
HAL Id: hal-00120944
https://hal.science/hal-00120944v1

Submitted on 22 Dec 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formalisation of enterprise modelling standards using
UML and the B method.

Hervé Panetto, Jean-François Pétin, Dominique Méry

To cite this version:
Hervé Panetto, Jean-François Pétin, Dominique Méry. Formalisation of enterprise modelling standards
using UML and the B method.. 8th International Conference on Concurrent Enterprising, ICE2002,
Jun 2002, Rome, Italy. pp.93-101. �hal-00120944�

https://hal.science/hal-00120944v1
https://hal.archives-ouvertes.fr

Proceedings of the 8th International Conference on Concurrent Enterprising, ICE2002, 17th-19th June, 2002,
Rome, Italy, pp. 93-101, ISBN : 0 85358 113 4

Formalisation of enterprise modelling
standards using UML and the B method

Hervé Panetto1, Jean-François Pétin1, Dominique Méry2

1 CRAN – CNRS UMR 7039, University Henri Poincaré Nancy I, BP 239,
F-54506 Vandoeubre-les-Nancy, {Herve.Panetto, Jean-Francois.Petin}@cran.uhp-nancy.fr

2 LORIA – CNRS UMR 7503, University Henri Poincaré Nancy I, BP 239,
F-54506 Vandoeubre-les-Nancy, Dominique.Mery@loria.fr

Abstract
This paper deals with the verification of the existing enterprise modelling standards. Our approach is based on
the UML meta-modelling of enterprise standards in order to establish enterprise constructs and to use the formal
B method to cover verification issues. Two points are discussed : the checking of the global consistency of the
standard itself, and the verification of the instantiation of constructs to design particular enterprise models. This
work is illustrated using the ENV12204/N177 particular enterprise constructs standard.

Keywords
Enterprise construct, ENV12204, UML, OCL, B Method, verification

1 Introduction

Most major Enterprise Modelling and Integration projects (e.g. ESPRIT/CIMOSA,
ICAM/IDEF, IPK/IEM, ESPRIT/CCE-CNMA, LUT/CIM-BIOSYS, PERA, GRAI/GIM,
GERAM) have demonstrated the necessity of developing enterprise models to support
analysis, design and management of business processes that are executed in companies.
Representing the reality of an extended enterprise through the construction of enterprise
models requires to capture the whole needed and produced information, processes and its
behaviours, organisation constraints with the goal of providing an efficient operation support
[Jochem, 2002].
The consistency between the various representations involved in enterprise modelling is
partially reached by providing unified notations such as the UML [UML, 1997] or integrated
reference architectures such as CIMOSA [Kosanke, Vernadat, Zelm, 1999], GERAM,
GRAI/GIM. These notations are able to deal with syntactic interactions between the different
modelled points of view, but they suffer from a lack of mathematical foundations to check its
semantics interactions. For example, class, state-transition and collaboration diagrams are
standardised in UML notation, even if the specification modelled in some diagrams can be
not compliant with other ones. First way consists in providing these unified notations and
frameworks with consistent semantics and verification mechanisms [Vernadat, 1998].
Moreover, this approach allows one quantitative evaluation of enterprise models with regards
to expected properties such as processes performance, safety, capability, etc.

A complementary way is to consider that any enterprise models result from an instantiation
of generic constructs that are supposed to be correct with respect to basic knowledge about
enterprise modelling. This approach relies on the meta-modelling of the syntax and the
semantics of the “objects” involved in enterprise models. The modeller is then assisted by a
methodical approach (cf. Figure 1) that promotes the use of validated components libraries
(constructs) and their association rules to design enterprise models.

Enterprise processes

Enterprise models

.

Etat

final

ac
ti
vi
té

Etat

initial

O
bj

V
D

Cr
it

Contr.

Règles

INSTANTIATION

MODELLING

Enterprise meta-models
Basic Contructs for
enterprise modelling

Enterprise processes

Enterprise models

.

Etat

final

ac
ti
vi
té

Etat

initial

O
bj

V
D

Cr
it

Contr.

Règles

.

Etat

final

ac
ti
vi
té

Etat

initial

Etat

initial

O
bj

V
D

Cr
it

Contr.

Règles

INSTANTIATION

MODELLING

Enterprise meta-models
Basic Contructs for
enterprise modelling

Figure 1 : Enterprise modelling approach

For the syntactic definitions of constructs, UML proposes an extensibility mechanism to
formalise meta-classes and their associations (UML Profiles and OCL constraints), and
models such as CIMOSA, GERAM, GRAI/GIM, IEM have contributed to standardisation
and to unification efforts to harmonise concepts and terminology (ENV 12204 [ENV 12204,
1995] and its reworked version [N177, 2002], UEML (Unified Enterprise Modelling
Language) [Panetto, 2002] [Chen, Vallespir, Doumeingts, 2002]). These efforts could
contribute to the definition of an “Enterprise backbone” (cf.) in the same way as the
EAI (Enterprise Application Integration) specification [EAI, 2002], that helps in integrating
enterprise models and tools such as ARIS ToolSet, Bonapart, MOOGO, GRAI tool, etc.

Figure 2

Figure 2 : UEML backbone

GRAI

Conn6Conn5

Conn4

Conn3

Conn2 Conn1

Conn7

Conn8
T T

T

T

TT

T

T

IEM

CIMOSA

Enterprise
Backbone

ENV12204 ?
UEML ?

GRAIGRAI

Conn6Conn5

Conn4

Conn3

Conn2 Conn1

Conn7

Conn8
T T

T

T

TT

T

T

IEMIEM

CIMOSACIMOSA

Enterprise
Backbone

ENV12204 ?
UEML ?

However, these models and tools need to complete their syntax with a formalisation of its
semantics, in order to improve interoperability. Our approach then is based on the UML
meta-modelling of the existing ENV 12204 rework in order to define consistent semantics for
enterprise models. Formal verification issues are proposed to be supported by joining to
UML semi-formal meta-models a B formal description [Abrial, 1996] that provides
underlying proof mechanisms. Therefore, it becomes a necessity to define a unified language
for universal use by business users as well as within the enterprise modelling community and
which would address these problems. This work aims then to the development of a Unified
Enterprise Modelling Language (UEML), by analogy with the development of the UML
devoted to conceptual systems modelling.

Proceedings of the 8th International Conference on Concurrent Enterprising, ICE2002, 17th-19th June, 2002,
Rome, Italy, pp. 93-101, ISBN : 0 85358 113 4

2 ENV 12204/N177 standard for enterprise modelling

The ENV 12204 standard defines a set of constructs together with its relationships and its
attributes, using textual templates and an UML class diagram graphical representation (cf.

). The standard also defines behaviour rules which are a specialisation of the relation
construct that describes the sequencing relationships of constituent activities. There are five
types, namely serial, junction, loop, conditional and exception. These constructs define an
interpreted language specifying business processes behaviours.

Figure 3

Figure 3 : Part of the current ENV 12204 revision constructs model [N177, 2002]

3 UML modelling of ENV 12204/N177

3.1 A common language for enterprise modelling.
The Unified Modeling Language (UML), an OMG standard, is a widely adopted and used
modelling language. The UML emerged from the unification of various object-oriented
methods that occurred in the 1990s and is defined by 9 languages. In this work, we use the
Class Diagram which defines objects with its attributes, its operations and its relationships
and the State-transition Diagram which describes the dynamic behaviour of operations.
Moreover UML standard specifies the Object Constraint Language that supports the
description of constraints to be applied on object-oriented models. OCL is a formal constraint
language based on 1st order predicate logic. It formalises constraints which can be a
restriction on a static relationship between one or more values of some objects attributes, or a
dynamic guard that defines the pre and/or post-condition to be satisfied by an operation.

In order to extend its meta-model, UML provides an expendability mechanism through the
definition of so called “Profiles”. A profile contains one or more related extensions of
standard UML semantics. These are normally intended to customize UML for a particular
domain or purpose. They can also contain data types that are used by tag definitions for
informally declaring the types of the values that can be associated with tag definitions.

Indeed, these extension mechanisms are a means for refining the standard semantics of UML
and do not support arbitrary semantic extension. They allow the modeller to add new
modelling elements to UML for use in creating UML models for process-specific domains
such as enterprise models. Moreover, as the UML specification relies on the use of well-
formedness rules to express constraints on model elements, this profile uses the same
approach. The constraints applicable to the profile are added to the ones of the stereotyped
base model elements, which cannot be changed. Constraints attached to a stereotype must be
observed by all model elements branded by that stereotype. If the rules are specified formally
in a profile (for example, by using OCL for the expression of constraints), then a modelling
tool may be able to interpret the rules and aids the modeller in enforcing them when applying
the profile. UML is currently used to define common semantics to the existing various
frameworks [Panetto, Mayer, Lhoste, 2000] within the scope of the UEML (Unified
Enterprise Modelling Language) international IFAC-IFIP Task Force.

3.2 UML formalisation of ENV 12204/N177 constructs
Each construct is modelled by an UML class associated with OCL constraints that describes
the constraints to be verified by a particular application.
The following example (cf.) formalises that an “Enterprise Object” (EO) is defined
by some attributes (identifier, name, description, a set of properties which can either be of
type “String” or another EO). It can be decomposed by other ones (which are part of it).
Moreover, subtypes of an EO (“is-a” relationships) may exist. The OCL invariant formalises
well-formedness rules verifying that each EO could not be part of itself and that if an EO has
a property which is another EO, then this last one could not be part of the former one.

context EnterpriseObject
inv : self.partOf->forall(p | p <> self)
inv : self.properties->forall(p |
p.stereotype.name="Enterprise Object"
 implies not self.partOf->includes(p)

Figure 4

Figure 4: The "Enterprise Object" construct formalisation

Enterprise Object
<<stereoty pe>>

+id:Integer
+name:String
+description:String
 properties[0..*]:Object

*

0..1

part-of

Child

0..1

Parent*

is-a

4 Checking ENV12204/N177 with B Method

4.1 The B method
Introduced by (Abrial, 1996), the B Method is a formal method for the specification, the
design and the implementation of software applications which supports properties proofs and
refinement mechanisms (Cancell, Mery, Weinzoepflen, 2001). The B language is based on
the first order logic and the set theory. The first one includes classical operators of a
propositional calculus (! P, P v Q, P ¶ Q, P fi Q, P ¤ Q) and quantifiers (A X . p, E X . p).
The second one includes set-theoretical operators (S U T, S I T, S c T, x e S, #S, …),
functions and relations defined as subsets of Cartesian product (A j B Í P A x B), and
generalised substitutions ([S], [x:= f(y)]).
The B Method provides the Abstract Machine Notation (A.M.N.). Data, functions and
relationships issued from set theory aim are described using SETS, VARIABLES and
PROPERTIES clauses. Processing part is described using OPERATIONS clause that is
based on generalised substitutions that allow modifying an element or a set. An operation can

Proceedings of the 8th International Conference on Concurrent Enterprising, ICE2002, 17th-19th June, 2002,
Rome, Italy, pp. 93-101, ISBN : 0 85358 113 4

be pre-conditioned1 (or guarded) by a predicate Pre (i.e. the result of the operation is
established only if the predicate pre is satisfied : [Pre | S] I <=> Pre & [S] I) . INVARIANT
properties, described as a predicate, can be proved2 as being satisfied (or maintained) through
the execution of an operation.
B proof mechanisms are supported by a theorem prover. The invariant to be proved give rise
to proofs obligations which means the underlying hypotheses needed for the proof. If these
hypotheses are included in the known theories, the invariant is proved and considered as a
new theorem; if not, user operation is requested to help the prover by suggesting proving
strategy or by correcting the initial B specification.
The refinement mechanism of the B method provides support for an incremental
specification of models, by proving that invariant properties of a given abstract model are
preserved by a more concrete model adding specification details. The features (inclusion,
inheritance, …) of the B method allows a modular specification using visible or shared
variables between several machine and called operations.

4.2 From UML to B
The set theory basis and the object oriented features make easy an automatic translation from
object diagram, such as OMT [Facon, Laleau, Nguyen, 1998] or UML class diagram [Meyer,
2001] into the B language.

4.2.1 Class diagram
UML classes are translated into B machines where a class is declared as a set (that will
contain its instances), the attributes are defined as relationships (in the set theory meaning)
between its values domains and the class set. UML and B operations are equivalent concepts.
(cf. Figure 5). Note that the relationship between attributes and class is defined as an
invariant that must be always preserved whatever the operation modifies.

Figure 5 : B formalisation of a UML class

Enterprise Object
<<stereoty pe>>

+id:Integer
+name:String
+description:String
 properties[0..*]:Object

MACHINE Enterprise_Object
SETS UML_OBJECTS; PROP;
VARIABLES eo, enterprise_object_id, name,
description, properties
INVARIANT
 eo ⊆ UML_OBJECTS
 ∧ enterprise_object_id ∈ eo ƒ NAT
 ∧ name ∈ eo ß STRING
 ∧ description ∈ eo ß STRING
 ∧ properties ∈ eo j PROP
OPERATIONS
…

In the same way, relationship between two UML classes give rise to a B machine where the
composition mechanism USES enables access to the variables and invariant of the two
associated classes and where invariant characterise the relationship between the two classes
(cf. Figure 6). Its multiplicities (referential integrity) are given by the nature of relationship
simple relation (j), bijective (¬), injective (ƒ), surjective (∆), combined with partial function
(ß) and total function (f), and with declaration of domain (dom) and range (ran) if needed.
For example, the “properties” relationship (eo j PROP) means that the attribute
“properties” of the class “Enterprise Object” is multi-valuated.

1 preconditioned substitution [Pre | S] I ⇔ Pre & [S] I

2 operation S maintains the invariant I ∧ termination(S) ⇒ [S] I

Product
<<stereoty pe>>

 id:Integer
 priority :Integer

Business
Process

<<stereoty pe>>

 id:Integer
 priority :Integer

*

0..1

produces

MACHINE Produces
USES Product, Business_Process
VARIABLES produces
INVARIANT
 produces ∈ business_process_id ß product_id
OPERATIONS
…

Figure 6 : B formalisation of UML classes association

Figure 6

4.2.2 OCL constraints
At least, OCL constraints are described by a logic predicate included in a B invariant in order
to describe specific constraints to be applied to the relationship between attributes values.
Using the previous example (cf.), a constraint specifies that if a “Business Process”
(BP) produces a specific “Product” (P), then, this product priority has to be equal to the BP
one. shows the OCL specification of that constraint and its B formalisation.

context BusinessProcess
inv : BusinessProcess.produces.priority
 = self.priority

Figure 7

Figure 7 : B formalisation of an OCL constraint

Product
<<stereoty pe>>

 id:Integer
 priority :Integer

Business
Process

<<stereoty pe>>

 id:Integer
 priority :Integer

*

0..1

produces

MACHINE Produces
USES Product, Business_Process
VARIABLES produces
INVARIANT
 ∧ produces ∈ business_process_id ß product_id
 ∧ A (x, y). (x ∈ business_process_id
 ∧ y ∈ product_process_id
 ∧ produces(x) = y
 fi bp_priority(dom(x)) = pr_priority(dom(y))
OPERATIONS
…

This translation from UML to B can then be used to formalised ENV12204 UML
representation in order to check the global consistency of the standard and to verify the
conformance of instantiation rules with regards to the referential integrity and OCL
constraints defined in the ENV12204/N177 standard.

4.3 B formalisation of ENV 12204/N177
Let us take the example of Enterprise Object given by . Formalisation of the
Enterprise Object class is given by Figure 5.

Figure 4

Figure 4

First step is to complete this formalisation by defining the B machine (cf.)
associated to the relationship part-of between EO class and itself and to integrate into its
invariant a predicate that describes OCL constraints of .

Figure 8

Figure 8 : B machine of the part-of relationship

MACHINE Part_Of
USES Enterprise_Object
VARIABLES partof
INVARIANT
 ∧ partof ∈ enterprise_object_id ß enterprise_object_id
 ∧ A x. (x ∈ enterprise_object_id fi partof(x) Î x)

In this step, this formalisation of ENV12204/N177 is efficient for checking the global
correction of the UML model that is standardised. Indeed, the dynamics of the enterprise
business processes is described by an informal “Behaviour rules” construct that is not
demonstrated to be compliant with the information structure of ENV12204/N177.

Benefits of our formalisation consists in addition of dynamics features to the B formalisation
using B operations. These last ones are able to specify basic operations such as object
creation, deletion, and modification but also more complex sequential rules (cf. Figure 9)

Proceedings of the 8th International Conference on Concurrent Enterprising, ICE2002, 17th-19th June, 2002,
Rome, Italy, pp. 93-101, ISBN : 0 85358 113 4

related to the dynamics of enterprise processes. B proof mechanisms allow us to guarantee
that the dynamics specification of objects maintains the static specification of constructs.

 MACHINE FSA
SETS STATE; T; GUARDS /* set of states, triggering
events and guards*/
VARIABLES st1, st2, guard, p, s
INVARIANT st1 ⊆ STATE ∧ st2 ⊆ STATE ∧ guard ∈
GUARDS ∧ s ∈ STATE ∧ p ∈ T
OPERATION tr(s,p) =
 PRE guard ∧ s ∈ st1 ∧ p ∈ T
 THEN st1 := st1 – {s} || st2 := st2 ∪ {s} || action
 END

p [guard]/action

1 2

Figure 9 : B formalisation of a state-transition diagram [Lano, 1996]
Second step is related to the instantiation of constructs for the design of a particular enterprise
model. The B formalisation is then expected to ensure that any enterprise model instantiated
from the ENV 12204/N177 is correct with regards to the modelling rules specified in this
standard. Let us use again the example given in . The instantiation of the meta-class
“Enterprise Object” produces two classes named “Client order form” and “Order line”. Its
formalisation leads to two B machines (“ClientOrderForm” and “OrderLine”) that refer to the
construct machine (“Enterprise_Object”) using the clause EXTENDS and a dot notation (cf.

).

Figure 4

Figure 10

Figure 10 : B Instantiations of "Enterprise_Object"

MACHINE ClientOrderForm
EXTENDS ClientOrderForm.Enterprise_Object;
VARIABLES date, status;
INVARIANT
 date ⊆ ClientOrderForm.properties
 ∧ status ⊆ ClientOrderForm.properties
 ∧ date ∈ ClientOrderForm.eo f DATE
 ∧ status ∈ ClientOrderForm.eo f BOOL

 MACHINE OrderLine
EXTENDS OrderLine.Enterprise_Object;
VARIABLES price;
INVARIANT
 price ⊆ OrderLine.properties
 ∧ price ∈ OrderLine.eo f NAT

The instantiation of the “part-of” relationship produces the “lines” relationship between the
two previous classes (cf.). The B formalisation follows the same principle (cf.

) applied on the “Part_Of” machine described in .
Figure 11

Figure 11

Figure 11 : B formalisation of an instantiated model

Figure 8

Client order form
<<Enterprise Object>>

 id:Integer
 name:String
 description:String
 date:Date
 status:Boolean

Order line
<<Enterprise Object>>

 id:Integer
 name:String
 description:String
 /price:f loat

1..*

<<part-of>>
lines

MACHINE Lines
EXTENDS Lines.Part_Of;
USES ClientOrderForm, OrderLine;
INVARIANT
 Lines.partof ∈ OrderLine.enterprise_object_id
 ß ClientOrderForm.enterprise_object_id

The major benefit of this formalised instantiation is that the correctness of the particular
enterprise model can be proved with regards to the OCL constraint that is specified in the
generic construct. Indeed, the verification of the invariant defined in the “Lines” machine
implies the underlying verification of the invariant (including the OCL constraint) that is
defined in the “extended” generic machine “Part_Of”. However, an intensive combination of
B structuring mechanisms (USES, EXTENDS, …) with the refinement mechanism leads to
numerous proof obligations which are not easily computed by the B foundations supported
by the Atelier B tool3. This aspect could be a limit for the formalisation of the ENV

3 Atelier B is a ClearSy product

12204/N177 using of the B Method and justifies further work in this area, namely on the
refinement.

5 Conclusion

Our approach combines UML widely used diagrams with a more formal formalism in order
to provide semantics to the ENV 12204/N177 enterprise modelling standard. Two major
benefits have been illustrated : the verification of the standard itself when adding dynamics to
enterprise constructs, and a safe instantiation of the standard to any particular companies that
respects the modelling rules of the constructs. On-going work focuses on applying this kind
of formalisation (joint use of UML and B) on a real case study in order to investigate the
limits of our approach and to use the B refinement. Another important aspect for a wide
dissemination of these techniques within the enterprise world consists in hiding, as far as
possible, the use of the B formalism in order to provide the various actors, that are not
familiar with formal language, with a proved UML enterprise representation.

References
Abrial J.R. : The B Book: Assigning Programs to Meanings. Cambridge Univ. Press, 1996
ENV 12204 : CEN European Pre-Standard, Advanced Manufacturing Technology, Systems Architecture,

Constructs for Enterprise Modelling, TC 310/WG1, 1995
EAI : UML Profile and Interchange Models for Enterprise Application Integration (EAI) Specification, Object

Management Group standard, 2002, Web page : http://www.uml.org
Cancell D.; Mery D. Weinzoepflen A. : Modélisation et analyse de la documentation technique d’un système,

MSR’2001, Modélisation des Systèmes Réactifs, pp. 481-496, ISBN : 2-7462-0329-4, Toulouse, France,
October 17th-19th, Hermes Sciences, 2001

Chen D.; Vallespir B.; Doumeingts G. : Developing an Unified Enterprise Modelling Language (UEML) –
Requirements and Roadmap, 3rd IFIP working conference on infrastructures for virtual enterprises (PRO-
VE’02), Protugal, May 1st-3rd, 2002

Facon P., Laleau R., Nguyen H.P. : The Invoicing System Problem : From OMT Diagrams to B Specifications,
in International Workshop on Comparing Systems Specification Techniques "What questions are
prompted by ones particular method of specification ?", Nantes, France, 1998.

Jochem R. : Common Representation through UEML - Requirements and Approach, Proceedings of ICEIMT
international conference, Valencia, Spain, April 24th-26th, 2002

Kosanke K.; Vernadat F.; Zelm M. : CIMOSA: enterprise engineering and integration, Computers in Industry,
Volume 40, Issues 2-3, Pages 83-97, November 1999

Lano K. : The B language and method, a guide to practical formal development, Springer Verlag, ISBN 3-540-
76033-4, 1996.

Meyer E.: Développement formels par objets : utilisation conjointe de B et UML, thèse de l’Université de
Nancy 2, 23 mars 2001

N177 : ENV 12204 CEN European Pre-Standard revision, Advanced Manufacturing Technology, Systems
Architecture, Language Constructs for Enterprise Modelling, TC 310/WG1, 2002, restricted

Panetto H.; Mayer F.; Lhoste P. : Unified Modeling Language for meta-modelling : towards constructs
definitions, Proceedings of ASI'2000 Conference, September 18-20, 2000, Bordeaux, France, ISBN 960-
530-050-8.

Panetto H. : UML semantics representation of enterprise modelling constructs, Invited conference, Proceedings
of ICEIMT international conference, Valencia, Spain, April 24th-26th, 2002

UML : Unified Modeling Language, Object Management Group standard, 1997, Web page :
http://www.uml.org

Vernadat F. : The CIMOSA languages, Handbook of Information Systems. Bernus P., Mertins K. and Schmidt
G. Ed., Springer Verlag, pp 243-263, 1998.

	Introduction
	ENV 12204/N177 standard for enterprise modelling
	UML modelling of ENV 12204/N177
	A common language for enterprise modelling.
	UML formalisation of ENV 12204/N177 constructs

	Checking ENV12204/N177 with B Method
	The B method
	From UML to B
	Class diagram
	OCL constraints

	B formalisation of ENV 12204/N177

	Conclusion

