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Abstract: In this paper the program LISA is presented. LISA is a flexible and portable
program which has been developed to analyse structural properties of large scale linear
and bilinear structured systems. More precisely, the program LISA contains programmed
algorithms which allow us to study the most recent results inthe analysis of the structured
systems.
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1. INTRODUCTION

Structured systems have received much attention since
the beginning of the 70’s. Based on the work of (Lin
1974), where graphic conditions for the structural con-
trollability are given, (Reinschke 1988) and (Murota
1987) proposes theoretic algorithms for studying the
structural properties of multi-input linear systems, like
controllability, observability. The main results con-
cerning graph theoretic approach are summarized in
(Dion et al. 2003).

Recently, some algorithms have been proposed for the
analysis of structured linear systems. In (Hovelaque
et al. 1996), for example, the primal-dual algorithm
is proposed to derive the infinite structure of a struc-
tured system. Later, the authors have implemented
the algorithm to analyse the solvability of disturbance
decoupling problem (Hovelaque et al. 1997).

In this context (Blanke et Lorentzen 2006) present a
Matlab toolbox called SaTool, in which are imple-
mented some results concerning structural analysis
theory like reachability, controllability and fault de-
tectability. SaTool uses mainly the bipartite graph to
represent structured systems.

In this article, a new tool for the analysis of structured
linear and bilinear systems is presented. This tool
is based on the representation of structured systems
by directed graphs or digraphs. In fact, it is possi-
ble to transform graphic conditions given in terms
of digraphs into flow graph conditions. Implemen-
tation of flow graphs is relatively easy and mainly
efficient(lower computational burden) because there
already exist many optimized algorithms useful to
analyse structured system properties. The first version
of LISA program deals with some new results con-
cerning generic unknown input and state observability
and fault isolability of structured linear systems and
observability of structured bilinear systems. In order
to deal with such complex problems, basic have been
developed, this basic tools can be used to solve many
other problems.

The paper is organized as follows: in section 2, struc-
tured linear and bilinear systems are presented, as
well as their graphical representation. In section 3,
the LISA program is presented, different useful algo-
rithms are summarized and explained. Estimation of
their complexity orders is given. Finally, in section 4,
we give the conclusion of the paper.



2. STRUCTURED LINEAR AND BILINEAR
SYSTEMS

Before presenting LISA program, an introduction to
structured systems and their graphical representation
is exposed in the following section.

2.1 Structured linear systems

Let us consider structured linear system noted(Σl
Λ
):

(Σl
Λ) :

{

ẋ(t) = Ax(t) + Bu(t) + E1w(t) + F1f(t)
y(t) = Cx(t) + Du(t) + E2w(t) + F2f(t)

(1)

wherex(t) ∈ R
n, u(t) ∈ R

m, w(t) ∈ R
r, f(t) ∈ R

q

andy(t) ∈ R
p are respectively the state, control input,

disturbance, fault and the measured output vector and
A,B,C,D,E1, E2, F1 andF2 are constant structured
matrices of appropriate dimensions and each of their
elements is either fixed to zero or a free non-zero
parameter.

A structured linear system(Σl
Λ
) can be represented

through digraphG(Σl
Λ
). The later is constituted by

a vertex setV and an edge setE i.e. G(Σl
Λ
) =

(V, E). The total number of vertices are denoted by
N and the total number of edges byM . The vertices
are associated to the stateX , controlled inputU ,
disturbanceW, measured outputY and faultF of
(Σl

Λ
) and the edges represent links between these

variables. More precisely,V = X ∪ U ∪W ∪ F ∪ Y,
whereX = {x1, . . . ,xn} is the set of state vertices,
U = {u1, . . . ,um} is the set of control input vertices,
W = {w1, . . . ,wr} is the set of disturbance vertices,
F = {f1, . . . , fq} is the set of fault vertices andY =
{y1, . . . ,yp} is the set of measured output vertices.
Hence,V consists ofn + m + r + q + p vertices.
The edge set isE = A-edges∪ B-edges∪ C-edges∪
D-edges∪E1-edges∪E2-edges∪F1-edges∪F2-edges,
where
A-edges= {(xj,xi) | A(i, j) 6= 0},
B-edges= {(uj,xi) | B(i, j) 6= 0},
C-edges= {(xj,yi) | C(i, j) 6= 0},
D-edges= {(uj,yi) | D(i, j) 6= 0},
E1-edges= {(wj,xi) | E1(i, j) 6= 0},
E2-edges= {(wj,yi) | E2(i, j) 6= 0},
F1-edges= {(fj,xi) | F1(i, j) 6= 0},
F2-edges= {(fj,yi) | F2(i, j) 6= 0}.
HereMλ(i, j) is the (i, j)th element of matrixMλ

and(v1,v2) denotes a directed edge from vertexv1 ∈
V to vertexv2 ∈ V.

Example 1.In Figure 1 is represented the digraph
associated to the following structured linear system:

A =











λ1 0 0 λ2 0 0 0

0 0 λ3 λ4 λ5 0 0

0 0 0 0 0 λ6 0

0 0 0 0 λ7 0 λ8

0 0 0 0 0 0 λ9

0 0 0 0 λ10 0 0

0 0 0 0 0 0 0











, B =











0

0

0

0

0

λ11

0











,

F1 =











0

0

0

0

0

0

λ12











andC =

(

λ13 0 0 0 0 0 0

0 λ14 0 0 0 0 0

0 0 λ15 0 0 0 0

)

.

Fig. 1. Digraph for example 1

2.2 Structured bilinear systems

In this part, we consider structured bilinear systemΣb
Λ

of the form:

ẋ(t) = A0x(t) +

m
∑

i=1

ui(t)Aix(t) +Bu(t)+ E1w(t)+ F1f(t)

y(t) = C0x(t) +Du(t)+ E2w(t)+ F2f(t)

(2)

wherex(t) ∈ R
n, u(t) ∈ R

m, w(t) ∈ R
r, f(t) ∈ R

q

andy(t) ∈ R
p are respectively the state, control input,

disturbance, fault and the measured output vectors.
For i = 0, . . . ,m, Ai, B,C,D,E1, E2, F1 andF2 are
matrices of appropriated dimensions.

As in the linear case, the digraph associated to(Σb
Λ
)

is notedG(Σb
Λ
) and is constituted by a vertex setV

and an edge setE i.e. G(Σb
Λ
) = (V, E). Vertex set is

defined identically as in the linear case. Edge set is

E =
m
⋃

l=0

Al-edges∪ B-edges∪ C-edges∪ D-edges∪

E1-edges∪E2-edges∪F1-edges∪F2-edges. Note that,
we indicate the numberi under eachAi-edge in order
to preserve the information about the belonging of
the edges in the digraph representation. Moreover, we
define the following vertex edge subsetX ′ = {x′

i,j}
where0 ≤ i ≤ n and1 ≤ j ≤ m and the edge sets
A′

i-edges= {(xi,x
′

j,k)|Ai(k, i) 6= 0)}

Example 2.In Figure 2 is represented the digraph
associated to the following structured bilinear system:

A0 =







λ1 λ2 λ3 0 0

λ4 0 λ5 0 0

0 0 λ6 0 0

0 0 0 0 λ7

0 0 0 λ8 0







, A1 =







0 λ9 0 0 0

0 0 0 0 0

0 0 λ10 0 0

0 0 0 0 0

0 0 λ11 λ12 0







,

A2 =







0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 λ13

0 λ14 0 0 0







andC =

(

λ15 0 0 0 0

0 0 0 λ16 0

)

.

Theoretic properties of the realization(Σl
Λ
) or (Σb

Λ
)

can be studied according to the values ofλi.
We say that a property is true generically (Van



Fig. 2. Digraph for example 2

der Woude 1999) if it is true for almost all the real-
izations of structured system(ΣΛ).

According to the graphic representation of structured
linear system by means of digraph, we will present in
the next section the different tools and functions which
are programmed in LISA.

3. LISA PROGRAM

LISA was developed in C++, a high level program-
ming language, in order to reduce the computational
burden. For the graphical user interface (gui), the li-
brary QT 4.0 was chosen. All these features make for
LISA a flexible and portable program which is suitable
for Windows as well as Linux environment.

Roughly speaking, the program is divided into two
parts: the user interface and the storages and calcula-
tion classes (Graph, StateRecorder, MatrixExporter).
For the purpose of this paper, we will concentrate in
only two classes:Graph andMatrixExporter. A very
practical group of functions are programmed inMa-
trixExporter class. This class permits to the user the
exportation of graph into a state space representation,
which can be read and used by Maple (version 10).

Most of the algorithms programmed in LISA are based
on the flow graph approach. Digraph representation
is suitable for the visual interpretation of some the-
oretical conditions which have to be verified by the
system to ensure its observability, controllability, etc.
However, it is important to note that from a compu-
tational point of view, flow graph representation is
more suitable than digraph representation. In LISA
a translation algorithm is used to convert digraphs
into flow graphs and/or bipartite graphs.FlowGraph
class contains different routines useful to these trans-
formations. Namely, several algorithms are dedicated
to find the maximum flow, solve the minimum cost -
maximum flow problem and find essential vertices in
a flow graph.

In this part, we detail some of the most important al-
gorithms programmed in LISA. For this presentation,
algorithms are divided into two main classes: basic
graph properties (disjoint paths, essential vertices, etc)
and structured system properties (input and state ob-
servability and fault isolability). The complexity order
of every algorithm is provided in function of the total
number of verticesN and the total number of edges
M .

3.1 Algorithms for basic graph properties

Successors ( predecessors)
This algorithm returns the successor (predecessor)
vertices of a given vertex subset. Note that, if directed
edge(v1,v2) belongs toE then,v1 is a predecessor of
v2 andv2 is a successor ofv1. The algorithm used to
accomplish this task is directly derived from the Boost
Library (Boost C++ Libraries 2005).

Finding predecessors in a graph is equivalent to deter-
mine successors in the reversed graph. According to
the documentation, the complexity of the used algo-
rithm isO(M).

disjoint paths
This algorithm returns the maximal number of disjoint
paths between two selected vertex subsets. To cope
with this problem, the digraph has to be transformed
into a flow graph. This idea is inspired by the next two
theorems (Jensen 2002):

⊲ Menger’s theorem : the maximum number of edge
disjoint paths in a graph is equal to the size of the
minimum edge cut in that graph, and

⊲ max flow min cut theorem : the size of the mini-
mum edge cut is equal to the value of the maximum
flow in a network where all edges have unit capac-
ity.

Then, the maximum flow is equal to the maximum
number of edges disjoint paths in a graph. However,
vertex disjoint paths instead of edge disjoint paths are
searched. A transformation of a digraph into a flow
graph, allows us to convert the min-vertex cut problem
to the min-edge cut problem. Transformation of the
original digraphG carries out in two steps: vertex
splitting and residual network procedure. Both steps
are taking by routines in theFlowGraphclass. Once
the transformation is carried out, that is, a residual
network is created, an algorithm to solve the minimum
cost - maximum flow problem is implemented. This
consists essentially in the Ford Fulkerson algorithm
(Bang-Jensen 2002) with a shortest path search at
each step. When all the paths are tested, the algorithm
stops and the maximum flow is given. There can be
a maximum ofO(N) disjoint paths (=path searches),
the complexity order of each search isO(N

√
M).

Hence the overall complexity order isO(N2
√

M).

essential vertices
This algorithm calculates the essential vertices in
disjoint paths between two selected vertex subsets
(source and sink). Essential vertices are all the vertices
which are included in every set of maximal disjoint
paths or maximum linking (Van der Woude 1999).
The removal of an essential vertex causes a reduction
in the number of disjoint paths. To determine the
essential vertices in a digraph, each vertexv is
removed and the maximum flow between source and
sink is calculated. If the new flow is smaller than



the original flow, thenv is essential. The algorithm
requiresO(N) flow calculations. As we have seen,
the complexity order of every flow calculation is
O(N2

√
M). Then, the overall complexity order is

O(N3
√

M).

separators
This algorithm returns input and output separators.
A separator is a vertex subset which contains at least
one vertex in every path of a linking. There are at least
two vertices belonging to a separator subset in every
disjoint path (Murota 1987). The set of separators
can be found as follows: First the maximal set of
disjoint paths is calculated. Next, the set of essential
vertices is calculated. Hence, to find the input (output)
separator it is sufficient to take the essential vertex
closer to the source (sink) subset in each disjoint path.
Essential vertices are found inO(N3

√
M). Finding

the vertices on each path which are also essential
vertices is done inO(N log2(N)), hence the overall
asymptotic complexity order isO(N3

√
M).

maximal matching:
The algorithm determines the size of the maximal
matching between two selected vertex subsets (source
and sink). A matching is a set of disjoint edges
in a bipartite graph. For this algorithm, the equiva-
lence between the maximum flow and the maximal
matching in a bipartite graph is considered (Bang-
Jensen 2002, Murota 1987). To this aim, an algorithm
dedicated to the construction of a bipartite flow graph
from a directed graph is used. Once the bipartite flow
graph is built, the maximum flow algorithm is run over
this bipartite flow graph. The conversion of digraph
into bipartite flow graph has a complexity equal to
O(M + N) for linear case andO(M + MN) for
bilinear case. The complexity order of the computa-
tion of the maximum flow isO(N2

√
M), the overall

complexity order isO(N2
√

M).

3.2 Algorithms for properties of structured system

Generic properties of structured systems related con-
trol problems are considered in section 3.1.

Based on the works of (Boukhobza et al. 2006),
we recall in a first time the graphic conditions for
the generic input and state observability of struc-
tured linear systems. Next, according to the works
of (Boukhobza and Hamelin 2006a), observability of
structured bilinear systems is treated. Finally, FPRG
(Fundamental Problem of Residual Generation) of
structured linear systems are introduced. We will
briefly discuss algorithms for checking these proper-
ties.

3.2.1. Input and state observability of structured lin-
ear systems In this paragraph, the conditions for the
input and state observability of structured linear sys-
tems are given and they are translated to an algorithm-
based language.

Input and state observability of structured linear sys-
tem Σl

Λ
requires the definition of the following sub-

sets:

• X0 is defined as all verticesxi of X such that the
number of disjoint paths from{xi ∪W ∪F toY
andW ∪ F to Y are equal. According to this,
X0 is determined with functiondisjoint paths
presented in section 3.1.

• Xs contains all vertices of typeX of all output
separators betweenF∪W andY calculated with
functionseparators.

• Ω0 contains all verticesvi of F ∪ W such that
the maximal matching fromvi toX \ (Xs ∪X0)
equals zero. This subset is defined by means of
the maximal matching function of 3.1.

• Y0 consists in all essential vertices betweenW∪
F ∪Y in Y.Y0 is then determined withessential
vertices function of 3.1.

According to these definitions, input and state observ-
ability of structured linear systems can be verified
if next three conditions are satisfied (Boukhobza et
al. 2006):

Cond1: each vertex inX ∪ F ∪W is predecessor of
vertex setY.

Cond2: all vertices inX0 andΩ0 are essential for the
linkings betweenΩ0 andXs ∪ Y0.

Cond3: the maximal matching in the bipartite graph
X ∪ F ∪W → X ∪ Y is equal ton + q + r.

Command Observablechecks conditionsCond1,
Cond2andCond3as follows:
To verify conditionCond1 algorithmpredecessorsis
used and then all vertices ofX , F andW are searched
in the result list of predecessors ofY0 .

According to the complexity orders associated to the
basic graph functions, it results that the complexity
order on calculatingCond1 is O(M + N log2(N)).

The main steps for the verification ofCond2 are
recapitulated as follows:

(1) Essential vertices betweenΩ0 andXs ∪ Y0 are
calculated,

(2) Finally, if all vertices inXs andΩ0 are in the pre-
viously calculated set, thenCond2 is satisfied.

According to the complexity orders associated to the
basic graph functions, it results that the complexity
order on calculatingCond2 is O(N3

√
M).

To check conditionCond3 it is sufficient to compute
the maximal matching betweenX ∪F∪W andX ∪Y.
That is, the complexity order ofCond3 isO(N2

√
M).



3.2.2. Observability for structured bilinear systems
Graphic conditions for the observability of structured
bilinear systems can be found in (Boukhobza and
Hamelin 2006a). We can summarize these conditions
as follows:

CondA: Each vertex inX is a predecessor of vertex
setY, and

CondB: There exists a maximal matching in the bi-
partite graphX → Y ′ ∪ X ′

For conditionCondA, function predecessorsimple-
mented in section 3.1 can be used.

To check conditionCondB it is sufficient to compute
the maximal matching betweenX andX ′ ∪ Y. Thus,
the complexity order ofCondB is O(NM3/2).

3.2.3. Fault Isolability of structured linear systems
An important property in diagnosis context is the

fault isolability. LISA allows us to verify this property
for the multifault case as well as for the monofault
case. Conditions of The FPRG solvability are treated
in detail in (Commault et al. 1999, Commault et al.
2002).

Only one condition has to be verified for ensuring
fault isolability:
CondI: a subset of faultsF0 belonging toF set,
is isolable if the number of disjoint paths between
F ∪W andY is equal to the number of disjoint paths
betweenF \ (F0 ∪W) andY plus card{F0}.

Command Isolability check conditionCondI us-
ing the functiondisjoint paths presented in section
3.1. Thus, the overall complexity order isO(N2

√
M).

In this section, an exhaustive description of the algo-
rithms developed in LISA was done. Structural prop-
erties of structured systems as observability and fault
isolability are calculated by this application. In or-
der to check these properties, basic algorithms have
been programmed. As it is known, some other struc-
tural properties can be studied using these graphic
algorithms (Van der Woude and Murota 1995, Van
der Woude 1999, Dion et al. 2003). So, the LISA
program is intended to expand its capabilities to ver-
ify other structural properties as controllability, distur-
bance rejection, etc.

4. CONCLUSION AND PERSPECTIVES

This paper has described. LISA is a program to dis-
play and manipulate linear/bilinear control systems.
The systems are displayed in terms of graphs, which
can be manipulated by the user. Concepts such as ob-
servability, fault isolability, etc. have been translated
into graph theoretic terms, and were implemented with
different graph algorithms.

Since many of the problems that needed to be solve
here are rather expensive in terms of time complexity
(i.e. finding disjoint paths) it was crucial to use a pro-
gramming language with little overhead, close to the
machine code level, C++ was chosen to benefit from
a much grater flexibility (e.g. classes, templates), with
only little sacrifice of performance. For the graphical
user interface (gui) the library QT 4.0 was chosen,
a very flexible, portable and easy to use library for
creating graphical user interfaces.
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