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ON THE SEMI-CLASSICAL LIMIT FOR THE NONLINEAR

SCHRÖDINGER EQUATION

RÉMI CARLES

Abstract. We review some results concerning the semi-classical limit for the
nonlinear Schrödinger equation, with or without an external potential. We
consider initial data which are either of the WKB type, or very concentrated
as the semi-classical parameter goes to zero. We sketch the techniques used
according to various frameworks, and point out some open problems.
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2 R. CARLES

1. Introduction

Consider the nonlinear Schrödinger equation (NLS):

(1.1) iε∂tu
ε +

ε2

2
∆uε = V uε + εκf

(
|uε|2

)
uε, (t, x) ∈ I × R

n,

where the potential V = V (x) and the nonlinearity f are real-valued. In some spec-
ified cases, we allow the potential to be time-dependent. To simplify the discussion,
we assume that κ > 0 is an integer. More precise assumptions will be made accord-
ing to the different cases we study. We assume ε ∈]0, 1], and we aim at describing
the asymptotic behavior of uε as ε→ 0, for the following two families of initial data:

Monokinetic WKB initial data:

(1.2) uε(0, x) = aε
0(x)e

iφ0(x)/ε, with aε
0(x) ∼

ε→0
a0(x) + εa1(x) + ε2a2(x) + . . . ,

in the sense of asymptotic expansion.

Concentrated initial data:

(1.3) uε(0, x) = R

(
x− x0

ε

)
eix·ξ0/ε,

for some point (x0, ξ0) in the phase space R2n, independent of ε.

There are at least two motivations for such a study, referred to as semi-classical
analysis or geometrical optics. We outline them here, and refer to the survey [47]
for a broader discussion on this subject. The first one comes from the applied
mathematics, and may find its origins in physics. In the case of (1.1), suppose that
ε represents the (rescaled) Planck constant. It may be small compared to the other
parameters at stake. In this case, it is sensible to consider that the asymptotic
behavior of uε as ε → 0 provides a reliable approximation of the exact solution.
Hopefully, the asymptotic model is easier to describe than the initial one (1.1)–
(1.2). If V is a confining potential (e.g. harmonic potential), then (1.1) may be a
model to describe Bose-Einstein condensation; see for instance [22, 46]. The value
of κ then depends on the asymptotic régime considered. Another motivation stems
from the propagation of singularities for equations where the small parameter ε
is not necessarily present initially. Most of the studies in this direction concern
hyperbolic equations. However, this field is applicable to Schrödinger equations as
well (see e.g. [7, 41, 51]). The following illustration is a straightforward consequence
of the analysis presented in §3.2:

Theorem 1.1 ([13], Cor. 1.7). Let n > 3. Consider the cubic, defocusing NLS:

(1.4) i∂tu+
1

2
∆u = |u|2u, x ∈ R

n ; u|t=0 = u0 .

Denote sc = n
2 − 1. Let 0 < s < sc. We can find a family (uε

0)0<ε61 in S(Rn) with

‖uε
0‖Hs(Rn) → 0 as ε→ 0 ,

and 0 < tε → 0 such that the solution uε to (1.4) associated to uε
0 satisfies:

‖uε(tε)‖Hk(Rn) → +∞ as ε→ 0 , ∀k ∈
]

s
n
2 − s

, s

]
.
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This result was first established in [21] in the case k = s. The fact that one can
consider a broader range for k, in the spirit of [42], relies on a fine analysis of the
limit for (1.1)–(1.2), provided essentially in [32].

1.1. Monokinetic WKB initial data. In the case of initial data of the form
(1.2), an approximation of the form

(1.5) uε(t, x) ∼
ε→0

(
a0(t, x) + εa1(t, x) + ε2a2(t, x) + . . .

)
eiΦ(t,x)/ε

is expected. Note that only one phase and one harmonic are sought: this is an
important feature of Schrödinger equations with gauge invariant nonlinearity. In
the case of wave equations for instance, the story is completely different (see e.g. [47]
and references therein). Note also that such an approximation must be expected for
bounded time only. Even in the linear case f ≡ 0, a caustic appears in finite time
in general. Near a caustic, all the terms Φ, a0, a1, . . . become singular. Past the
caustic, several phases are necessary in general to describe the asymptotic behavior
of the solution (see e.g. [25] for a general theory in the linear case). However, we
will see that the analogous phenomenon in the nonlinear setting (say, f(y) = y)
with κ = 0 (highly nonlinear régime) might be very different.

Plug a formal expansion of the form (1.5) into (1.1). Ordering the terms in
powers of ε, and canceling the cascade of equations thus obtained is aimed at
yielding Φ, a0, a1, . . .

Assume for a while that κ > 1. To cancel the term of order O(ε0), we find

a0

(
∂tΦ +

1

2
|∇Φ|2 + V

)
= 0 ; Φ|t=0 = φ0 .

Since we seek a non-trivial profile a0, we impose a stronger condition: Φ must solve
the eikonal equation

∂tΦ +
1

2
|∇Φ|2 + V = 0 ; Φ|t=0 = φ0 .

Canceling the term of order O(ε1), we get:

∂ta0 + ∇Φ · ∇a0 +
1

2
a0∆Φ =

{
0 if κ > 1,

− if
(
|a0|2

)
a0 if κ = 1.

We see that the value κ = 1 is critical as far as nonlinear effects are concerned: if
κ > 1, no nonlinear effect is expected at leading order, since formally, uε ∼ a0e

iΦ/ε,
where Φ and a0 do not depend on the nonlinearity f . If κ = 1, then a0 solves a
nonlinear equation involving f .

We will see in Section 2 that when κ = 1, a0 solves a transport equation that
turns out to be a ordinary differential equation along the rays of geometrical op-
tics, as is usual in the hyperbolic case (see e.g. [47]). More typical of Schrödinger
equation is the fact that this ordinary differential equation can be solved explicitly.

Assume now κ = 0, and proceed the same way. Plugging (1.5) into (1.1), we get:

(1.6)





O
(
ε0

)
: ∂tΦ +

1

2
|∇Φ|2 + V + f

(
|a0|2

)
= 0,

O
(
ε1

)
: ∂ta0 + ∇Φ · ∇a0 +

1

2
a0∆Φ = −2if ′

(
|a0|2

)
Re (a0a1) a0.
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We see that there is a strong coupling between the phase and the main amplitude:
a0 is present in the equation for Φ. In addition, the above system is not closed: Φ
is determined in function of a0, and a0 is determined in function of a1. Even if we
pursued the cascade of equations, this phenomenon would remain: no matter how
many terms are computed, the system is never closed (see [30]). This is a typical
feature of supercritical cases in nonlinear geometrical optics (see [19, 20]). We shall
call the study of this case highly nonlinear WKB analysis. We will see in §3 some
ways to overcome the difficulties pointed out above, especially in the case f ′ > 0
(defocusing, cubic at the origin, nonlinearity).

Remark 1.2. We consider only monokinetic initial data. Studying the nonlinear
effects relevant at leading order (κ = 0 or 1) when the datum is of the form

uε(0, x) = a0(x)e
iφ0(x)/ε + b0(x)e

iϕ0(x)/ε (φ0 6= ϕ0),

for instance, seems to be an open problem.

1.2. Concentrated initial data. For data of the form (1.3), a formal analysis
shows that the case κ = 0 is critical: if κ > 0 (not necessarily an integer), no non-
linear effect is expected at leading order. We shall therefore restrict our attention
to the case κ = 0. We also consider the case of a pure power nonlinearity,

f
(
|uε|2

)
= λ|uε|2σ,

for some σ > 0 and λ ∈ R. In this case, setting u
ε = ε−n/2uε, (1.1)–(1.3) is

equivalent to:

(1.7) iε∂tu
ε +

ε2

2
∆u

ε = V uε +λεnσ|uε|2σ
u

ε ; u
ε(0, x) =

1

εn/2
R

(
x− x0

ε

)
eix·ξ0/ε.

In the case λ > 0 (defocusing nonlinearity), dispersive effects are expected to alter
the concentrated form of the initial data. This is proved in [11, 16] when the external
potential is a polynomial of degree at most two. It seems that proving a similar
result in the more general (and fairly natural) framework of smooth, sub-quadratic,
potentials, is still an open problem. Note also that the dispersive effect can be just
the first step of the dynamics. It can be followed by a linear dynamics induced by
the potential. In this régime, the potential may cause a refocusing phenomenon.
This is the case for instance when V is an isotropic harmonic potential [11]. We
discuss more precisely these results in §4.1.

When λ < 0 (focusing nonlinearity), several papers have considered the case
when the profile R is the ground state associated to NLS without potential, that is
when R = Q, where Q is the unique positive, radially symmetric, solution of:

−1

2
∆Q+Q+ λ|Q|2σQ = 0.

When σ < 2/n (sub-critical case at the L2 level), orbital stability of the solitary
wave suggests that the solution uε evolves under the form

uε(t, x) = Q

(
x− x(t)

ε

)
eix·ξ(t)/εeiϕε(t).

We will see that this is the case, with (x(t), ξ(t)) given by the Hamiltonian flow
associated to − 1

2∆ + V : the additional purely time dependent phase shift ϕε is
known explicitly in the case without potential, but not in general. The first mathe-
matical result on this problem is due to J. Bronski and R. Jerrard [6]. Refinements
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were then given by S. Keraani [36, 37, 38]. We outline the approach of [38] in §4.2.
Note also that the semi-classical limit ε→ 0 for (1.7) is analogous to the long time
behavior for the solutions to (1.7) with ε = 1; see e.g. [27, 34].

2. WKB analysis for a weak nonlinearity

When κ > 1, the first step in the WKB analysis presented in §1.1 consists in
solving the eikonal equation. This step relies on the Hamilton-Jacobi theory. It
is well-known, at least when the potential V and the initial phase φ0 are smooth,
that the local inversion theorem yields a local in time, smooth solution in the
neighborhood of (t = 0, x), for all x ∈ Rn (see e.g. [23]). In order to have a local
existence time which is uniform with respect to x ∈ Rn, the following assumption
is essentially necessary (see e.g. [14]):

Assumption 2.1. The potential V may depend on time: V = V (t, x). We assume
that the potential and the initial phase are smooth and sub-quadratic:

• V ∈ C∞(Rt × Rn
x), and ∂α

xV ∈ C(Rt;L
∞(Rn

x)) as soon as |α| > 2.
• φ0 ∈ C∞(Rn), and ∂α

xφ0 ∈ L∞(Rn) as soon as |α| > 2.

Remark 2.2. Of course, if we worked on a compact set instead of Rn, the above
assumptions would not be necessary.

A global inversion result (see [49] or [23]) and Gronwall lemma yield:

Lemma 2.3. Under Assumption 2.1, there exist T > 0 and a unique solution
φeik ∈ C∞([0, T ]× Rn) to:

(2.1) ∂tφeik +
1

2
|∇φeik|2 + V = 0 ; φeik|t=0 = φ0 .

This solution is subquadratic: ∂α
xφeik ∈ L∞([0, T ]× Rn) as soon as |α| > 2.

Remark 2.4. In [14], examples are given, that show that if either the potential V
or the initial phase φ0 has a super-quadratic growth at infinity, the above result
fails. Sub-quadratic potentials play a special role in the mathematical analysis of
Schrödinger equations: the results of [28, 29] imply local in time Strichartz estimates
for the semi-group associated to −∆ + V . On the other hand, in space dimension
n = 1, −∂2

x −x4 is not essentially self-adjoint on C∞
0 (R) (see [26, Chap. 13, Sect. 6,

Cor. 22]). If V tends to +∞ at infinity, with super-quadratic growth, the available
results are very different from those of the sub-quadratic case, see e.g. [55, 56].

To prove this lemma, we introduce the Hamiltonian flow:

(2.2)

{
∂tx(t, y) = ξ (t, y) ; x(0, y) = y,

∂tξ(t, y) = −∇V (t, x(t, y)) ; ξ(0, y) = ∇φ0(y).

The time T is such that the map y 7→ x(t, y) is a diffeomorphism of Rn for t ∈ [0, T ].
Therefore, the Jacobi determinant

Jt(y) = det∇yx(t, y),

is bounded from above, and from below away from zero, for t ∈ [0, T ]. The justifi-
cation of the leading order asymptotics sketched in §1.1 is:
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Proposition 2.5. Let κ > 1 and f ∈ C∞(R+; R). Assume that there exists a
smooth function a0 independent of ε such that

aε
0 → a0 in Hs(Rn), ∀s > 0.

Then under Assumption 2.1, for all ε ∈]0, 1], (1.1)–(1.2) has a unique solution
uε ∈ C∞([0, T ]×Rn)∩C([0, T ];Hs) for all s > n/2, where T is given by Lemma 2.3.
Moreover, there exist a,G ∈ C∞([0, T ] × Rn), independent of ε ∈]0, 1], where a ∈
C([0, T ];L2 ∩ L∞), and G is real-valued with G ∈ C([0, T ];L∞), such that:

∥∥∥uε − aeiεκ−1Geiφeik/ε
∥∥∥

L∞([0,T ];L2∩L∞)
→ 0 as ε→ 0.

The profile a solves the initial value problem:

(2.3) ∂ta+ ∇φeik · ∇a+
1

2
a∆φeik = 0 ; a|t=0 = a0,

and G depends nonlinearly on a:

a(t, x) =
1√

Jt(y(t, x))
a0 (y(t, x)) ,

G(t, x) = −
∫ t

0

f
(
Js(y(t, x))

−1 |a0(y(t, x))|2
)
ds.

In particular, if κ > 1, then
∥∥∥uε − aeiφeik/ε

∥∥∥
L∞([0,T ];L2∩L∞)

→ 0 as ε→ 0,

and no nonlinear effect is present in the leading order behavior of uε. If κ = 1,
nonlinear effects are present at leading order, measured by G.

We see that the critical nonlinear effect (case κ = 1) is a self-modulation of the
amplitude. In the context of laser physics, this phenomenon is known as phase
self-modulation (see e.g. [57, 4, 24]).

Sketch of the proof. The proof given in [14] consists in changing the unknown func-
tion, by setting

aε = uεe−iφeik/ε,

where φeik is given by Lemma 2.3. Then (1.1)–(1.2) is equivalent to:

∂ta
ε + ∇φeik · ∇aε +

1

2
aε∆φeik = i

ε

2
∆aε − iεκ−1f

(
|aε|2

)
aε ; aε

|t=0 = aε
0.

Energy estimates show that the above equation has a unique, smooth solution
aε ∈ C([0, T ];Hs) for all s > n/2, uniformly bounded for ε ∈]0, 1]. This step uses
the facts that φeik is sub-quadratic and i∆ is skew-symmetric. We can then neglect
the terms ε∆aε and aε

0 − a0, so that ‖aε − ãε‖L∞([0,T ];Hs) = o(1), where:

(2.4) ∂tã
ε + ∇φeik · ∇ãε +

1

2
ãε∆φeik = −iεκ−1f

(
|ãε|2

)
ãε ; ãε

|t=0 = a0.

Recall that Jt(y) is the Jacobi determinant. Denote

Aε(t, y) := ãε (t, x(t, y))
√
Jt(y).

We see that so long as y 7→ x(t, y) defines a global diffeomorphism (which is guar-
anteed for t ∈ [0, T ] by construction), (2.4) is equivalent to:

∂tA
ε = −iεκ−1f

(
Jt(y)

−1 |Aε|2
)
Aε ; Aε(0, y) = a0(y).
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This ordinary differential equation along the rays of geometrical optics can be solved
explicitly, after we have remarked the identity ∂t|Aε|2 = 0:

Aε(t, y) = a0(y) exp

(
−iεκ−1

∫ t

0

f
(
Js(y)

−1 |a0(y)|2
)
ds

)
.

Back to the initial solution uε, this yields the proposition. �

Remark 2.6. A similar result is proved in [15] for the equation

iε∂tu
ε +

ε2

2
∆uε = V (x)uε + VΓ

(x
ε

)
uε + λε|uε|2σuε,

where VΓ is lattice-periodic. The presence of this rapidly oscillatory potential
changes dramatically the geometry of the propagation. Using the corresponding
Bloch theory, a similar phase self-modulation phenomenon is proved, under the
assumption that the initial data are well-prepared. Removing this assumption, or
considering highly nonlinear régimes (as in §3) are interesting open questions, and
have physical motivations in the context of Bose–Einstein condensation.

3. Highly nonlinear WKB analysis: κ = 0

We saw in §1.1 that constructing a formal asymptotic expansion for (1.1)–(1.2)
is a delicate issue when κ = 0. We also point out that another problem arises, even
if one has managed to construct an approximate solution vε that solves

(3.1) iε∂tv
ε +

ε2

2
∆vε = V vε + f

(
|vε|2

)
vε + εNrε

N ; vε
|t=0 = uε

|t=0,

where N is large, and rε
N is bounded in L2 for instance. Setting wε = uε − vε, and

supposing that uε and vε remain bounded in L∞(Rn) on a time interval [0, t], the
usual L2 estimate for Schrödinger equations yields:

ε‖wε(t)‖L2 6 C

∫ t

0

‖wε(τ)‖L2dτ + 2εN

∫ t

0

‖rε
N (τ)‖L2dτ.

We infer, using Gronwall lemma:

‖wε(t)‖L2 6 CεN−1eCt/ε.

The exponential factor shows that this method may yield interesting results only
up to time of the order cε| log ε|θ for some c, θ > 0. Note that in some functional
analysis contexts, this may be satisfactory (see e.g. [21], or the appendices in [8, 13]).
However, it seems reasonable to wish to have a description of the solution of (1.1)–
(1.2) at least on a time interval independent of ε. We list below several approaches
that yield such information.

Remark 3.1. In a slightly different context, a fairly explicit example in [12] shows
that one may find a function satisfying (3.1) for N arbitrarily large, such that

lim inf
ε→0

‖uε(tε) − vε(tε)‖L2 > 0, for tε = εβ and 0 < β < 1.

Therefore, the stability issue in this highly nonlinear régime is really delicate.
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3.1. Modulated energy functional. A general technique was introduced by
Y. Brenier in [5]. It yields the convergence of some physically important quantities
(such as the Wigner measure, see e.g. [31, 44]), but not of the wave function uε it-
self. In the case of the nonlinear Schrödinger equation, it has been used by P. Zhang
[58] (see also [59] for the case of the Schrödinger–Poisson equation). More recently,
F. Lin and P. Zhang have adapted this approach in the case of the Gross-Pitaevskii
equation, in the exterior of an obstacle [43]. We shall present the technique of
Brenier in the case of (1.1)–(1.2), using the simplified approach of [43]. In all this
paragraph, we will assume V ≡ 0: no external potential is present.

The first step consists in guessing a suitable approximate solution. Even though
the system (1.6) is not closed, the analysis of §2 shows that so long as Φ is smooth
and ∇Φ is a global diffeomorphism, the second equation of (1.6) is of the form:

ȧ0 = iΞa0,

where ȧ0 stands for the differentiation along the rays associated to ∇Φ, and Ξ is
real-valued. In particular, the modulus of a0 is constant along these rays. Setting
(ρ, v) = (|a0|2,∇Φ) as a new unknown function, (1.6) yields:

(3.2)

{
∂tv + v · ∇v + f ′(ρ)∇ρ = 0 ; v|t=0 = ∇φ0,

∂tρ+ v · ∇ρ+ ρ div v = 0 ; ρ|t=0 = |a0|2.

If f ′ > 0, we get a compressible Euler equation, which is hyperbolic symmetric in
the sense of Friedrichs. We shall assume now that f ′ ≡ 1, that is, we consider a
cubic, defocusing nonlinearity in (1.1). Note that older formal approaches suggest
the introduction of (3.2) as a limiting equation. In [40, Chap. III], we find:

(3.3)





∂tΦ
ε +

1

2
|∇Φε|2 + |aε|2 = ε2

∆a
ε

2aε
; Φε

|t=0 = φ0 ,

∂ta
ε + ∇Φε · ∇a

ε +
1

2
a

ε∆Φε = 0 ; a
ε
|t=0 = aε

0 .

Of course, this choice is not adapted when the amplitude a
ε vanishes, so it must be

left out for a rigorous mathematical analysis, when aε
0 ∈ L2(Rn). Passing formally

to the limit ε → 0, the right hand side of the equation for Φε vanishes, and using
the hydrodynamical variables as above, we retrieve (3.2).

The modulated energy functional associated to (1.1)–(1.2) when V ≡ 0 and
f(y) = y is:

Hε(t) =
1

2

∫

Rn

|(ε∇− iv)uε(t, x)|2 dx+
1

2

∫

Rn

(ρε(t, x) − ρ(t, x))
2
dx,

where we have set ρε = |uε|2. We find that the time derivative of this modulated
energy functional is:

d

dt
Hε(t) =

ε2

4

∫
∇(div v) · ∇ρε −

∑

j,k

∫
∂jvk Re

(
(ε∂j − ivj)u

ε(ε∂k − ivk)uε
)

+
3

2

∫
(ρε − ρ)2 div v.
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The last two terms are estimated by ‖∇v(t)‖L∞Hε(t). For the first term, write

ε2
∫

div (∇v) · ∇|uε|2 = ε

∫
div (∇v) · (uεε∇uε + uεε∇uε)

= ε

∫
div (∇v) ·

(
uε(ε∇− iv)uε + uε(ε∇− iv)uε

)
.

Since ‖uε(t)‖L2 = ‖a0‖L2 and v ∈ L∞([0, T ];W 2,∞), Young’s inequality yields:

d

dt
Hε(t) 6 C

(
Hε(t) + ε2

)
,

so long as v remains smooth, that is, before shocks appear in (3.2). We conclude
thanks to Gronwall lemma:

Theorem 3.2. Let n > 1, and assume that κ = 0, V ≡ 0 and f(y) = y. Assume
that there exists a smooth function a0 independent of ε such that

aε
0 → a0 in Hs(Rn), ∀s > 0.

Assume also that φ0 ∈ C∞(Rn; R) is such that ∇φ0 ∈ Hs(Rn) for all s > 0. Then
there exists T > 0 independent of ε > 0 such that (1.1)–(1.2) has a unique solution
uε ∈ C∞([0, T ]× Rn) ∩ C([0, T ];Hs) for all s > n/2. In addition, as ε→ 0,

‖(ε∇− iv)uε‖2
L∞([0,T ];L2) +

∥∥|uε|2 − ρ
∥∥2

L∞([0,T ];L2)
= O

(
ε2 +

∥∥|aε
0|2 − |a0|2

∥∥2

L2

)
.

In the above theorem, we have not tried to compute the lowest possible value for
the Sobolev regularity s given by the proof, nor shall we try in the other sections.

Remark 3.3. In the more general case where the nonlinearity is f(y) = yσ, with
σ ∈ N, a generalization of the above modulated energy functional was introduced in
[3]. In particular, the analogue of Theorem 3.2 is proved. This includes for instance
the case of the quintic, defocusing nonlinearity.

One might be afraid that the above result is somehow contradictory with Re-
mark 3.1, or with the results of [13]. A typical example in [13], under the assump-
tions of Theorem 3.2, consists in choosing aε

0 = a0 independent of ε, and considering
vε solving (1.1)–(1.2) with ãε

0 = (1 + ε1−α)a0 (0 < α < 1). Then for tε of order εα,

lim inf
ε→0

‖uε(tε) − vε(tε)‖L2 > 0.

Yet, there is no contradiction with Theorem 3.2: the instability mechanism in [13]
is the appearance of an extra oscillatory factor in vε. This oscillation shows up
essentially through a multiplicative factor of the form eig(t,x)/εα

. It does not affects
the modulus of the wave function, and vanishes in the limit ε→ 0 of ε∇vε.

We can therefore conclude that the modulated energy functional shares several
features with the Wigner measure. It is a rather general tool: in [43], the authors
consider a nonlinear Schrödinger equation with a boundary condition, aspect which
apparently cannot be recovered with the approach of E. Grenier recalled in the next
paragraph. On the other hand, by definition, it ignores the oscillatory phenomena
that occur at a scale of order εα for 0 < α < 1 (for instance). The next section
shows how to get a more precise description, under similar assumptions.
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3.2. Point-wise asymptotics without potential. In this paragraph, we keep
assuming V ≡ 0. Note that in (3.3), the supposedly small term on the right hand
side is of order ε2, while ε should be enough to neglect a term in the limit ε → 0.
We have seen in §1.1 that the equation for the phase is obtained after simplification
by the leading order amplitude. This explains the singular factor on the right hand
side of (3.3). The main technical ingredient in [32] consists in shifting the source
term in (3.3) to the next order, that is, the equation for the amplitude: we now seek
uε = aεeiΦε/ε, where the amplitude aε is complex-valued (even if aε

0 is real-valued),
Φε is real-valued, and:

(3.4)






∂tΦ
ε +

1

2
|∇Φε|2 + f

(
|aε|2

)
= 0 ; Φε

|t=0 = φ0 ,

∂ta
ε + ∇Φε · ∇aε +

1

2
aε∆Φε = i

ε

2
∆aε ; aε

|t=0 = aε
0 .

Another originality of this approach lies in the fact that the phase Φε depends on
ε, through the coupling of the two equations. The idea of E. Grenier consists in
somehow performing the usual WKB analysis “the other way round”: first, solve
(3.4), then show that Φε and aε have asymptotic expansions as ε→ 0. In particular,
this resolves the stability issue pointed out at the beginning of §3.

To solve (3.4), consider the new unknown

uε =




Re aε

Im aε

∇Φε



 ∈ R
n+2.

The system (3.4) is equivalent to a quasi-linear equation of the form:

(3.5) ∂tu
ε +

n∑

j=1

Aj(u
ε)∂ju

ε =
ε

2
Luε , with L =




0 −∆ 0 . . . 0
∆ 0 0 . . . 0
0 0 0n×n


 ,

and A(u, ξ) =

n∑

j=1

Aj(u)ξj =




v · ξ 0 1
2 Rea tξ

0 v · ξ 1
2 Im a tξ

2f ′ Re a ξ 2f ′ Im a ξ v · ξIn


 ,

where f ′ stands for f ′(|a|2). The system (3.5) is hyperbolic symmetric when f ′ > 0,
and we can consider the following symmetrizer:

S =

(
I2 0
0 1

4f ′(|a|2)In

)
,

which is symmetric and positive for f ′ > 0.

Remark 3.4. The argument of f ′ is morally bounded (this will result from the
analysis), but may have zeroes: the assumption f ′ > 0 cannot be considered by
this approach. For instance, justifying a WKB analysis for the quintic, defocusing
NLS remains an open problem.

An advantage for this choice of S is that SL remains a skew-symmetric operator:
the possible loss of derivative caused by the second order operator L does not affect
the usual energy estimates in Hs(Rn). One can then prove existence and uniqueness
for (3.5) in Sobolev spaces of sufficiently large order. Since the last n components
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define initially, and remain, an irrotational function, this implies that we can solve
(3.4). The natural limit is given by:

(3.6)





∂tΦ +
1

2
|∇Φ|2 + f

(
|a|2

)
= 0 ; Φ|t=0 = φ0 ,

∂ta+ ∇Φ · ∇a+
1

2
a∆Φ = 0 ; a|t=0 = a0 .

Local existence in Sobolev spaces for (3.6) follows from the same arguments, and
one has:

Theorem 3.5. Let n > 1, and assume that κ = 0, V ≡ 0 and f ∈ C∞(R+; R) with
f ′ > 0. Assume that there exists a smooth function a0 independent of ε such that

aε
0 → a0 in Hs(Rn), ∀s > 0.

Assume also that φ0 ∈ C∞(Rn; R) is such that ∇φ0 ∈ Hs(Rn) for all s > 0. Then
there exists T > 0 independent of ε > 0 such that (1.1)–(1.2) has a unique solution
uε = aεeiΦε/ε in C∞([0, T ]×Rn) ∩C([0, T ];Hs) for all s > n/2 + 2. Moreover, aε

and Φε are bounded in L∞([0, T ];Hs), uniformly in ε ∈]0, 1] and, for all s > n/2+1,
there exists Cs such that

‖∇Φε −∇Φ‖L∞([0,T ];Hs) + ‖aε − a‖L∞([0,T ];Hs) 6 Cs (ε+ ‖aε
0 − a0‖Hs) .

Therefore, ‖Φε(t) − Φ(t)‖Hs 6 C̃st (ε+ ‖aε
0 − a0‖Hs), ∀t ∈ [0, T ].

Theorem 3.5 does not suffice to describe the asymptotic behavior of uε on the
time interval [0, T ] though:

uε − aeiΦ/ε = aεeiΦε/ε − aeiΦ/ε = (aε − a) eiΦε/ε + a
(
eiΦε/ε − eiΦ/ε

)
.

Therefore, we have

∣∣∣uε − aeiΦ/ε
∣∣∣ 6 |aε − a| + 2|a|

∣∣∣∣sin
(

Φε − Φ

2ε

)∣∣∣∣

Taking the L2 norm, we infer:

∥∥∥uε(t) − a(t)eiΦ(t)/ε
∥∥∥

L2
6 ‖aε(t) − a(t)‖L2 + 2‖a(t)‖L2

∥∥∥∥sin

(
Φε(t) − Φ(t)

2ε

)∥∥∥∥
L∞

. (ε+ ‖aε
0 − a0‖Hs)

(
1 +

t

ε

)
,

for s > n/2+1. Even if aε
0−a0 = O(εN ) for N large, the above estimate shows that

aeiΦ/ε is a good approximation of uε as t → 0, but not necessarily at time t = T
for instance. To have a better error estimate, it is necessary to compute the next
term in the asymptotic expansion of (φε, aε) in powers of ε. Assume furthermore
that there exists a1 ∈ ∩s>0H

s such that

(3.7) aε
0 = a0 + εa1 + o(ε) in Hs, ∀s > 0.

For times of order O(1), the initial corrector a1 must be taken into account:
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Proposition 3.6. Define (a(1),Φ(1)) by




∂tΦ
(1) + ∇Φ · ∇Φ(1) + 2f ′

(
|a|2

)
Re

(
aa(1)

)
= 0,

∂ta
(1) + ∇Φ · ∇a(1) + ∇Φ(1) · ∇a+

1

2
a(1)∆Φ +

1

2
a∆Φ(1) =

i

2
∆a,

Φ
(1)
|t=0 = 0 ; a

(1)
|t=0 = a1.

Then a(1),Φ(1) ∈ L∞([0, T ];Hs) for every s > 0, and

‖aε − a− εa(1)‖L∞([0,T ];Hs) + ‖Φε − Φ − εΦ(1)‖L∞([0,T ];Hs) 6 Csε
2, ∀s > 0 .

Despite the notations, it seems unadapted to consider Φ(1) as being part of the
phase. Indeed, we infer from Proposition 3.6 that

∥∥∥uε − aeiΦ(1)

eiΦ/ε
∥∥∥

L∞([0,T ];L2∩L∞)
= O(ε).

Relating this information to the WKB methods presented in §1.1, we would have:

a0 = aeiΦ(1)

.

Since Φ(1) depends on a1 while a does not, we retrieve the fact that in super-critical
régimes, the leading order amplitude in WKB methods depends on the initial first
corrector a1.

Remark 3.7. The term eiΦ(1)

does not appear in the Wigner measure of aeiΦ(1)

eiΦ/ε.
Thus, from the point of view of Wigner measures, the asymptotic behavior of the
exact solution is described by the Euler-type system (3.2).

Remark 3.8. If we assume that a0 is real-valued, then so is a. If moreover a1 is
purely imaginary (for instance, if a1 = 0), then we see that a(1) is purely imaginary,
hence, Φ(1) ≡ 0.

Remark 3.9. The proof of Theorem 1.1 follows. Consider initial data of the form

u0(x) = λ−
n

2 +sa0

(x
λ

)
, λ→ 0.

Set ε = λsc−s: ε and λ go simultaneously to zero, by assumption. Define

ψε(t, x) = λ
n

2 −su
(
λ

n

2 +1−st, λx
)
.

It solves:

(3.8) iε∂tψ
ε +

ε2

2
∆ψε = |ψε|2ψε ; ψε

|t=0 = a0(x) .

The idea of the proof is that for times of order O(1), ψε has become ε-oscillatory.
This is rather clear from (3.6): even though Φ|t=0 = 0, we have ∂tΦ|t=0 6= 0, and
rapid oscillations at scale ε appear instantly. Back to u, this yields the theorem
(up to replacing a0 by | logλ|−1a0).

To conclude this paragraph, we point out an open problem concerning the time
Tc when shocks appear for (3.2). First, the break-up for (3.2) does not allow us to
deduce anything concerning the behavior of the solution of (3.4). More generally,
the notion of caustic in this case is not so clear. Geometrically, as t → Tc, the
rays for (3.6) tend to form an envelope. In the linear case f ≡ 0, this geometrical
phenomenon goes along with an analytical one:

lim inf
ε→0

‖uε(t)‖L∞ → +∞ as t→ Tc.
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For instance, ‖uε(t)‖L∞ ≈ (ε+ |Tc − t|)−n/2 for all t in the case of a focal point (all
the rays meet at one point as t→ Tc).

It is not clear at all that a similar phenomenon occurs for (1.1) when κ = 0.
Suppose for instance that the nonlinearity is cubic, defocusing, f(y) = y, and that
the initial profile aε

0 does not depend on ε, aε
0 = a0. The standard conservations of

mass and energy for nonlinear Schrödinger equations yield:

‖uε(t)‖L2 = ‖a0‖L2 = O(1),

‖ε∇uε(t)‖2
L2 + ‖uε(t)‖4

L4 = ‖ε∇a0 + ia0∇φ0‖2
L2 + ‖a0‖4

L4 = O(1).

In space dimension n 6 3, the solution uε remains in H1(Rn) for all time, there-
fore we know that the L2 and L4 norms of uε(t, ·) remain bounded by a constant
independent of ε. This suggests that the L∞ norm of uε(t, ·) may remain bounded,
if we can somehow inverse the Hölder inequality

‖uε(t)‖4
L4 6 ‖uε(t)‖2

L2‖uε(t)‖2
L∞ .

One could then distinguish two notions of caustic: a geometrical one (present in all
the cases), and an analytical one (possibly absent in the highly nonlinear case).

3.3. Point-wise asymptotics with an external potential. Physical motiva-
tions may lead to the study of (1.1)–(1.2) when the external potential V is not
zero. Mathematically, a special role is played by sub-quadratic potentials, as we
have noticed in §2; see Remark 2.4. We therefore suppose that Assumption 2.1 is
satisfied.

The analysis presented in §3.1 suggests that in this case, we have to consider
solutions to a compressible Euler equation with (possibly) unbounded external force
and initial velocity:

(3.9)

{
∂tv + v · ∇v + ∇V + f ′(ρ)∇ρ = 0 ; v|t=0 = ∇φ0,

∂tρ+ v · ∇ρ+ ρ div v = 0 ; ρ|t=0 = |a0|2.
The existence of such solutions is not standard. The naive approach presented in
[14] consists in resuming the idea of E. Grenier, writing the unknown phase Φε as

Φε = φeik + φε,

and considering (3.4) where ∇φε has replaced ∇Φε as an unknown function. This
procedure is similar to linearizing (3.4) in Φε, around φeik. Of course, extra terms
appear at this stage. Note that the space where we seek Φε is of mixed type: Φε

is the sum of a smooth, sub-quadratic (and possibly unbounded) function, and the
phase φε(t, ·) which is sought in Sobolev spaces Hs(Rn). Nevertheless, φε must not
be considered as small, as shown by the analysis of §3.2.

The good news is that the extra terms that have appeared can be treated as
semi-linear perturbations in the energy estimates. This is due to the fact that
the phase φeik is sub-quadratic in space. Therefore, the analysis of §3.2 is easily
adapted: provided that we assume f ′ > 0, an analogue of Theorem 3.5 is available.
Note that unless f ′ = Const. (in which case the symmetrizer S is constant), we
need the extra decay assumption on the initial profile:

xa0 ∈ ∩s>0H
s, and xaε

0 → xa0 in Hs(Rn), ∀s > 0.

In particular, a local solution to (3.9) is constructed. We refer to [14] for precise
statements in this case.
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Remark 3.10. For Schrödinger–Poisson equations in space dimension n > 3, the
idea of E. Grenier was adapted in [2], under more general geometrical assumptions.
For instance, solutions that do not necessarily have a zero limit at spatial infinity
are considered. Under the assumptions of [59], a point-wise asymptotics of the wave
function is given, which is more precise that the results in [59].

3.4. The case of focusing nonlinearities. Note that in §3.2, the study of (3.4)
involves a quasi-linear system whose principal part writes:

�f ′ = ∂2
t − div

(
f ′(|uε|2)∇·

)
.

This has the same form as the principal part for (3.6), which is the limiting system
expected in general, whichever formal approach is followed. When f ′ > 0, we face
a quasi-linear wave equation. We have pointed out some open problems under the
weaker assumption f ′ > 0 (a case where loss of hyperbolicity may occur). When
f ′ < 0, the above operator becomes elliptic: it does not seem adapted to work in
Sobolev spaces any more. On the other hand, data and solutions with analytic
regularity seem appropriate.

In [30], P. Gérard works with the analytic regularity, when the space variable x
belongs to the torus Tn, without external potential (V ≡ 0). Note that the only
assumption needed on the nonlinearity f is analyticity near the range of |a0|2. This
includes the focusing case f ′ < 0, as well as the defocusing quintic case f(y) = y2

for instance.

The initial phase φ0 is supposed real analytic, and the initial amplitude is analytic
in the sense of J. Sjöstrand [50]: there exist ℓ > 0, A > 0, B > 0 such that, for all
j > 0, aj is holomorphic in {| Imx| < ℓ}, and

|aj(x)| 6 ABjj!

Denoting a(t, x) the complex conjugate of a(t, x), P. Gérard considers the system:




∂tv
ε = −vε · ∇vε −∇f (a0a0) ,

∂ta
ε = −vε · ∇aε − 1

2
aε div vε + i

ε

2
∆aε − iaε

ε
(f (aεaε) − f (a0a0)) .

A solution of the form

uε = aεeiφ/ε, aε(t, x) =
∑

j>0

εja(j)(t, x),

where the sum is defined in the sense of J. Sjöstrand, is thus obtained. Setting

vε = eiφ/ε
∑

j61/(C0ε)

εja(j)

for C0 sufficiently large, the approximate solution vε satisfies:

iε∂tv
ε +

ε2

2
∆vε = f

(
|vε|2

)
vε + O

(
e−δ/ε

)
,

for some δ > 0. Essentially, this source term is sufficiently small to overcome the
difficulty pointed out at the beginning of §3: for small time independent of ε, the
exponential growth provided by Gronwall lemma is more than compensated by the
term e−δ/ε. We refer to [30] for precise statements and elements of proof.



SEMI-CLASSICAL LIMIT FOR NLS 15

3.5. The integrable case. In the one-dimensional case, n = 1, for a cubic non-
linearity (f(y) = ±y), the Schrödinger equation is completely integrable. This
property remains with a time-independent external potential which is a polynomial
of degree at most two [1, p. 375].

In the absence of potential, several papers have studied the semi-classical limit
for (1.1)–(1.2) for the cubic NLS in space dimension one. See for instance [33] in
the defocusing case, and [35, 53] in the focusing case. A very interesting aspect
of this approach is that it yields a description of the solution uε even after shocks
have appeared for the limiting Euler equation (3.2). This description involves theta
functions, and the so-called Whitham equations (see [52]). In particular, this ap-
proach seems to confirm the formal discussion of the end of §3.2: in the defocusing
case, the L∞ norm of the solution uε remains bounded as ε→ 0, for all time.

Unfortunately, it seems that all the results in the integrable case have been
written in a way that makes any comparison with the other results mentioned
above very difficult. The last step of inverse scattering is not always performed,
which should yield a point-wise asymptotics of the wave function uε. Moreover,
the spaces in which it would be available are not completely clear. The space
L∞

loc(Rx) seems the most natural candidate. A bridge between the approaches of
§3.1 and §3.2 on the one hand, and the approaches in the integrable case on the
other hand, would certainly be welcome in the community of semi-classical analysis
for nonlinear Schrödinger equations.

4. Propagation of concentrated initial data

4.1. Defocusing nonlinearity. We now consider (1.7) with λ > 0. By scaling, we
may assume λ = 1. The general heuristic argument is the following. For t close to
zero, the solution u

ε remains concentrated near the point x0, at a scale of order ε.
Since the potential V does not depend on ε, we have V uε ∼ V (x0)u

ε: the potential
can be considered as constant at leading order. Introduce the function ψε given by
the scaling

u
ε(t, x) =

1

εn/2
ψε

(
t

ε
,x− x0

ε

)
ei(x0·ξ0/ε−V (x0)t/ε).

The Cauchy problem (1.7) is equivalent to:

i∂tψ
ε +

1

2
∆ψε = (V (x0 + εx) − V (x0))ψ

ε + |ψε|2σψε ; ψε(0, x) = R(x)eix·ξ0 .

The above argument suggests that we have ψε ∼ ψ, where ψ is independent of ε
and solves:

(4.1) i∂tψ +
1

2
∆ψ = |ψ|2σψ ; ψ(0, x) = R(x)eix·ξ0 .

Under suitable assumptions on σ and R, there is scattering for this equation (see
e.g. [17, 18, 45]): there exist ψ± ∈ L2(Rn) such that

(4.2)
∥∥∥ψ(t) − ei t

2 ∆ψ±

∥∥∥
L2

→ 0 as t→ ±∞.

The standard asymptotics of the free Schrödinger group ei t

2∆ then yields:

ψ(t, x) ∼
t→±∞

ei|x|2/(2t)

(it)n/2
ψ̂±

(x
t

)
,
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where the Fourier transform is given by

Ff(ξ) = f̂(ξ) =
1

(2π)n/2

∫

Rn

e−ix·ξf(x)dx.

Back to u
ε, this yields, for t≫ ε and so long as we consider the external potential

as constant:

(4.3) u
ε(t, x) ∼ 1

(it)n/2
ψ̂+

(
x− x0

t

)
ei

|x−x0|2

2εt ei(x0·ξ0/ε−V (x0)t/ε).

Indeed, we have the following rigorous result:

Proposition 4.1 ([16], Proposition 6.3). Let V satisfying Assumption 2.1. Let
R ∈ Σ := H1 ∩ F(H1), and

2 − n+
√
n2 + 12n+ 4

4n
6 σ <

2

n− 2
·

Then for any Λ > 0, the following holds:
1. There exists ε(Λ) > 0 such that for 0 < ε ≤ ε(Λ), the initial value problem (1.7)
has a unique solution u

ε ∈ C([−Λε,Λε]; Σ).
2. This solution satisfies the following asymptotics,

lim sup
ε→0

sup
|t|6Λε

‖uε(t) − v
ε(t)‖L2 = 0 ,

where v
ε is given by v

ε(t, x) =
1

εn/2
ψ

(
t

ε
,x− x0

ε

)
ei(x0·ξ0/ε−V (x0)t/ε),

and ψ ∈ C(R; Σ) is given by (4.1).

A transition is expected to occur in the above boundary layer, that is for |t| = Λε
and Λ ≫ 1. The heuristic argument consists in saying that because of dispersion for
ψ, the external potential V can no longer be considered as constant. On the other
hand, and for the same reason, the nonlinearity ceases to be relevant at leading
order: for ε≪ ±t 6 T , we expect uε ∼ u

ε
±, where

(4.4) iε∂tu
ε
± +

ε2

2
∆u

ε
± = V uε

± ; u
ε(0, x) =

1

εn/2
ψ±

(x
ε

)
ei(x0·ξ0/ε−V (x0)t/ε),

and ψ± are given by (4.2). The value of T is not arbitrary: the asymptotic behavior
of uε

± involves the classical trajectories associated to V . These trajectories may
refocus at one point; this is the case when V is an isotropic harmonic potential for
instance.

Proving the above asymptotics for ε ≪ ±t 6 T is actually an open problem for
general potentials satisfying Assumption 2.1, even for time-independent potentials.
It has been proved when V = V (x) is exactly a polynomial of degree at most two,
in [11] for the case of refocusing(s), and in [16] for the complementary case.

The restriction to this class of polynomial potentials is certainly purely technical,
and we know explain it. The proof of the asymptotics for ε≪ ±t 6 T relies on the
use of operators well suited to the propagation of classical trajectories associated
to V . In the linear setting, good candidates to meet this requirement are given by
the action of Heisenberg derivatives (see e.g. [48]):

Uε(t)ε∇Uε(−t) and Uε(t)
x − x0

ε
Uε(−t), where Uε(t) = e

−i t

ε

(
− ε

2

2 ∆+V
)

.



SEMI-CLASSICAL LIMIT FOR NLS 17

The main technical remark in [11, 16] is that when V is a polynomial of degree
at most two, then the above two Heisenberg derivatives are very interesting for
nonlinear problems too. Indeed, we can find p = p(t), and φ = φ(t, x) real-valued,
such that, for instance:

(4.5) Uε(t)
x− x0

ε
Uε(−t) = p(t)eiφ(t,x)/ε∇

(
e−iφ(t,x)/ε·

)
.

In [16], it is proved that an operator of the form of the right hand side of (4.5)
commutes with Uε(t) if and only if V is a polynomial of degree at most two, and φ
solves the eikonal equation (2.1). The fact that an Heisenberg derivative commutes
with the group Uε(t) is a straightforward consequence of its definition. The right
hand side of (4.5) implies two important things:

• This Heisenberg derivative acts on gauge invariant nonlinearities G(|u|2)u
like a derivative.

• Weighted Gagliardo–Nirenberg inequalities are available, of the form

‖ϕ‖Lr 6 Cr|p(t)|−δ(r)‖ϕ‖1−δ(r)
L2

∥∥∥∥U
ε(t)

x − x0

ε
Uε(−t)ϕ

∥∥∥∥
δ(r)

L2

.

To illustrate the use of these properties, we recall [11, Corollary 1.3]:

Proposition 4.2. Let R ∈ Σ. Assume that uε solves (1.7) with x0 = ξ0 = 0 and

V (x) =
|x|2
2

·

Let ψ± = W−1
± R be given by (4.2) (upon suitable assumptions on σ, see e.g.

Prop. 4.1). Then for any 2 < r < 2n
n−2 , the following asymptotics holds in L2 ∩Lr:

• If 0 < t < π, then u
ε(t, x) ∼

ε→0

(
1

i sin t

)n/2

ψ̂+

( x

sin t

)
ei |x|2

2ε tan t .

• If −π < t < 0, then u
ε(t, x) ∼

ε→0

(
1

i sin t

)n/2

ψ̂−

( x

sin t

)
ei |x|2

2ε tan t .

Remark 4.3. The result of [9] shows that in the above case, Wigner measure is not a
good tool to characterize the behavior of uε. More precisely, we can find R1, R2 ∈ Σ
such that the Wigner measures for the corresponding solutions uε

1 and u
ε
2 coincide

at time t = −π/2, but are different at time t = π/2. The crossing of a focal point
may lead to an ill-posed Cauchy problem as far as Wigner measures are concerned.

We see that the formal asymptotics (4.3) is valid only in the transition régime
t = Λε, with Λ ≫ 1. For larger times, the trigonometric functions in the above
result account for the dynamical influence of the harmonic potential.

In the above case of an isotropic harmonic potential, the above result can be
iterated in time. Recall that the (nonlinear) scattering operator S associated to
(4.1) maps ψ− to ψ+, given by (4.2).

Corollary 4.4. Under the assumptions of Proposition 4.2, consider k ∈ N. For
kπ < t < (k + 1)π, and 2 < r < 2n

n−2 , the following asymptotics holds in L2 ∩ Lr:

u
ε(t, x) ∼

ε→0

e−in π

4 −ink π

2

| sin t|n/2
Ŝkψ+

( x

sin t

)
ei |x|2

2ε tan t ,

where Sk denotes the kth iterate of the scattering operator S.
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The phase shift e−ink π

2 corresponds to successive Maslov indices: this is a linear
phenomenon [25]. On the other hand, we see that a nonlinear phenomenon occurs
at leading order at time t = kπ, which is measured by the scattering operator S.

4.2. Focusing nonlinearity. When λ < 0 in (1.1)–(1.3), we assume similarly that
λ = −1. We let R = Q, the unique positive, radially symmetric ([39]), solution of:

−1

2
∆Q+Q = |Q|2σQ.

Now, the focusing nonlinearity is an obstruction to dispersive phenomena. The
solution uε is expected to keep the ground state as a leading order profile. Never-
theless, the point where it is centered in the phase space, initially (x0, ξ0), should
evolve according to the Hamiltonian flow (2.2). In the absence of external potential,
V ≡ 0, we have explicitly:

uε(t, x) = Q

(
x− x(t)

ε

)
eix·ξ(t)/ε+iθ(t)/ε,

where (x(t), ξ(t)) = (x0 + tξ0, ξ0) solves (2.2) with initial data (x0, ξ0), and θ(t) =
t−t|ξ0|2/2. When V is not trivial, seek uε of the form of a rescaled WKB expansion:

uε(t, x) ∼




∑

j>0

εjUj

(
t

ε
,x− x(t)

ε

)

 eiφ(t,x)/ε.

Note that this scaling meets the exact result of the case V ≡ 0. Plugging this
expansion into (1.1)–(1.3) and canceling the O(ε0) term, we get:

i∂tU0 +
1

2
∆U0 + U0

(
−∂tφ− 1

2
|∇φ|2 − V + |U0|2σ

)
− i (ẋ(t) −∇φ) · ∇U0 = 0.

Impose the leading order profile to be the standing wave given by

U0(t, x) = eitQ(x).

Then the above equation becomes:

U0

(
−∂tφ− 1

2
|∇φ|2 − V

)
− i (ẋ(t) −∇φ) · ∇U0 = 0.

Since U0e
−it is real-valued, and since we seek a real-valued phase φ, this yields:

∂tφ+
1

2
|∇φ|2 + V = 0 ; φ(0, x) = x · ξ0.

ẋ(t) = ∇φ(t, x).

The first equation is the eikonal equation (2.1). We infer that we have exactly

∇φ (t, x(t)) = ξ(t).

The form of U0 and the exponential decay of Q show that we can formally assume
that x = x(t) + O(ε). In this case,

∇φ(t, x) = ∇φ (t, x(t)) + O(ε) = ξ(t) + O(ε) = ẋ(t) + O(ε).

Thus, we have canceled the O(ε0) term, up to adding extra terms of order ε, that
would be considered in the next step of the analysis, which we stop here. Back to
uε, this formal computation yields

uε(t, x) ∼ Q

(
x− x(t)

ε

)
eiφ(t,x) ∼ Q

(
x− x(t)

ε

)
eix·ξ(t)/ε+iθ(t)/ε,
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where θ(t) = t
(
1 − |ξ0|2/2 − V (x0)

)
+

∫ t

0

x(s) · ∇V (x(s))ds.

To give the above formal analysis a rigorous justification, the following assump-
tions are made in [38]:

Assumption 4.5. The nonlinearity is L2-subcritical: σ < 2/n.
The potential V = V (x) is real-valued, and can be written as V = V1 + V2, where

• V1 ∈W 3,∞(Rn).
• ∂αV2 ∈W 2,∞(Rn) for every multi-index α with |α| = 2.

For instance, V can be an harmonic potential.

Theorem 4.6 ([38]). Let x0, ξ0 ∈ Rn. Under Assumption 4.5, the solution uε to
(1.1)–(1.3) with R = Q can be approximated as follows:

uε(t, x) = Q

(
x− x(t)

ε

)
eix·ξ(t)/ε+iθε(t)/ε + O(ε) in L∞

loc(Rt;X
ε),

where (x(t), ξ(t)) is given by the Hamiltonian flow, the real-valued function θε de-
pends on t only, and Xε is defined by the norm

‖f‖2
Xε =

1

εn
‖f‖2

L2 +
1

εn−2
‖∇f‖2

L2.

Remark 4.7. The assumption σ < 2/n is crucial for the above result to hold. Indeed,
if σ = 2/n and V is the isotropic harmonic potential

V (x) =
|x|2
2

,

then we have explicitly, when x0 = ξ0 = 0 (see [10, 38]):

uε(t, x) =
1

(cos t)n/2
Q

( x

ε cos t

)
ei tan t

ε
−i |x|2

2ε
tan t, 0 6 t <

π

2
,

so the profile Q is modulated as time evolves, in a fashion similar to §4.1.

The proof of the above result heavily relies on the orbital stability of the ground
state, which holds when σ < 2/n. For v ∈ H1(Rn), denote

E(v) =
1

2
‖∇v‖2

L2 − 1

σ + 1
‖v‖2σ+2

L2σ+2 .

The ground state Q is the unique solution, up to translation and rotation, to the
minimization problem:

E(Q) = inf{E(v) ; v ∈ H1(Rn) and ‖v‖L2 = ‖Q‖L2}.
The orbital stability is given by the following result:

Proposition 4.8 ([54]). Let σ < 2/n. There exist C, h > 0 such that if φ ∈ H1(Rn)
is such that ‖φ‖L2 = ‖Q‖L2 and E(φ) − E(Q) < h, then:

inf
y∈Rn,θ∈T

∥∥φ− eiθQ(· − y)
∥∥2

H1 6 C (E(φ) − E(Q)) .

The strategy in [38] consists in applying the above result to the function

vε(t, x) = uε (t, εx+ x(t)) e−i(εx+x(t))·ξ(t)/ε.
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For A > 0 sufficiently large, let χ be a smooth non-negative cut-off function, sup-
ported in {x ∈ Rn; |x| 6 2A}, and constant equal to 1 in {x ∈ Rn; |x| 6 A}.
Introduce the error estimate ηε(t) given by ηε = ηε

1 + ηε
2 + ηε

3 + ηε
4, where:

ηε
1(t) =

∫

Rn

xχ(x)mε(t, x)dx − ‖Q‖2
L2x(t),

ηε
2(t) =

∫

Rn

∇V2(x)m
ε(t, x)dx − ‖Q‖2

L2∇V2 (x(t)) ,

ηε
3(t) =

∫

Rn

ξε(t, x)dx − ‖Q‖2
L2ξ(t),

ηε
4(t) =

∫

Rn

χ(x)V (x)mε(t, x)dx − ‖Q‖2
L2V (x(t)) ,

mε(t, x) =
1

εn
|uε(t, x)|2 ; ξε(t, x) =

1

εn−1
Im (uε∇uε) .

Noting that ηε(0) = O(ε2), the proof in [38] shows that ηε(t) = O(ε2) for t ∈ [0, T0]
for some T0 > 0 independent of ε. The proof eventually relies on Gronwall lemma
and a continuity argument. In order to invoke these arguments, S. Keraani uses
Proposition 4.8 and the scheme of the proof of J. Bronski and R. Jerrard [6], based
on duality arguments and estimates on measures. Finally, the time T0 given by the
proof depends only on constants of the motion, so the argument can be repeated
indefinitely, to get the L∞

loc estimate of Theorem 4.6.

In the particular case where the external potential V is an harmonic potential
(isotropic or anisotropic), the proof can be simplified. We invite the reader to pay
attention to the short note [37], where this simplification is available.

The phase shift θε in Theorem 4.6 is not known in general. It is easy to guess
from the arguments given above that in the proof given by S. Keraani, it stems from
the use of Proposition 4.8. On the other hand, as noted in [38], a time-dependent
phase shift does not alter the Wigner measure of uε, which is an important physical
quantity.
Acknowledgments. The author is grateful to Thomas Alazard for his careful
reading of the manuscript, and for his comments.
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bation, Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003), no. 3, 501–542.
[12] , Cascade of phase shifts for nonlinear Schrödinger equations, J. Hyperbolic Differ.

Equ. (2007), to appear.
[13] , Geometric optics and instability for semi-classical Schrödinger equations, Arch.

Ration. Mech. Anal. (2007), to appear (doi:10.1007/s00205-006-0017-5).
[14] , WKB analysis for nonlinear Schrödinger equations with potential, Comm. Math.

Phys. 269 (2007), no. 1, 195–221.
[15] R. Carles, P. A. Markowich, and C. Sparber, Semiclassical asymptotics for weakly nonlinear

Bloch waves, J. Stat. Phys. 117 (2004), no. 1-2, 343–375.
[16] R. Carles and L. Miller, Semiclassical nonlinear Schrödinger equations with potential and

focusing initial data, Osaka J. Math. 41 (2004), no. 3, 693–725.
[17] T. Cazenave, Semilinear Schrödinger equations, Courant Lecture Notes in Mathematics,

vol. 10, New York University Courant Institute of Mathematical Sciences, New York, 2003.
[18] T. Cazenave and F. Weissler, Rapidly decaying solutions of the nonlinear Schrödinger equa-

tion, Comm. Math. Phys. 147 (1992), 75–100.
[19] C. Cheverry, Cascade of phases in turbulent flows, Bull. Soc. Math. France 134 (2006), no. 1,

33–82.
[20] C. Cheverry and O. Guès, Counter-examples to the concentration-cancellation property,

preprint, 2005.
[21] M. Christ, J. Colliander, and T. Tao, Ill-posedness for nonlinear Schrödinger and wave equa-
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1993, pp. Exp. No. XIII, 13.

[31] P. Gérard, P. A. Markowich, N. J. Mauser, and F. Poupaud, Homogenization limits and-
Wigner transforms, Comm. Pure Appl. Math. 50 (1997), no. 4, 323–379.

[32] E. Grenier, Semiclassical limit of the nonlinear Schrödinger equation in small time, Proc.
Amer. Math. Soc. 126 (1998), no. 2, 523–530.

[33] S. Jin, C. D. Levermore, and D. W. McLaughlin, The semiclassical limit of the defocusing
NLS hierarchy, Comm. Pure Appl. Math. 52 (1999), no. 5, 613–654.
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