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Multi-step Richardson-Romberg Extrapolation:
Remarks on Variance Control and Complexity

GILLES PAGES *

December 18, 2006

Abstract

We propose a multi-step Richardson-Romberg extrapolation method for the compu-
tation of expectations Ef (X, ) of a diffusion (X¢);e[o,r] when the weak time discretiza-
tion error induced by the Euler scheme admits an expansion at an order R > 2. The
complexity of the estimator grows as R? (instead of 2%) and its variance is asymptoti-
cally controlled by considering some consistent Brownian increments in the underlying
Euler schemes. Some Monte carlo simulations carried with path-dependent options
(lookback, barriers) which support the conjecture that their weak time discretization
error also admits an expansion (in a different scale). Then an appropriate Richardson-
Romberg extrapolation seems to outperform the Euler scheme with Brownian bridge.

Key words: SDE, Euler-Maruyama scheme, Romberg extrapolation, Vandermonde deter-
minant, lookback option, barrier option.

MSC Classification (2000): 65C05, 60H35, 65B99, 65C30.

1 Introduction and preliminaries

One considers a d-dimensional Brownian diffusion process (X;)yc[o 7] solution of the follow-
ing S.D.E.
dXt == b(t, Xt)dt + O'(t, Xt)th, X(] = . (11)

where b : [0,7] x R? — R o : [0,T] x R — M(d x ¢) are continuous functions and
(Wi)tepo,r) denotes a g-dimensional Brownian motion defined on a filtered probability space
(Q, A, (Fi)iepo,r); ). We assume that b and o are Lipschitz continuous in z uniformly in
t € [0,7] and that b(0,.) and ¢(0,.) both have linear growth. In fact what we will use is
that, for every starting value z € R%, the Brownian Euler scheme of (1.1) — i.e. the Euler
scheme based on the increments of W — converges to X in every LP(P), p€ [0, +00), where
X is the unique strong solution of the SDFE starting at x.

*Laboratoire de Probabilités et Modeles aléatoires, UMR 7599, Université Paris 6, case 188, 4, pl. Jussieu,
F-75252 Paris Cedex 5, France. E-mail:gpa@ccr. jussieu.fr



Except for some very specific equations, it is impossible to process an exact simulation
of the process X even at a fixed time T (by exact simulation, we mean writing X, = x(U),
U ~ U([0,1])) (nevertheless, when d = 1 and o = 1, see [4], [5]). Consequently, to
approximate E(f(X,)) by a Monte Carlo method, one needs to approximate X by a process
that can be simulated (at least at a fixed number of instants). To this end one introduces
the stepwise constant Brownian Euler scheme X = (X' k1 )o<k<n With step % associated to
the SDE. It is defined by

_ _ _ T - T >
Xt2+1 :Xt2+b(tZ7Xt2)E+U( ZaXtZ) EUkJrh XOZI', ]{7:0,...,“—1,

where ' = ’%T, kE =0,....,n —1 and (Ug)i<k<n denotes a sequence of iid. N(0;1)-
distributed random vectors given by
n
Uk = T(WtZ_WtZ—I)’ k:L...,Tl.

. O v _mn g n 4n
Moreover, set for convenience X; := X; where t = ¢} if te [t} ¢} ).

Then, it is classical background that under the regularity and growth assumptions on
the coefficients b and o mentioned above, sup;c(o 11 | X; — Xy| goes to zero in every LP(P),
0<p<oo, ata O(%)—ra‘ce.

However many authors in a long series of papers going back to the seminal papers by
Talay-Tubaro ([15]) and Bally-Talay ([2], [3]), showed under various assumptions on the dif-
fusion coefficients the existence of a vector space V of Borel functions f : R — R (bounded
or with polynomial growth) for which one can expand the “weak” time discretization error
induced by the Euler scheme into a power series of % To be precise

R—1
> Ck _
&) = VfeV, E(f(X.)=E((X)+ ) —k t0n ) (1.2)
k=1
where the real constants ¢, £k = 1,..., R—1, do not depend on the discretization parameter

n (see [15] for smooth functions f, see [2] bounded Borel functions and uniformly hypo-
elliptic diffusions(!). In [3] is established the convergence of the p.d.f. of the Euler scheme
at time 7" toward that of X . See also the recent work [11] for an extension to tempered
distributions. Usually, this extension is established in full details for R = 2 and is known as
the (standard) Richardson-Romberg extrapolation. However, up to additional technicalities
(and smoothness assumptions on the coefficients) the expansion holds true for larger values
of R or even for every integer R > 2.

Furthermore, note that, the resulting vector space V of “admissible” functions is is
always characterizing for the P-a.s. equality in the following sense: for every pair of R%-
valued random vectors X, Y defined on a probability space (2, A, P),

VfeV, f(X)=f ) Pas)= (X=Y P-a.s.)

'The coefficient of the diffusion are assumed to be C£° in [2] i.e. infinitely differentiable with bounded

derivatives and then the expansion holds for any R. As concerns R = 2, CJ seems a sufficient assumption
when using this original method of proof based on an approximation by the PDE generated by the infinites-
imal generator. Although not proved in full details, an extension to Borel functions with polynomial growth
is mentioned in [2]. See also [10], [12] for different approaches not based on PDE’s.



From now on, we always assume that V has this property.

In Section 2, we first briefly recall what the original Richardson-Romberg (R-R) extrap-
olation is (when R = 2). Then, we prove that the choice of consistent Brownian increments
in the two involved Euler schemes is optimal. In Section 3, we propose a multi-step R-R
extrapolation at order R and we show that choosing consistent Brownian increments still
preserves the variance of the estimator for continuous functions or even Borel functions
(under some uniform ellipticity assumption). We point out that, however, consistent in-
crements is however not an optimal choice in general for a given function f. Then, in
Section 4 we analyze the complexity of our approach and compare it to that of iterated
R-R extrapolations. In Section 5, we provide for the first values of interest (R = 2,3,4)
some tables to simulate the needed consistent Brownian increments at this order. Finally,
we briefly illustrate the efficiency of this consistent R-R extrapolation by pricing vanilla
options in a high volatility B-S model.

NOTATIONS: A* is for transpose of the matrix A. |u| denotes the canonical Euclidean norm
on R?, g > 1.
2 The standard Richardson-Romberg extrapolation

Assume that (52‘/ ) holds. Let f€ V where V' denotes a vector space of continuous functions

with linear growth (the case of non continuous functions is investigated in the next section).

For notational convenience we set W) = W and X := X. A regular Monte Carlo
simulation based on M independent copies (X';l))m, m = 1,...,M, of the Euler scheme

X’;l) with step T'/n induces the following global (squared) quadratic error

M
IE(f Mmz FEM)™MIZ = [E(f(X,)) = E(F(XM)P

- 4 Var(/(X;)) +0(n73). (2.1)

This quadratic error bound (2.1) does not take fully advantage of the above expan-
sion (&,). To take advantage of the expansion, one needs to make an R-R extrapolation.
In that framework (originally introduced in [15]) one considers a second Brownian Euler
scheme, this time of the solution X2 of a “copy” of Equation (1.1) written with respect
to a second Brownian motion W) defined on the same probability space (Q, A,P). This
second Euler scheme has with a twice smaller step % and is denoted X (2. Then

102

E(f(X,)) = E@Qf (X)) - (X)) = 55+ 0(n™).



Then, the new global (squared) quadratic error becomes

M _ _ 2 ar X(2) - f(X
B~ 30 2A(FE™ = 1 (% e = 2 DI E IR -9)
m=1

(2.2)

The structure of this quadratic error suggests the following question: is it possible to

reduce the (asymptotic) time discretization error without increasing the Monte Carlo error?
To what extend is it possible to control the variance term Var(Zf(Xg)) - f(X:(Fl))) ?

It is clear that sup;c(o 7 ]X't(i) —Xt(i)] converges to 0 in every LP(P), 0 < p < oo, i = 1,2.
Consequently

sup \(X't(l), _,5(2)) — (Xt(l),Xt(Q))] LP(P)—&fLS' 0 as n — oo.
t€[0,T]

In particular (keep in mind f has at most polynomial growth),
Var(2f (X)) — f(XW1)) — Var2f(XP) - f(XW1))  as  n— oo

Then, straightforward computations show that

Var (2£(X2) — F(X1)) = SE(F(XI)? 4B (X F(XP) - (B(FED)) (23)

where
E(fXD)FXD) < IFEOLIFED)L = £ (2.4)

by Schwarz’s Inequality since X S) < x f).

Consequently, minimizing the variance term amounts to maximizing E( f (Xg) ) f (Xf) ))-
It follows from the equality case in Schwarz’s Inequality that the equality in (2.4) holds as
soon as f(X:(FQ)) = f(X:(Fl)) P-a.s. or f(X:(Fl)) = 0 P-a.s.. But since Xg) and X:(FQ) have the
same distribution, this alternative reduces to f(X:(FQ)) = f(X:(Fl)) P-a.s..

Finally minimizing the asymptotic variance term for every f € V is possible if and only
if

Xx@=xWM Pas. (2.5)

A sufficient (and sometimes necessary, see Annex) condition to ensure (2.5) clearly is

that
w®@ — @,

This means that the white noise (Ué2))1§k§n of the Buler scheme X(?) satisfies

2
0 = B W bt
2 2n

n

so that, from a simulation point of view, one needs to simulate 2n i.i.d. copies U, ,§2) of the
normal distribution and then sets

(2) (2)
U2k: + U2k:

ot = 7 1 k=1,....n



Note that all what precedes (as well as all what follows in fact) can be extended to
continuous functionals F'(X) for which an expansion similar to (1.2) holds (see e.g. the
pricing of Asian options in [13] or Section 5) or for different dynamics like SDE with delay
studied in [6].

This result provides a (positive) answer — at least asymptotic — to a question raised
in [7]: Self-consistent Brownian increments do minimize the (asymptotic) variance in the
R-R extrapolation. In the next section we show that it is possible to design some multi-step
R-R extrapolations with a reasonable complexity for which the control of the variance is
still preserved.

As concerns variance control, note that if one proceeds using two independent sequences
of Gaussian white noises U() and U®?)| the expansion (2.3) yields

Var <2f(X§2>) - f(XT1>)) = 5 Var (f(X§1)))

Such a choice is then the worst possible one. It induces an increase of the Monte Carlo
simulation by a factor 5.

3 Multi-step Richardson-Romberg extrapolation

Iterated R-R extrapolations are usually not implemented, essentially because their numer-
ical efficiency (when the white noises are independent) becomes less and less obvious. The
first reason is the increase of the complexity, the second one is the “explosion” of the
variance term (especially when implemented with independent Brownian motions) and the
third one is the absence of control of the coefficients ¢ as k increases. In what follows we
propose a solution to the first two problems: we propose a multi-step R-R extrapolation
with consistent Brownian increments. Doing so, we will control the variance in the Monte
Carlo error term and limit the increase of the complexity of the procedure. One proceeds as

follows: let R > 2 be an integer. We wish to obtain a time discretization error behaving like

-R

n~f" as n — oo. To this end, we introduce R Gaussian Euler schemes X = (Xg)ogkgrn

TN

with step %, r=1,...,R. Each Euler scheme is designed using a Gaussian white noise

(U ér))lgkgm obtained from the increments of a standard Brownian motion W (") by setting

r rn r r
vl = ‘/? (W,ST) —W((k)l)T>, k=1,...,rn.

The Brownian motions W), ... W) are all defined on the same probability space. We
will come back further on about the practical simulation of these increments. Our “meta-
assumption” implies that for an appropriate function f : R* — R, one has

> (r c 1l c, 1
E(f(X,) =EGEO) + 3. % L v e Laroa/em),  r=1...R
(=1
One defines the R x (R — 1) matrix
-l
™ l1<r<R1<¢<R-1
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and 1 as the unit (column) vector of R, Then, the above system of equations reads

E(F) 1= | EGEO) | 44| & | ey | A1 40(L) C(31)
: 1<r<R - Ji<r<r1 : 1<r<R

Now, let € R satisfying

This reads
a*A=e¢e (3.2)

where e; = (1,0,...,0)* is the first (column) vector of the canonical basis of R¥ and
1 1
—7 = Vandermonde { —,r =1,..., R | .
rt= r
1<r<R,1<(<R

Multiplying (3.1) on the left by a* yields
R ) = i
E(f(X;)) = E (Z arf<X;7">>> + % (1 +0(
where Cp = Z

Solving the Cramer linear system (3.2) yields after some elementary computations based

SRS
~—
N———
—~
w
w
=

:0|Q

on the Vandermonde determinant the following lemma.

Lemma 3.1 For every integer R > 1,

R

ar =a(r,R) = (—1)R7rm, 1<r<R. (3.4)

Remark. As a consequence of (3.4), one shows that for every integer R > 1,

rB r' (R—7)! R

Z o (-n" 1 (—1)F-1

o

r=1

<

(this follows from the comparison of the coefficient of # in the expansion e*e™* = 1) so
that

Cpl = %
This bound emphasizes that this multi-step extrapolation does “hide” an “exploding” be-
haviour in the first non vanishing order of the expansion. In fact it has a damping effect on
this coeflicient c,. However, the fact that we have in practice no control on the coefficient
¢, (and its successors) at a reasonable cost remains and is not overcome by this approach.

Now we pass to the choice of the Brownian motions W) in order to preserve the
variance of such a combination.



3.1 The case of continuous functions with polynomial growth

In this section, we assume that the vector space V is made of continuous functions with
polynomial growth and is stable by product. First note that for every p > 0

= (1 > (r (R 1 r R)\, LP(P) &a.s.
sup [(X, . x, Xy o x W xW L x Iy TS
t€[0,T]

0. (3.5)

Let fe V. Then
R R
ar (Z arf@f’)) — Var (Z arf<X¥>>> s m—oo  (36)
r=1 r=1
since f? is continuous with polynomial growth. When
W =w, r=1,...,R,

then, f(Xy)) = f(X,) for every r€ {1,..., R} so that

R 2
ar (Z arf(X(r) ) (Z ar> Var(f(X,)) = Var(f(X,)).
r=1

This obvious remark shows that this choice for the Brownian motions W) lead to a control
of the variance of the multi-step R-R estimator by that of f(X g)). However, the optimality
of this choice turns out to be a less straightforward question.

On the opposite, if one considers some mutually independent Brownian motions W (")
(which is in some way the “laziest” choice from the programming viewpoint), then

R
ar <Z ozrf(X:(Fr > <Za > Var(f(X,))
r=1

having in mind that

R 2
RR €2R
2 2 _ (8 €&
ZO&TZQR—<R!> o p R — o0.
r=1
The practical aspects of the above analysis can be summed up as follows.

Proposition 3.1 Let T' > 0. One considers the SDE (1.1). Assume that on every filtered
probability space (2, A, (Ft)icjo,1,P) on which exists a standard Fi-Brownian motion W,
(1.1) has a strong solution on [0,T] and that its Euler scheme with step T'/n (with Brown-
ian increments) converges in every LP(IP) for the sup-norm over [0,T)] for every p€ [1,00).
Furthermore assume that (1.1) admits an expansion (5};) at an order R > 1 for a charac-

terizing vector space V' of continuous functions f with polynomial growth, stable by product.
Let o€ RE be defined by (3.4). For everyre {1,..., R} set

r ™
U = VT <W% . W(k;;)ﬁ k> (3.7)

7



If X denotes an Fuler scheme of (1.1) with step % associated to the Gaussian white
noise (U(r)) th
Lk Jk>1, en

R R
E (rza,n £( X;ﬂ)) =E(f(X,)) +O0(n~ %) and lin Var (Zar F( )zp)) = Var(f(X,)).
-1 =1
Remark. A first extension of this result to non continuous Borel functions can be made
easily as follows: Convergence (3.5) implies that (X;l),...,f(;r), e ,X;R)) weakly con-
verges in (RY) to (X;l), e ,X;l)). Then, if f is Px_(dz)-a.s. continuous with polynomial
growth, sois (3, a, f(z,))? with respect to P
of the variances (3.6) still holds true.

(X This implies that the convergence

1)y -
W xM)

3.2 The case of bounded Borel functions (elliptic diffusions)

We no longer assume that V is a subspace of continuous functions. As a counterpart, we
make some more stringent assumptions on the coefficients b and o of the diffusion (1.1),
namely that they satisfy the following assumption:

(UE)_ (l) bz, O'ZJECEO(Rd,R),ZG{l,,d}, ]6{1,,(]}
B (i) Feg > 0 such that Vo e RY, oo™ (x) > goly.
(In particular this implies ¢ > d). Then we know from [2] (see also [11]) that (£Y) holds

at any order R > 1 with V = By(R? R) where B,(R% R) denotes the set of bounded Borel
functions f : R? — R. In that setting, the following result holds

Proposition 3.2 If Assumption (UE) holds, then Proposition 3.1 still holds at any order
R > 1 with V = By(R4, R).

Proof. The conclusion of Proposition 3.1 in Section 3.1 remains valid for a subspace
V' of possibly non continuous functions provided the convergence of the variance term in
Equation (3.6) still holds for every f€ V. Developing the variance term as follows

R R R 2
Var (Z ozrf(Xg))) =3 avanE (FXD) X)) - (Z 0 E( T”))
rl rr!
shows that it amounts to proving that
vrr'e{L . RY B (FEO)FEE)) — B (FXFX) as oo (38)
In order to prove this convergence, we rely on the following lemma established in [3].

Lemma 3.2 If (UE) holds then the distributions of X, and its Brownian Euler schemes

with step T'/n , starting at x € RY are absolutely continuous with distributions p,.(x,y)Aq(dy)
— . . d

and pl(z,y)Aa(dy) respectively. Furthermore, they satisfy for every x,y € R® and every

n>1,

Tn (1'7 y)

Pp(z,y) = pr(z,y) + with  |my(w,y)| < CeClovl

for a real constant C > 0.



Let 11 denote the finite positive measure defined by p(dy) = (p,.(z,y)+Ce™#¥*)\y(dy).
The set Lip,(R%,R) of bounded Lipschitz functions is everywhere dense in L (R?, 11). Con-
sequently, there exists a sequence (f)r>1 of functions of Lip, (R%, R) such that limy, ||f —
fxll; = 0. Furthermore, since one can replace each fi by ((—||f|l..) V fx) Al f].., one can
assume without loss of generality that || fx||.. < |/f]l..- Then one gets

E(FEOFE) = )| < B (FED)FEED) = S X0) (X))
[ (A E) ) = (X (X))

(X f(XE) = p) £ (xXED))
20/l max E (1f ~ (X))

1<r<R

IN

F20S Nl [filrip max EIX" — X1

T

2|/l maxE (|f = fil(X{))

Now, for every k > 1 and every re {1,..., R},
E(1f = fl (X)) +E (1f = Sl (X)) < 20f = fillr
so that, for every r, '€ {1,..., R} and every k > 1,
timsup B (£(X)F(X() = FE X)) | < 2711~ il

which in turn implies (3.8) by letting k go to infinity. o

3.3 About the optimality of the Brownian specification when R > 3

We proved in Section 2 that for the standard R-R extrapolation (R = 2), the choice of
the same underlying Brownian motion W for both schemes is optimal i.e. leads to the
lowest possible asymptotic variance for any admissible function f. In fact this is the only
case of optimality: the choice of consistent Brownian increments in the higher order R-R
extrapolation is never optimal in terms of variance reduction when R > 3.

Let fe V denote a (fixed) function in V' such that Var(f(Xg))) > 0. One may assume
without loss of generality that

Var(f(Xg))) =1.

Let ST := [Cov(f (XTT)) J(XY "M]i<rs<r denote the covariance matrix of the variables

J(XY (")). Then Var( f (X )) =1,r=1,..., R and the minimization of the variance of the
hi<

estimator o [f(X )) R s “lower—bounded” in a natural way by the following problem

min {a*Sa, S€ ST(d,R), S;; =1} . (3.9)

Choosing like in Propositions 3.1 and 3.2, f(X;T)) = f(X,)P-a.s.,r=1,..., R corresponds
to §/ =8 =11 (ie. 8, =1,1<i,j <R).

We use the term “lower-bounding” to emphasize that for a given f € V, there are pos-
sibly admissible matrices in (3.9) which cannot be covariance matrices for (f(X y)))lgrg R-



Proposition 3.3 (a) When R > 3,
min {OZ*SOZ, SG S+(d,R), S” = 1} = 0,

hence, the unit matriz Sy := 11* is never a solution to the minimization problem (3.9).
(b) When R =3, if f(X,) =Ef(X,)+ StD(f(X,))e, P(e = £1) = 1/2, then the extrapo-
lation formula stands as an exact quadrature formula.

Remark. Although it has no practical interest for applications, the situation described
in (b) may happen: assume the drift b is odd, the diffusion coefficient o is even and f is
the sign function f(x) = sign(x). When R > 4, for a given function f, the solution(s)
of the abstract minimization problem (3.9) do not correspond in general to an admissible
covariance matrix for (f (Xg)))lgrg R (see below the proof for a short discussion on simple
examples). Furthermore, even when it happens to be the case, the variance control provided
by 11* is obviously more straightforward than a numerical search of the appropriate un-
derlying covariance structure of the Brownian motions (W(r))lgrg r driving the diffusions.
However, one must keep in mind that multi-step R-R extrapolation leaves some degrees
of freedom to some variance reduction method as soon as R > 3 and the opportunity in
terms of computational cost to design an online optimization procedure (depending on the
function f) may be interesting in some cases. The appropriate approach is then an online
recursive stochastic approximation method somewhat similar to that introduced in [1] for
online variance reduction. This is beyond the scope of the present paper.

Proof. (a) Assume R > 4. We will show that the minimum in (3.9) is in fact 0. Let

It :={ic {1,...,R}|q z 0}. Let pe (0,1) and let A(p) := /(1 — p)Ig + p11* denote
the symmetric square root of the positive definite matrix (1 — p)Ig + p11*. Then set for
every i€ IT, C; = A(p)e; where (eq,...,er) still denotes the canonical basis of RF and

Qi

Zjel— |aj|’

First note that |C;|* = Zj(A(p)ji)Q = (A(p)?)ii = 1 and (C;|C}) = p, i # j. Then,

9; := ieIt.

Dier+ |l L+ Zje]* %
Z 0; = = > 1.
Zjel— |aj Zjel— %

iel+

On the other hand

= = <1
Cjer-1oiD)? Qierr i =12 Yieprof + 14 e+ il i jer+ 0 — 2)

Z 92 — Zieﬁ 0%2 . Zie[+ O‘zz Zieﬁ O‘zz
(2

eIt
since for every i€ I, Zj;éi,jeﬁ a; > min(ag_2,ag) > 2 provided R > 4. Consequently
the function g : [0,1] — R defined by g(p) := | >, + 6:Cs|? satisfies g(0) = >, c,+ 07 < 1

and g(1) = O ;er+ 6;)% > 1 so that there exists a real number po € (0, 1) such that g(pg) = 1.
From now on assume that p = pg.

10



Set C; = C:= 3,1+ 0;C}, for every i€ I so that || =1 and

R

Zai(]i = (Z OéZ)C + Z o;C; = 0.

r=1 iel— eIt

Consequently the symmetric nonnegative matrix
S:=[Cr---CLI"[C1---C] (3.10)

satisfies S;; = 1 for every i€ {1,..., R} and Sa = 0.

(b) When R = 3, one checks that ST = uwu*, u* = [1 —1 —1], satisfies S/ = 0 since ap+a3 =
1/2 = ay. This corresponds to the situation f(X;Q)) = f(X;?’)) = 2E(f(X;1))) - f(X;l))
so that f(X;l)) + f(X;Q)) = QIEf(X;l)) P-a.s.. The same identity holds for f2€ V| so that
f(X;l)) X f(X;Q)) = Ef(X;l))f(X;Q)) P-a.s. (use ab = 3((a+b)? —a* —b%)). Consequently
f (X;l)) and f (Xf)) are the zeros of 22 — uz + v for some deterministic real constants u

and v. The conclusion follows once noticed that f (Xg)) 4 f (Xf)). o

TWO TOY SITUATIONS: (a) Assume — which is of no numerical interest — that Xy) =
WT(T), r=1,..., R, where the covariance of the Brownian motions W) is given by (3.10).
Then Sa = 0 so that the multi-step R-R extrapolation is an exact quadrature formula (to
compute 0...).

. . . . _o2t ()
(b) If one considers some correlated geometrical Brownian motions Xt(r) = ez T

r=1,...,R, where (WM ... W) has Cy = ler)i<rr<r as a covariance matrix (at
time t = 1), then the covariance matrix of (XM, ..., X(F)) is given by
Cx =7 —1li<yr<p-

One easily checks that the mapping ¥ : [¢,.v] +— [e“'? — 1] is not bijective on the set of
non negative symmetric matrices with constant diagonal coefficients: let ¢ = log(1 + k),
p = log(1+) where ¥ > — 3% so that the matrix [(x —9)d,,» 4+ 9] is nonnegative. Assume
¥ = —% with A€ (log(14 k), k). Then this covariance structure cannot be obtained from
some correlated Brownian motions since ¢+ (R —1)p =log(1+ ) + (R —1)log(1+ 1) < 0.

4 Complexity of the multi-step R-R procedure (with consis-
tent Brownian increments)

Throughout this section, we assume that the R Gaussian white noises (Ulgr))lgkgm are
consistent Brownian increments given by (3.7).
4.1 Complexity

The simulation of the correlated sequences Ulgr) can often be neglected in terms of complex-
ity with respect to the computation of one step of the R Euler schemes (the main concern
being in fact to spare the random number generator, see below). Then, one can easily derive
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the complexity of one Monte Carlo path of this R-order R-R extrapolation procedure: for
every r€ {1,..., R}, one has to compute r n values of an Euler scheme. So the complexity
k(R) of the procedure is given by

R(R+1)

R
n(R):Cb,oxanr:Cb,oxnx 5

r=1
where C},, denotes the complexity of a one time step computation in (1.1). Note that
using a recursively iterated R-R procedure would have lead to consider some Euler schemes
with steps %, 1 < r < R, which in turn would have induced a complexity of order
Cho xnx (28 —1).
Thus the global complexity of a Monte Carlo simulation of size M is then

R(R+1) “n

N :=Cp, X X M.

Up to a scaling of the global complexity by 1/C, , one may assume without loss of generality
that Cp, = 1. So evaluating the performances of the R-R extrapolation as a function of
its complexity amounts to solving the following minimization problem:

ar 2
ERN) =, min YD (4 + S 1+ 01/

where lim,, e(n) = 0, since

M R 2 2
B(F(X,) 27 3 S anf (X0 = YD 4y oy 4 Gk 001 /m)),

m=1r=1

2

Standard computations lead to the following Proposition.

Proposition 4.4 Let R > 2 be the order of expansion of the time discretization error.
(a) Then,

Jim NT20TmRRE(R, ) = % X O(R) X R[E,|7RF1 x (Var(f(X,)))

where O(R) = 27@RTD R 7R+ (1 4 Ly (er) 75 + 2R)77)* =1 as R— o,

N

(b) Furthermore, for a fized complexity level N, the solution (n(N), M(N)) of the mini-
mization problem satisfies

2 (R+1\TF (Var(f(X,)\ T
M(N)NR(R+1)< 4> ( 2 > e

R

1 ~ 2R1+1
n(N) = —R +1 % N2R1+1
1 Var(F(X,))

as N — oo so that

and



COMMENTS:

— The rate of convergence increases with R and tends toward N 3. This means that,
as expected, the higher one expands the time discretization error, the less this error slows
down the asymptotic global rate of convergence.

— However, an expansion of order R being fixed, the range at which the theoretical rate of

1
l(lf 1 ) ~ 1 R|CR‘2R+1
convergence N 2" 2r+1’ does occur depends on the value of the term R|c,,|?F+T = —E—F—
(R!)2R+1

(~ \/E|CR|W1‘H as R — oo) for which no bound or estimate is available in practice.
Although some theoretical explicit expression do exist for the coefficients ¢, (at least for
small values of R, see [15], [11], [6]), it is usually not possible to have some numerical
estimates.

— The time discretization parameter n = n(N) and the size M = M(N) of the Monte
Carlo simulation are explicit functions of N which involve the unknown coefficient |c,|. So
the above sharp L*-rate of convergence is essentially a theoretical bound that cannot be
achieved at a reasonable cost in practice. However one could imagine to produce a rough
estimate of ¢,, by normalizing the R-R extrapolation (by n) using a small preliminary MC
simulation so as to design n(N) and M (N) using the above rules. However the recursive
feature of the resulting MC would be lost which seems not very realistic in practice.

4.2 Efficient simulation of consistent Brownian increments

The question of interest in this section is the simulation of the Brownian increments. Sev-
eral methods can be implemented, the main concern being to spare the random number
generator (its contribution to the global complexity of the simulation can be neglected in
practice as soon as b and o have “not too simple” expressions).

The problem amounts to simulating the increments of the R Fuler schemes, say between
absolute time ¢ = 0 and ¢ = T'/n. This means to simulate the upper triangular matrix

Wer — Wie—nyr
Tn

o J1<e<ri<r<r

4.2.1 A lazy approach

Let R > 2 be a fixed integer. For every re€ {1,..., R}, set
M(R) :=1em(1,2,...,R) and m(r):=M(R)/r, r=1,...,R.
Then, one simulates M (R) independent copies &1, ..., &, (r) Of N(0;1) and one sets
km(r)
rn _ [nM(R) '
t=(k—1)m(r)+1

Such a simulation strategy consumes n x M (R) random numbers to complete the sim-
ulation of the R Euler schemes until maturity 7'.

13



4.2.2 Saving the random number generator

One only simulates what is needed to get the above matrix. This means to simulate the
Brownian increments between the points of the set

SR::{nggeSr, 1§7“§R}.

Such a simulation strategy consumes n x card S, random numbers to complete the simu-
lation of the R Fuler schemes. Obviously

LT
SR:{;? 1<f<r 1<r<R, gcd(&?“)zl}
so that
R
card S, :Z(P(T)
r=1

where ¢ denotes the Euler function with the convention (1) = 1. Classical Number Theory
results say that

= 3
ng(r) ~ —2R2 as R — +o0.
r=1 T

whereas M(R) = elto)R a5 R — co. In practice, only the first values of M(R) and
card(S}) are of interest. They are are reported in the table below.

L r [i[2[s[4]5][6] 7]
M(R) [1]2]6]12]60]60] 420
card(S,) | 1]2]4] 6 [10]12] 18

For a given value of R, it is necessary to sort the values fe Sy and to design the array
of resulting lengths in order to simulate the above Brownian matrix at each “global” time
step T'/n. But this can be done once since it is universal.

5 Numerical experiments

5.1 Some tables

We specify how to simulate the Gaussian white noises (Uér))lgkg of the R coupled Euler
schemes (a recursive simulation is also possible).

— Let Uy, Uy be two i.i.d. copies of N'(0;1,). Set
u® —p, i1 o=l
17 9 < 1 \/5

and o] = —1, a9 = 2.

(Note that >, a? = 5)).
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— Let Uy, Us, Us, Uy be four i.i.d. copies of N'(0;1,). Set

Us + U-

U1(3) _ U, U2(3) _ 2:/% 3 U?EB) — U,

U@ _ V2UL + Uy U@ _ Us +V2Uy

1 \/3 ’ 2 \/g ’

g _ U+ 0
! V2
== =4 ==,
and Qg % (0%} ) Qg 5

(Note that 3, a2 = 22).

- Let Uy, ..., Us be six i.i.d. copies of N (0;1,). Set

U. 2U. 204+ U
U1(4):U1, U2(4): >+ V2 3’ U§4):\/_ 4+ 5’ Uf):Uﬁ.
V3 V3
U(3) . \/gUl + U, U(g) B Us+ Uy U(3) B Us + \/§U6
1 _f’ 2 \/5 ’ 3 _f’
4 4 4 4
U<2>:U1()+U2() U<2>:U§)+U§)
1 \/5 ’ 2 \/5 ’
2 2
g _ U+ 057
V2
1 27 32
and 041:—6, oy = 4, 043:—7, 044:?
(Note that Y, a? = 297 ~ 312.06).
[r=5]
U S -
a1_24a Qg = 3, a3 = 4, Qy = 3 ) Qs 24

5.2 Numerical test with a high volatility Black-Scholes model

To illustrate the efficiency of the use of consistent white noises in R-R extrapolation, we
consider the simplest option pricing model, the (risk-neutral) Black-Scholes dynamics, but
with unusually high volatility. (We are aware this model used to price Call options does
not fulfill the theoretical assumptions made above). To be precise

dXt = Xt(T’dt + O'th),

with the following values for the parameters

So =100, K =100, r =0.15, 0 = 1.0, T = 1.
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Note that a volatility o = 100% per year is equivalent to a 4 year maturity with
volatility 50% (or 16 years with volatility 25%). The reference Black-Scholes premium is
CBS = 42.96. We consider the Euler scheme with step 7'/n of this equation.

_ _ T [T
th+1 :th <1—|—T‘5 +o 5Uk+1>
kT

where tp = -, k =0,...,n. We want to price a vanilla Call option i.e. to compute
Co = e TE((S, - K)+)

using a Monte Carlo simulation with M sample paths.

e THREE STEP R-R EXTRAPOLATION (R = 3): We processed three Monte Carlo simu-
lations of common size M = 10° to evaluate the efficiency of the R-R extrapolation with
R =3.

— An R-R extrapolation of order R = 3 as defined by (3.3) and (3.4) with n =
2,4, 6, 8, 10 with consistent increments (the maximal number of steps is Rn = 3n). Note
these specifications for n are quite low in comparison with the high volatility of the B-S
model.

— An R-R extrapolation of order R = 3 with the same architecture but implemented
with independent increments.

— A regular Euler scheme with the same complezity i.e. with R(R+1)/2 x n=6n steps.

The results are depicted in the Figures 1 and 2 below. In Figure 1, the abscissas
represent the size (3n) of the Euler scheme with the highest discretization frequency used
in the procedure. In Figure 2, the abscissas represent the complexity of the implemented
procedures, namely the discretization parameter (6n) of the standard Euler scheme with
the same complexity as the implemented R-R procedure. The main conclusions are the
following:

— The standard deviation of the R-R extrapolation with independent noises is 5 times
greater than the one observed with consistent increments. This makes this higher order R-R
expansions (R = 3) useless at least within the usual range of our Monte Carlo simulations
(see Fig. 1): in fact it is less efficient in our high volatility setting than the Euler scheme
with equivalent complexity and less efficient than a standard R-R extrapolation (R = 2).

— Considering consistent increments in the R-R extrapolation gives the method its full
efficiency as emphasized by Figure 2 : R-R extrapolation is clearly much more efficient
than the Euler scheme of equal complexity in a Monte Carlo simulation of size M = 106.

e FOUR STEP R-R EXTRAPOLATION (R=4): With asize of M = 10°, the R- R-extrapolation
with R = 4 is not completely convincing: at this range, the variance of the estimator is
not yet controlled by Var(f(X,)) for the the selected (small) values of the discretization
parameter n.
However, for a larger simulation, say M = 10%, the multistep extrapolation of order
R = 4 clearly becomes the most efficient one as illustrated by Figure 3 (right) and Table 1.
To carry out a comparision, we implemented this time:
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Standard Deviations.

— Two R-R extrapolations with orders R = 3 and R = 4 as defined by (3.3) and (3.4)
with n = 2, 4, 6, 8, 10 with consistent increments.

— A regular Euler scheme with the same complexity i.e. with 4 x 5/2 x n=10n steps.

n | 2 4 6 8 10
BS Ref. 42.96
R=3 42.93 42.55 42.80 42.90 42.95
(—0.07%) (—0.94%) (—0.37%) (—0.14%) (—0.01%)
R=4 42.28 42.92 42.97 42.94 42.97
(=1.59%) (—0.08%) (0.04%) (—0.03%)  (0.03%)

Table 1. R-R extrapolation with R = 3, 4 vs the Euler scheme with step 1/(10n).

This emphasizes that the natural field of application of multistep R-R extrapolation for
numerical applications (R > 4): this is the most efficient method to obtain accurate results
in a high variance framework: it allows a smaller size of discretization step.

6 Further numerical experiments: path dependent options

In this section we will consider some path-dependent (European) options i.e. related to
some payoffs F'((St).ejo,r)) where F' is a functional defined on the set ([0, T],RY) of right
continuous left-limited functions z : [0,7] — R. It is clear that all the asymptotic control
of the variance obtained in Section 3.1 for the estimator Zle ozrf(X:(Fr)) of E(f(X,))
when f is continuous can be extended to functionals F : D([0,7],RY) — R which are Px-
a.s. continuous with respect to the sup-norm defined by |z |,,, = supycjor |z(t)] with
polynomial growth (i.e. |[F(z)| = O(||z|..,) as [|z[,, — o0). This simply follows from
the fact that the (piecewise constant) Euler scheme X (with step 7/n) converges for the
sup-norm toward X in L?(P).
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The same result holds with the continuous Euler scheme X¢ defined by
Vte 0,17, X =1z —i—/ b(X?)ds —i—/ o(X5)dWs, t = |nt/T|
0 - 0 -

(the diffusion coefficients have been frozen between time discretization instants). With this
scheme, one can simply consider the path set C([0, 7], R) instead of D([0, T, R%).

Furthermore, this asymptotic control of the variance holds true with any R-tuple a =
(ar)i1<r<pr of weights coefficents satisfying > ., .pa, = 1, so these coefficient can be
adapted to the structure of the weak error expaﬁsi:)n.

On the other hand, in the recent past years, several papers provided some weak rates of
convergence for some families of functionals F'. These works were essentially motivated by
the pricing of path-dependent (European) options, like Asian, lookback or barrier options.
This corresponds to functionals

T
F(x) := ‘I>(/ z(s)ds), F(x):=®(x(T), sup z(t), inf z(t)), F(x)= @(m(T))l{TD(I)ST}
0 te[0,T) te[0,7]
where @ is usually at least Lipschitz and 7, := inf{s € [0,7], z(s£) € “D} is the hitting
time of °D by z (?). Let us briefly mention two well-known examples:
— In [9], it is established that if the domain D has a smooth enough boundary, b, o €

C3(R%), o uniformly elliptic on D, then for every Borel bounded functions vanishing in a

neighbourhood of 9D,

E(f(X: )1 (xy>7y) — E(f(Xp)Lr(x)s1y) = O (%) as  m — 00. (6.11)

If furthermore, b and o are C°, then

_ 1
B (X rxopm) - B ppoom) =0 (7) s n—oe (012)

n

Note however that these assumptions are not satisfied by usual barrier options (see below).

~ it is suggested in [14] (including a rigorous proof when X = W) that if b, o € C}(R),
o is uniformly elliptic and ® € C*?(R?) (and some partial derivatives with polynomial
growth), then

= A . 1
E((I)(XT’og}ﬁlantk) = E((I)(XT’tgl[Ol,I’ll“] X)) =0 <%> as  n — oo. (6.13)
A similar improvement — O(%) rate — as above can be expected when replacing X by the
continuous Euler scheme X°¢.

For both classes of functionals (with D as a half-line in 1-dimension in the first set-
ting), the practical implementation of the continuous Euler scheme is known as the Brow-
nian bridge method. Tt relies on the simulations of the distribution of mincp 7y X¢ and

2when z is stepwise constant and cadlag, one can write “s” instead of 7 s+,
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maxe(o, ) Xf given the event {X{, =uy, k=0,...,n} (={Xy, =2, k=0,...,n}). This

distribution is known since

L£( max Xf | {th =x5, k=0,...,n}) = E(G_1 (Uk))o<k<n—1

tE[O7T} Tl Th+1

where

Grhw) =5 (2 +y+ Vly— ) ~ 2To(x) log(u)/n )

and (Ug)o<k<n—1 are i.i.d. uniformly distributed random variables over the unit interval.

A similar formula holds for the minimum using now the inverse distribution function

F;;(u) = % <x +y— \/(y —1x)2 —2To(x) log(u)/n) )

At this stage there are two ways to implement the (multistep) R-R extrapolation with
consistent Brownian increments in order to improve the perfomances of the original (step-
wise constant or continuous) Euler schemes. Both rely on natural conjectures about the
existence of a higher order expansion of the time discretization error suggested the above
rates of convergence (6.11), (6.12) and (6.13).

e Standard Fuler scheme: As concerns the standard Euler scheme, this means the
existence of a vector space V (stable by product) of admissible functionals satisfying

R
2

R—1
) = VfeV, E(FX)=EFE)+Y ELomF) (6.14)
k=1 T2

The main point for practical application is to compute the weights a(z) = (a£ ))1§T§ R

of the extrapolation are modified. Namely

1 _1\R—r R R
a£2):a(%)(r,R)::( D) " !H<1—|— E), 1<r<R.

For small values of R, we have

1 1
R=2] o =—(1+v2), of =v201+V2).
5 _ V32 JB g VB G g V21
W2 —3-1 2 W2 -3 -1 3 W2 —3-1

R=1) o - -V b B eyl

off) = J(VBrVD)+VE)(3+VE),  aff =42+vD)(2+ Vi)

Note that these coefficients have greater absolute values than in the standard case. Thus

1
fR=4,) 1< 4(a£2))2 ~ 10900! which induces an increase of the variance term for too
small values of the time discretization parameters n even when increments are consistently

generated. The complexity computations carried out in Section 4.1 need to be updated but
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grosso modo the optimal choice for the time discretization parameter n as a function of the
MC size M is
no M.

e The continuous Fuler scheme: The conjecture is simply to assume that the expansion
(5}‘;) now holds for a vector space V' of functionals F' (with linear growth with respect to
the sup-norm). The increase of the complexity induced by the Brownian bridge method is
difficult to quantize: it amounts to computing log(Uy) and the inverse distribution functions
F, ; and G;,%/‘

The second difficulty is that simulating (the extrema of) some of continuous Euler
schemes using the Brownian bridge in a consistent way is not straightforward at all. How-
ever, one can reasonably expect that using independent Brownian bridges “relying” on
stepwise constant Euler schemes with consistent Brownian increments will have a small
impact on the global variance (although slightly increasing it).

To illustrate and compare these approaches we carried some numerical tests on partial
lookback and barrier options in the Black-Scholes model presented in the previous section.

> PARTIAL LOOKBACK OPTIONS: The partial lookback Call option is defined by its payoff
functional

F(z)=e"T <x(T) — )\Sg[lérhx(s)> , ze€C(]0,T],R),
’ +

where A > 0 (if A <1, the (. )4 can be dropped). The premium

Callf® = e " TE((S, — Até%i% Si)4)

is given by
Lkb BS o BS (2%  2r
Cally™ = soCall”” (1, A\, 0,7, T) + )\Q—SOPu‘c Ao2, 1, —,r,T ).
r o

We took the same values for the B-S parameters as in the former section and set the
coefficient \ at A\ = 1.1. For this set of parameters Call5** = 57.475.

We increased the time discretization parameter n compared to the former vanilla setting:
we set n = 5k, k= 1,...,10. As concerns the MC simulation size, we still set M = 105.
We compared the following three methods for every choice of n:

— A 3-step R-R extrapolation (R = 3) of the stepwise constant Euler scheme (for which

a O(nfg)—rate can expected from the conjecture).
— A 3-step R-R extrapolation (R = 3) based on the continuous Euler scheme(Brownian
bridge method) for which a O(-)-rate can be conjectured (see [9]).

— A continuous Euler scheme (Brownian bridge method) of equivalent complexity i.e.
with discretization parameter 6n for which a O(L)-rate can be expected (see [9]).

The three procedures have the same complexity if one neglects the cost of the bridge
simulation with respect to that of the diffusion coefficients (note this is very conservative
in favour of “bridged schemes”).
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We did not reproduce the results obtained for the standard stepwise constant Euler
scheme which were clearly out of the game (as already emphasized in [9]). Figure 4(a) (left)
shows that both 3-step R-R extrapolation methods converge significantly faster than the
“bridged” Euler scheme with equivalent complexity in this high volatility framework. The
standard deviations depicted in Figure 4(b) (right) show that the 3-step R-R extrapolation
of the Brownian bridge is controlled even for small values of n. This is not the case with the
3-step R-R extrapolation method of the stepwise constant Euler scheme. Other simulations
— not reproduced here — show this is already true for the standard R-R extrapolation and
the bridged Euler scheme behave similarly. In any case the multistep R-R extrapolation
with R = 3 significantly outperforms the bridged Euler scheme.

When M = 108, one verifies that the time discretization error of the 3-step R-R extrap-
olation vanishes like for the partial lookback option. In fact for n = 10 the 3-step bridged
Euler scheme yields a premium equal to 57.480 which corresponds to less than half a cent
error, i.e. 0.05 % accuracy! This result being obtained without any control variate variable.

The R-R extrapolation of the standard Euler scheme also provides excellent results. In
fact it seems difficult to discriminate them with those obtained with the bridged schemes,
which is slightly unexpected if one think about the natural conjecture about the time

discretization error expansion.

As a theoretical conclusion, these results strongly support both conjectures about the
existence of expansion for the weak error in the (n~?/ 2)p>1 and (n7P),>1 scales respectively.

> Up & ouT CALL OPTION: Let 0 < K < L. The Up-and-Out Call option with strike K
and barrier L is defined by its payoff functional

F(z) =" (2(T) = K)y Lmax,cpm o<y 2€ C([0,T],R).
It is again classical background, that in a B-S model

CallV®C(sg, 7,0, T) = CallP®S(sg, K, r,0,T) — Call®(sq, L,7,0,T) — e "7 (L— K)®(d~ (L))
L 1+p
- <—> (Call®*(so, K',r,0,T)—Call®(so, L', 7,0, T) —e ™" (L' ~K")®(d(L')))
S0
with

2

2 2 1 L — OT x 2
K=K (), L=L(2) a ()= B/ D)+ =T 4 o@) = [ 52
L L oVT oo V27
We took again the same values for the B-S parameters as for the vanilla call. We set
the barrier value at L = 300. For this set of parameters Cg O = 8.54. We tested the same
three schemes. The numerical results are depicted in Figure 5. The abscissas represent the

S

size of Euler scheme with equivalent complexity (i.e. 6n, n = 2,4, 6,8, 10).

The conclusion (see Figure 5(a) (left)) is that, at this very high level of volatility, when
M = 10° (which is a standard size given the high volatility setting) the (quasi-)consistent
3-step R-R extrapolation with Brownian bridge clearly outperforms the continuous Euler
scheme (Brownian bridge) of equivalent complexity while the 3-step R-R extrapolation
based on the stepwise constant Euler schemes with consistent Brownian increments is not
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Figure 5: B-S EURO UP-&-0UT CALL OPTION. (a) M =105. R-R extrapolation (R=3) of the
Euler scheme with Brownian bridge: o—o—o. Consistent R-R extrapolation (R=3): —x—X—x—.
Euler scheme with Brownian bridge and equivalent complexity (+ — — + — — +). Sp = K =100,
L =300, 0=100%, r=15%. Left: Premia. Right: Standard Deviations. (b) Idem with M = 108,

competitive at all: it suffers from both a too high variance (see Figure 5(a) (right)) for the
considered sizes of the Monte Carlo simulation and from its too slow rate of convergence
in time.

When M = 10® (see Figure 5(b) (left)), one verifies again that the time discretization
error of the 3-step R-R extrapolation almost vanishes like for the partial lookback op-
tion. This no longer the case with the 3-step R-R extrapolation of stepwise constant Euler
schemes. It seems clear that the discretization time error is more prominent for the barrier
option: thus with n = 10, the relative error is % ~ 6.5% by this first R-R extrapola-
tion whereas, the 3-step R-R method based on the quasi-consistent “bridged” method yields
a an approximate premium of 8.58 corresponding to a relative error of % ~ 0.4%.
These specific results (obtained without any control variate) are representative of the global

behaviour of the methods as emphasized by Figure 5(b)(left).
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7 Conclusion

The multi-step R-R extrapolation method with consistent Brownian increments provides
an efficient method to evaluate expectations of functionals of diffusions having a very high
diffusion coefficient using a simple Monte Carlo simulation based on stepwise constant or
continuous Euler schemes of reasonable size (in terms of discretization). This is made
possible by both the complexity and variance control of the method.

However the asymptotic variance control may have not produce its effect when the time
discretization parameter n is too small. Then it could be useful to explore some on-line
variance reduction method: the idea would be to use some stochastic approximation as
introduced in [1] methods to specify directly the optimal variance structure of the Euler
schemes involved in the extrapolation for a given value of n.

ACKNOWLEDGMENT: We thank Julien Guyon for fruitful comments on a preliminary version and
Eric Saias for his help on Number Theory results.
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Annex

We will show that in some situations the equality XS) = Xf) a.s. may imply that
W = W® P-a.s. as processes defined on [0,7]. Assume that (W1 W®)) is a R
dimensional Brownian motion with respect to its (augmented) natural filtration denoted
(.7-}1’2)156[0 7], both marginals WO and W® being standard Brownian motions. Let R, =

IE(VVl(l)W(2 )] € M(q x q) denote the correlation matrix of Wl( ) and W(Q).

Proposition 7.5 Let Iy, : [0,T] x RY x R? — R denote the function defined by

d
N 1
Fyo(t,x1,m9) = (21 — 22)* (b(t, 1) — b(t, x2) +§Z |oi. (t, 21)| — |oq. (£, 22)])? .
i=1

Assume that, for every te [0,T],
le, T € Rd, 1 7& To — Fbp(t,.%'l,.%'g) > 0. (7.15)
Furthermore, assume

T
Jie{l,...,d}, Vje{l,...,q}, /0 E (afj(t,Xt)) dt > 0. (7.16)
If XM = X® Pas., then WD =W (and XV = X?)) P-a.s..
Remark. Assumption (7.15) is always satisfied if b is increasing i.e.
V.%'l, To € Rd, 1 7é To — (.%'1 — mg)*(b(t,ml) — b(t,xg)) > 0.
Proof. (a) It follows from It6’s formula that

T

0
where
O(t,x1,29) = 2(x1 —22)* (b(t,x1) — b(t, x2)) + Tr(co™(t,21)) + Tr(oo™ (¢, 22))
d
—2 Z g, (t, xl)* RWJi. (t, $2)
i=1
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and M; = QfOt(XS) - XS(Q))(J(t,Xs(l))dWS(l) - 0(t,X§2))dW§2)) is an Fi-local martingale
null at zero. In fact it is a true martingale since all the coefficients have linear growth and
SUPyefo, 7] ]Xt(l)] lies in every LP(P), p > 0. One checks from the definition of R, that, for
every u, v€ RY, u* R, v < |u| |v]. Consequently, for every t€ [0, 7], every x1, x2€ RY,

(b(t, X1, 1‘2) > 2Fb,o(t, X1, 1‘2) >0

D _ yv(2
If X; ) = X; ) P-a.s., then

T

M, = _/ o, XV, xat <0 P-as..
0

Hence M, = 0 P-a.s. since EM,, = 0. In turn this implies that fOT <I>(t,Xt(1),Xt(2))dt =0

P-a.s.. The continuous function ® being non negative and (Xt(l),Xt(Q)) being pathwise

continuous,

Pas.  vte[0T], o¢XxY, x?) =Rt xY, x?)=o.

Consequently, (7.15)
Pas.  Vte[o,7], x=x?

Elementary computations show that

d
=1

The symmetric matrix I, — 2, being nonnegative,
' A Wyeer , My _ ; A (1) _
Vie{l,...,d}, oi.(t,X;')" (I;— Ry )oi(t, X, ') =0 ie o0;(t,X;)e Ker(l; — R, ).

If I, # R,,, this (nonnegative symmetric) matrix has at least one positive eigenvalue
A > 0. Let ue R?\ {0} be an eigenvector associated to A\. Then u L Ker(l, — R, ) so that
u* a,;(t,Xt(l)) = 0 P-a.s.. This cannot be satisfied by an index i satisfying (7.16). Hence
R, = I, which in turn implies that W) = W® since (WM W) is a Gaussian centered

process. &
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