | Sharp linear and block shrinkage wavelet estimation[END_REF], [START_REF] Chicken | Nonparametric regression on random processes and design[END_REF] and [START_REF] Cai | Block thresholding for density estimation: local and global adaptivity[END_REF]) and, in particular, the penalized Blockwise Stein method (see [START_REF] Cavalier | Penalized blockwise Stein's method, monotone oracles and sharp adaptive estimation[END_REF]) are worse than the one obtained by the multi-thresholding estimator and stated in Theorems 3 and 4. This is because, on the difference of those works, we obtain the optimal rate of convergence without any extra logarithm factor.

In fact, the multi-thresholding estimator has similar minimax performances than the empirical Bayes wavelet methods (see [START_REF] Zhang | General empirical Bayes wavelet methods and exactly adaptive minimax estimation[END_REF] and [START_REF] Johnstone | Empirical bayes selection of wavelet thresholds[END_REF]) and several term-by-term wavelet thresholded estimators defined with a random threshold (see [START_REF] Juditsky | Wavelet estimators: adapting to unknown smoothness[END_REF] and [START_REF] Birgé | Gaussian model selection[END_REF]).

Finally, it is important to mention that the multi-thresholding estimator does not need any minimization step and is relatively easy to implement.

Proofs

Proof of Theorem 1. We recall the notations of the general framework introduced in the beginning of Subsection 2.1. Consider a loss function

Q : Z × F -→ R, the risk A(f ) = E[Q(Z, f )]
, the minimum risk A * = min f ∈F A(f ), where we assume, w.o.l.g, that it is achieved by an element f * in F and the empirical risk

A n (f ) = (1/n) n i=1 Q(Z i , f
), for any f ∈ F . The following proof is a generalization of the proof of Theorem 1 in [START_REF] Lecué | Optimal rates of aggregation in classification[END_REF].

We first start by a 'linearization' of the risk. Consider the convex set Using the Lagrange method of optimization we find that the exponential weights where e j denotes the vector in C with 1 for j-th coordinate (and 0 elsewhere).

C = (θ 1 , . . . , θ M ) : θ j ≥ 0 and
w def = (w (n) (f j )) 1≤j≤M
Let ǫ > 0. Denote by ÃC the minimum min θ∈C Ã(θ). We consider the subset of

C D def = θ ∈ C : Ã(θ) > ÃC + 2ǫ . Let x > 0. If sup θ∈D Ã(θ) -A * -( Ãn (θ) -A n (f * )) Ã(θ) -A * + x ≤ ǫ ÃC -A * + 2ǫ + x ,
then for any θ ∈ D, we have

Ãn (θ) -A n (f * ) ≥ Ã(θ) -A * - ǫ( Ã(θ) -A * + x) ( ÃC -A * + 2ǫ + x) ≥ ÃC -A * + ǫ, because Ã(θ) -A * ≥ ÃC -A * + 2ǫ. Hence, P inf θ∈D Ãn (θ) -A n (f * ) < ÃC -A * + ǫ ≤ P sup θ∈D Ã(θ) -A * -( Ãn (θ) -A n (f * )) Ã(θ) -A * + x > ǫ ÃC -A * + 2ǫ + x . (18) 
Observe that a linear function achieves its maximum over a convex polygon at one of the vertices of the polygon. Thus, for j 0 ∈ {1, . . . , M} such that Ã(e j 0 ) = min j=1,...,M Ã(e j ) (= min j=1,...,M A(f j )), we have Ã(e j 0 ) = min θ∈C Ã(θ). We obtain the last inequality by linearity of à and the convexity of C. Let ŵ denotes either the exponential weights w or e . According to [START_REF] Daubechies | Ten Lectures on Wavelets[END_REF] 

P Ã( ŵ) > ÃC + 2ǫ ≤ P inf θ∈D Ãn (θ) -A n (f * ) ≤ Ãn (e j 0 ) -A n (f * ) + log M n ≤ P inf θ∈D Ãn (θ) -A n (f * ) < ÃC -A * + ǫ +P Ãn (e j 0 ) -A n (f * ) ≥ ÃC -A * + ǫ - log M n ≤ P sup θ∈C Ã(θ) -A * -( Ãn (f ) -A n (f * )) Ã(θ) -A * + x > ǫ ÃC -A * + 2ǫ + x +P Ãn (e j 0 ) -A n (f * ) ≥ ÃC -A * + ǫ - log M n .
If we assume that

sup θ∈C Ã(θ) -A * -( Ãn (θ) -A n (f * )) Ã(θ) -A * + x > ǫ ÃC -A * + 2ǫ + x ,
then, there exists θ (0) = (θ

(0) 1 , . . . , θ (0) 
M ) ∈ C, such that Ã(θ (0) ) -A * -( Ãn (θ (0) ) -A n (f * )) Ã(θ (0) ) -A * + x > ǫ ÃC -A * + 2ǫ + x .
The linearity of à yields 

Ã(θ (0) ) -A * -( Ãn (θ (0) ) -A n (f * )) Ã(θ (0) ) -A * + x = M j=1 θ (0) j [A(f j ) -A * -(A n (f j ) -A n (f * )) M j=1 θ (0) j [A(f j ) -A * + x]
A(f j ) -A * -(A n (f j ) -A n (f * )) A(f j ) -A * + x > ǫ A F 0 -A * + 2ǫ + x ,
where A F 0 def = min j=1,...,M A(f j ) (= ÃC ). Now, we use the relative concentration inequality of Lemma 1 to obtain

P max j=1,...,M A(f j ) -A * -(A n (f j ) -A n (f * )) A(f j ) -A * + x > ǫ A F 0 -A * + 2ǫ + x ≤ M 1 + 4c(A F 0 -A * + 2ǫ + x) 2 x 1/κ n(ǫx) 2 exp - n(ǫx) 2 4c(A F 0 -A * + 2ǫ + x) 2 x 1/κ +M 1 + 4K(A F 0 -A * + 2ǫ + x) 3nǫx exp - 3nǫx 4K(A F 0 -A * + 2ǫ + x)
.

Using the margin assumption MA(κ, c, F 0 ) to upper bound the variance term and applying Bernstein's inequality, we get

P A n (f j 0 ) -A n (f * ) ≥ A F 0 -A * + ǫ - log M n ≤ exp - n(ǫ -(log M)/n) 2 2c(A F 0 -A * ) 1/κ + (2K/3)(ǫ -(log M)/n) ,
for any ǫ > (log M)/n. From now, we take x = A F 0 -A * + 2ǫ, then, for any (log M)/n < ǫ < 1, we have

P Ã( ŵ) > A F 0 + 2ǫ ≤ exp - n(ǫ -log M/n) 2 2c(A F 0 -A * ) 1/κ + (2K/3)(ǫ -(log M)/n) + M 1 + 32c(A F 0 -A * + 2ǫ) 1/κ nǫ 2 exp - nǫ 2 32c(A F 0 -A * + 2ǫ) 1/κ + M 1 + 32 3nǫ exp - 3nǫ 32 .
If ŵ denotes e  then, Ã( ŵ) = Ã(e ) = A( f (ERM ) ). If ŵ denotes the vector of exponential weights w and if

f -→ Q(z, f ) is convex for π-almost z ∈ Z, then, Ã( ŵ) = Ã(w) ≥ A( f (AEW ) n ). If f -→ Q(z, f
) is assumed to be convex for π-almost z ∈ Z then, let fn denote either the ERM procedure or the AEW procedure, otherwise, let fn denote the ERM procedure f (ERM ) n . We have for any 2(log M)/n < u < 1,

E[A( fn ) -A F 0 ] ≤ E Ã( ŵ) -A F 0 ≤ 2u + 2 1 u/2 [T 1 (ǫ) + M(T 2 (ǫ) + T 3 (ǫ))] dǫ, (19) 
where

T 1 (ǫ) = exp - n(ǫ -(log M)/n) 2 2c(A F 0 -A * ) 1/κ + (2K/3)(ǫ -(log M)/n) , T 2 (ǫ) = 1 + 16c(A F 0 -A * + 2ǫ) 1/κ nǫ 2 exp - nǫ 2 16c(A F 0 -A * + 2ǫ) 1/κ and T 3 (ǫ) = 1 + 8K 3nǫ exp - 3nǫ 8K .
We recall that β 1 is defined in [START_REF] Birgé | Gaussian model selection[END_REF]. Consider separately the following cases (C1) and (C2).

(C1) The case 1) .

A F 0 -A * ≥ ((log M)/(β 1 n)) κ/(2κ-
Denote by µ(M) the unique solution of µ 0 = 3M exp(-µ 0 ). Then, clearly

(log M)/2 ≤ µ(M) ≤ log M. Take u such that (nβ 1 u 2 )/(A F 0 -A * ) 1/κ = µ(M).
Using the definition of case (1) and of µ(M) we get u ≤ A F 0 -A * . Moreover,

u ≥ 4 log M/n, then 1 u/2 T 1 (ǫ)dǫ ≤ (A F 0 -A * )/2 u/2 exp - n(ǫ/2) 2 (2c + K/6)(A F 0 -A * ) 1/κ dǫ + 1 (A F 0 -A * )/2 exp - n(ǫ/2) 2 (4c + K/3)ǫ 1/κ dǫ.
Using Lemma 2 and the inequality u ≤ A F 0 -A * , we obtain

1 u/2 T 1 (ǫ)dǫ ≤ 8(4c + K/3)(A F 0 -A * ) 1/κ nu exp - nu 2 8(4c + K/3)(A F 0 -A * ) 1/κ . (20) 
We have 16c(A F 0 -A * + 2u) ≤ nu 2 thus, using Lemma 2, we get

1 u/2 T 2 (ǫ)dǫ ≤ 2 (A F 0 -A * )/2 u/2 exp - nǫ 2 64c(A F 0 -A * ) 1/κ dǫ +2 1 (A F 0 -A * )/2 exp - nǫ 2-1/κ 128c dǫ ≤ 2148c(A F 0 -A * ) 1/κ nu exp - nu 2 2148c(A F 0 -A * ) 1/κ . (21) 
We have 16(3n

) -1 ≤ u ≤ A F 0 -A * , thus, 1 u/2 T 3 (ǫ)dǫ ≤ 16K(A F 0 -A * ) 1/κ 3nu exp - 3nu 2 16K(A F 0 -A * ) 1/κ . (22) 
From ( 20), ( 21), ( 22) and ( 19) we obtain 1) .

E A( fn ) -A F 0 ≤ 2u + 6M (A F 0 -A * ) 1/κ nβ 1 u exp - nβ 1 u 2 (A F 0 -A * ) 1/κ . The definition of u leads to E A( fn ) -A F 0 ≤ 4 (A F 0 -A * ) 1/κ log M nβ 1 . (C2)The case A F 0 -A * ≤ ((log M)/(β 1 n)) κ/(2κ - 
We now choose u such that nβ 2 u (2κ-1)/κ = µ(M), where µ(M) denotes the unique solution of µ 0 = 3M exp(-µ 0 ) and β 2 is defined in [START_REF] Bunea | Online prediction algorithms for aggregation of arbitrary estimators of a conditional mean[END_REF]. Using the definition of case [START_REF] Abramovich | Adapting to unknown sparsity by controlling the false discovery rate[END_REF] and of µ(M) we get u ≥ A F 0 -A * (since β 1 ≥ 2β 2 ). Using the fact that u > 4 log M/n and Lemma 2, we have

1 u/2 T 1 (ǫ)dǫ ≤ 2(16c + K/3) nu 1-1/κ exp - 3nu 2-1/κ 2(16c + K/3) . ( 23 
)
We have u ≥ (128c/n) κ/(2κ-1) and using Lemma 2, we obtain

1 u/2 T 2 (ǫ)dǫ ≤ 256c nu 1-1/κ exp - nu 2-1/κ 256c . (24) 
Since u > 16K/(3n) we have

1 u/2 T 3 (ǫ)dǫ ≤ 16K 3nu 1-1/κ exp - 3nu 2-1/κ 16K . (25) 
From ( 23), ( 24), ( 25) and [START_REF] Delyon | On minimax wavelet estimators[END_REF] we obtain

E A( fn ) -A F 0 ≤ 2u + 6M exp -nβ 2 u (2κ-1)/κ nβ 2 u 1-1/κ . The definition of u yields E A( fn ) -A F 0 ≤ 4 log M nβ 2 κ 2κ-1
. This completes the proof.

Lemma 1. Consider the framework introduced in the beginning of Subsection 2.1.

Let F 0 = {f 1 , . . . , f M } be a finite subset of F . We assume that π satisfies MA(κ, c, F 0 ), for some κ ≥ 1, c > 0 and |Q(Z, f ) -Q(Z, f * )| ≤ K a.s., for any f ∈ F 0 , where K ≥ 1 is a constant. We have for any positive numbers t, x and any integer n where h 0,B is the projection function introduced in ( 14) and β 2 is given in [START_REF] Bunea | Online prediction algorithms for aggregation of arbitrary estimators of a conditional mean[END_REF]. Now, for any s > 0, let us consider j s an integer in Λ n such that n 1/(1+2s) ≤ 2 js < 2n 1/(1+2s) .

P max f ∈F A(f ) -A n (f ) -(A(f * ) -A n (f * )) A(f ) -A * + x > t ≤ M 1 + 4cx 1/κ n(tx)
Since the estimators αj,k and βj,k defined by ( 16) satisfy the inequalities ( 12) and This completes the proof of Theorem 3.

Proof of Theorem 4. The proof of Theorem 4 is similar to the proof of Theorem 3. We only need to prove that, for any j ∈ {τ, ..., j 1 } and k ∈ {0, ..., 2 j -1}, the estimators αj,k and βj,k defined by [START_REF] Chipman | Adaptive Bayesian wavelet shrinkage[END_REF] satisfy the inequalities ( 12) and [START_REF] Catoni | Statistical Learning Theory and Stochastic Optimization[END_REF]. First of all, let us notice that the random variables Y 1 ψ j,k (X 1 ), ..., Y n ψ j,k (X n ) are i.i.d and that there m-th moment, for m ≥ 2, satisfies E(|ψ j,k (X 1 )| m ) ≤ ψ m-2 ∞ 2 j(m/2-1) E(|ψ j,k (X 1 )| 2 ) = ψ m-2 ∞ 2 j(m/2-1) .

For the first inequality (cf. inequality ( 12)), Rosenthal's inequality (see [29, p.241]) yields, for any j ∈ {τ, ..., j 1 },

E(| βj,k -β j,k | 4 ) ≤ C(n -3 E(|Y 1 ψ j,k (X 1 )| 4 ) + n -2 [E(|Y 1 ψ j,k (X 1 )| 2 )] 2 ) ≤ C Y 4 ∞ ψ 4 ∞ (n -3 2 j 1 + n -2 ) ≤ Cn -2 .
For second inequality (cf. inequality ( 13)), Bernstein's inequality yields

P 2 √ n| βj,k -β j,k | ≥ ρ √ a ≤ 2 exp - ρ 2 a 8σ 2 + (8/3)Mρ √ a/(2 √ n) ,
where a ∈ {τ, ..., j 1 }, ρ ∈ (0, ∞), 

M = Y ψ j,k (X) -β j,k ∞ ≤ 2 j/2 Y ∞ ψ ∞ + f * 2 L 2 ([0,1]) ≤ 2 j 1 /2 ( ψ ∞ + 1) ≤ 2 1/2 (n/ log n) 1/2 ( ψ ∞ +

  we are not able to predict the exact value of the output Y ∈ [0, 1]. This issue can be seen in the regression framework as a noised estimation. It means that in each spot X of the input set, the predicted label Y is concentrated around E [Y |X] up to an additional noise with null mean denoted by ζ. The regression model can then be written as

1 ]

 1 naturally satisfies the margin assumption MA(1, 16, F 1 ), where F 1 is the set of all measurable functions from X to [0, 1]. In density estimation with the integrated squared risk, all probability measures π on (Z, T ) absolutely continuous w.r.t. the measure µ with one version of its density a.s. bounded by a constant B ≥ 1, satisfies the margin assumption MA(1, 16B 2 , F B ) where F B is the set of all non-negative function f ∈ L 2 (Z, T , µ) bounded by B.

Corollary 2 .

 2 Consider the density estimation framework. Assume that the underlying density function f * to estimate is bounded by B ≥ 1. Let f 1 , . . . , f M be M functions bounded from above and below by B. Let fn denote either the ERM or the AEW procedure. For β 2 defined in (8) and any ǫ > 0, we have

  Let us divide our observations D n into two disjoint subsamples D m , of size m, made of the first m observations and D (l) , of size l, made of the last remaining observations, where we take l = ⌈n/log n⌉ and m = n -l.

h

  a,b (y) = max(a, min(y, b)), ∀y ∈ R.

Theorem 3 .

 3 Let us consider the problem of estimating f * from the density model. Assume that there exists B ≥ 1 such that the underlying density function f * to estimate is bounded by B. Let us consider the multi-thresholding estimator defined in (15) where we take a = 0, b = B, ρ such that

Theorem 4 .

 4 Let us consider the problem of estimating the regression function f * in the bounded regression model with random uniform design. Let us consider the multi-thresholding estimator (15) with ρ such that

  n (f j ) which are linear versions of the risk A and its empirical version A n .

  are the unique solution of the minimization problem min Ãn (θ) + 1 n M j=1 θ j log θ j : (θ 1 , . . . , θ M ) ∈ C , where we use the convention 0 log 0 = 0. Take  ∈ {1, . . . , M} such that A n (f ) = min j=1,...,M A n (f j ). The vector of exponential weights w satisfies Ãn (w) ≤ Ãn (e ) + log M n ,

  and since, for any numbers a 1 , . . . , a M and positive numbers b 1 , . . . , b M , we have

B ≥ 1 ,n 1 / 2 ≤ 2 L 2 (

 11222 satisfies the margin assumption MA(1, 16B 2 , F B ) where F B is the set of all non-negative function f ∈ L 2 (Z, T , µ) bounded by B. To complete the proof we use that for any ǫ > 0,B(F 0 , π, Q) log M β 1 ǫB(F 0 , π, Q) + log M β 2 nǫand in both cases f -→ Q(z, f ) is convex for any z ∈ Z.Proof of Theorem 3. We apply Theorem 2, with ǫ = 1, to the multithresholding estimator fn defined in[START_REF] Cesa-Bianchi | Prediction, Learning, and Games[END_REF]. Since the density function f * to estimate takes its values in [0, B], Card(Λ n ) = log n and m ≥ n/2, we have, conditionally to the first subsample D m ,E[ f * -fn [0,1]) |D m ] ≤ 2 min u∈Λn (||f * -h 0,B ( fvu (D m , .))|| 2 L 2 ([0,1]) ) + 4(log n) log(log n) β 2 n ≤ 2 min u∈Λn (||f * -fvu (D m , .)|| 2 L 2 ([0,1]) ) + 4(log n) log(log n) β 2 n ,

( 13 )

 13 , Theorem 2 implies that, for any p ∈ [1, ∞], s ∈ (1/p, N], q ∈ [1, ∞] and n large enough, we have supf * ∈B s p,q (L) E[ f -f * 2 L 2 ([0,1]) ] = sup f * ∈B s p,q (L) E[E[ f -f * 2 L 2 ([0,1]) |D m ]] ≤ 2 sup f * ∈B s p,q (L) E[min u∈Λn (||f * -fvu (D m , .)|| 2 L 2 ([0,1]) ] + 4(log n) log(log n) β 2 n ≤ 2 sup f * ∈B s p,q (L) E[||f * -fv js (D m , .)|| 2 L 2 ([0,1]) ] + 4(log n) log(log n) β 2 n≤ Cn -2s/(1+2s) .

1 ), and σ 2 =

 12 E(|Y 1 ψ j,k (X 1 ) -β j,k | 2 ) ≤ E(|Y 1 ψ j,k (X 1 )| 2 ) ≤ Y 2 ∞ ≤ 1.Since a ≤ log n, we complete the proof by seeing that for ρ large enough, we have exp -ρ 2 a 8σ 2 + (8/3)Mρ √ a/(2 √ n) ≤ 2 -4a .

  then the AEW procedure satisfies the same oracle inequality as the ERM procedure.

Now, we give two corollaries of Theorem 1 in the density estimation and bounded regression framework. Corollary 1. Consider the bounded regression setup. Let f 1 , . . . , f M be M functions on X with values in [0, 1]. Let fn denote either the ERM or the AEW procedure. For β 2 defined in (

  So, if Ã( ŵ) > A C + 2ǫ then ŵ ∈ D and thus, there exists θ ∈ D such that Ãn (θ) -Ãn (f * ) ≤ Ãn (e j 0 ) -Ãn (f * ) + (log M)/n. Hence, we have

		, We have	
	Ã( ŵ) ≤ min j=1,...,M Ãn (e j ) +	log M n	≤ Ãn (e j 0 ) +	log M n

Proof. We use a "peeling device". Let x > 0. For any integer j, we consider

Define the empirical process

Using Bernstein's inequality and margin assumption MA(κ, c, F 0 ) to upper bound the variance term, we have

Lemma 2 completes the proof.

Lemma 2. Let α ≥ 1 and a, b > 0. An integration by part yields

Proof of Corollaries 1 and 2. In the bounded regression setup, any probability distribution π on X × [0, 1] satisfies the margin assumption MA(1, 16, F 1 ), where F 1 is the set of all measurable functions from X to [0, 1]. In density estimation with the integrated squared risk, any probability measure π on (Z, T ), absolutely continuous w.r.t. the measure µ with one version of its density a.s. bounded by a constant