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ESTIMATING THE ACCURACY OF (LOCAL) CROSS-VALIDATION

VIA RANDOMIZED GCV CHOICES IN KERNEL OR SMOOTHING SPLINE REGRESSION

Didier A. Girard
CNRS and Université Joseph Fourier

Abstract
In nonparametric regression, it is generally crucial to select “nearly” optimal smoothing parameters

for which a given (weighted) average squared error (∆) is “nearly” minimized. The cross-validation (CV)
selector, or the GCV selector, are popular for this task but it has been observed by many statisticians that
these selectors may happen to be “not sufficiently” accurate in some situations. So a practical matter of
great importance is the development of reliable estimates of this accuracy.

The purpose of this paper is to show that the simulation of the randomized GCV selector or a simple
general variant using an “augmented-randomized-trace”, can provide useful inferences, like consistent
estimates of the standard error in the CV selector or of the expected increase of ∆ due to this error.
Furthermore this also provides a tool for constructing more parsimonious curve estimates having almost
the same asymptotic justification as the CV estimate, namely with similar increase of ∆ up to a given
factor.

Rigorous proofs are given in the context of one-dimensional kernel regression. Simulated examples,
also in this context, illustrate the usefulness of the methodology even at moderate sample sizes. Some
direct extensions (for multi-dimensional kernels, equispaced splines) of the theoretical results are outlined.
We give heuristics which indicate that the general methodology proposed in this article should be useful
in many curve-, surface- or image-estimation problems when using spline-like smoothers.

Key words : Bootstrap, CL criterion, Coverage probability, Generalized cross-validation, Kernel regres-
sion, Nonparametric regression, Randomized trace, Regularization, Smoothing spline.

1. Introduction

When regularization methods or nonparametric techniques are used to solve an inverse problem or to

estimate the mean curve or surface underlying noisy observations, the choice of the regularization parame-

ter(s), smoothing parameter(s) or bandwidth(s) is generally crucial. Cross-validation (CV), unbiased risk

estimate (CL) and generalized cross-validation (GCV) methods are very popular for this choice. They were

studied and applied in a broad variety of contexts: see Craven and Wahba (1979), Rice (1984), Speckman

(1985), Li (1985, 1986), Wahba (1985), Härdle and Marron (1985), Härdle, Hall and Marron (1988), Kneip

(1994), Girard (1998), for theoretical results, Hutchinson (1990), Kohn et al. (1991), Thompson et al.

(1989, 1991) for extensive experimentations, Eubank (1999) and Gu (2002) for recent surveys.

However, it is now well known that the resulting best bandwidth estimates may exhibit too large a

sample-to-sample variability in certain applications, and thus the computed cross-validated curve or surface

(from the single observed sample) should be interpreted with great caution in such a case. Various other

bandwidth selectors have been recently proposed (especially for nonparametric techniques of the kernel

type) which can give more stable estimates, at the price of some bias. However, their asymptotic justifi-

cation needs stronger smoothness assumptions and in practice their use is not so ‘automatic’ (additional
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parameters). As mentioned by several authors (e.g. Hart(1992) in the discussion of Hall and Johnstone

(1992), Loader (1999)), cross-validation is more “assumptions-robust”, and is also generally recognized as

an unbiased selector: this makes cross-validation an irreplaceable tool. What is presently missing to any

practitioner who uses GCV is a reasonable estimate (or bound) of how far from the optimal smoothing

parameter is the GCV choice or at least some feeling about its usefulness, as was noticed by Nychka (1991)

and others. Confidence interval would be even more appreciated but is a more ambitious goal. Such

accuracy estimates would turn out to be very useful to guide the practitioner in his/her choices among

curve-estimators of various degrees of sophistication. One instance is the choice between global and local

bandwidths: Schukany (1995) aptly points out that the development of an indicator stating whether one

has sufficient data to warrant more than a global bandwidth, would be very useful.

In this paper we propose a simulation-based methodology for producing estimates of the accuracy of

the CV or GCV selector either in the bandwidth-space or in the curve- or surface-space. These estimators

will be obtained as a simple by-product of the repeated use of the fast randomized version of GCV or of

variants, where “fast” stands for meaning that one uses a single randomized-trace in place of the exact trace.

In Girard (1995), computing several replications of the minimizer of the fast randomized GCV criterion was

already advocated, even in contexts where exact GCV is computationally feasible, as a simple methodology

for providing a useful indicator of certain “pathological” contexts: if the observable variability in the final

solution (curve or surface) due to randomization, is “too large” for the problem at hand then (even exact)

GCV should not be considered as “reliable” for this problem (see Sections 3.2 and 5.4 of Girard (1995)).

The aim of this paper is to show that the distribution of the randomized GCV selector and a variant

using an “augmented-randomized-trace”, obtained by such a simulation (such a distribution will be called

a randomization-based distribution) can actually provide considerably more precise inferences in contexts

where GCV is relevant and where enough regularity is present. Before describing this new methodology,

let us recall some definitions and previous results.

1.1. Simplified background and general definitions

Let us first consider the simple observational model

yi = m(xi) + εi, i = 1, · · · , n (1.1)

where m is an unknown smooth function observed at the points xi = i/n, i = 1, · · · , n and εi are indepen-

dent and identically distributed observation errors with mean zero and variance σ2. Consider the widely

studied kernel regression estimator for m of the form:

m̂h(x) =
1

nh

n∑

j=1

K(
x − xj

h
)yj . (1.2)

where K is a smooth “bell shaped” symmetric function chosen so that it satisfies
∫

K(x) dx = 1 and
∫

x2K(x) dx > 0, and h > 0 is the smoothing parameter (or bandwidth) to be chosen.

2



This curve estimator evaluated at the points xi will also be matricially denoted by:

m̂h = Ahy (1.3)

where the so-called smoother matrix Ah is explicit here [Ah]i,j = 1
nhK(

xi−xj

h ). This will permit us

to concisely formulate some future general definitions and discussions which will be applicable to other

common smoothers Ah like smoothing splines or “lowess” estimates (local weighted least squares).

A convenient measure for assessing m̂h as an estimate of m, is the weighted average squared error

∆(h) := n−1
∑

[m̂h(xi) − m(xi)]
2
u(xi) = n−1‖Ahy − m‖2

U (1.4)

(that we will sometimes simply call the “loss”) or its expectation M(h):=E(∆(h)). Here u is a fixed non-

negative function (we denote by U the diagonal matrix diag(u(xi), i = 1, · · · , n) and ‖ · ‖U is the weighted

l2 norm associated with the inner product 〈x,y〉U = xT Uy). By assuming u compactly supported on

a subinterval of (0,1), the boundary effects are eliminated. By using a “localized” weight function u,

like the characteristic function of a “small” subinterval, this also classically permits one to target a “local

bandwidth”. Let us denote by ĥ0 the minimizer of ∆ and h0 the minimizer of M . The “optimal bandwidth”

will refer to ĥ0 in this paper. (For simplification of notation, the dependence of Ah, ∆, M , h0, ĥ0, ĥCV, etc.,

on n are suppressed.) The popular “leave-one-out” approach (or ordinary cross-validation) for estimating

the optimal bandwidth, consists, in our linear framework (1.3)-(1.4), of numerically minimizing the criterion

CV(h) = n−1‖D−1
h (I − Ah)y‖2

U Dh := diag(1 − [Ah]i,i, i = 1, · · · , n) (1.5)

which, in the particular setting here, also coincides with the popular generalized cross-validation criterion

(e.g. Craven and Wahba (1979), Hastie and Tibshirani (1990) Section 3.4.3). Let ĥCV the resulting

bandwidth. It is now well known that, for the context (1.1)-(1.2), under standard regularity conditions, we

have h0 ∼ c(K, m, σ, u)n−1/5 as n → ∞ and both ĥ0/h0, ĥCV/h0 tend to 1 in probability, and moreover

the “errors” in ĥCV or h0 have asymptotic normal distributions:

L
(
n3/10(h0 − ĥ0)

)
→ N (0, σ2

1), L
(
n3/10(ĥCV − ĥ0)

)
→ N (0, σ2

2),

where σ1, σ2 are constants which are known functions of K, m, σ, u; see Rice (1984), Härdle, Hall and

Marron (1988) abbreviated by HHM in the following. In the latter paper, Remark 3.6, it is suggested

that, by estimating the unknown terms in σ2, this asymptotic result could be used to provide approximate

confidence intervals for ĥ0.

Before going on, we have to recall some other definitions. Let us define

t(h) := trUAh/trU, (1.6)

a trace-term which is simply n−1h−1K(0) for the particular estimator (1.2) in the case of an equidistant

design, and is thus independent of u in this case. Generalized cross-validation (GCV) is a member of a

family of criteria that can be written as

GX(h) :=n−1‖(I − Ah)y‖2
U ΞX(t(h)) (1.7)
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where ΞX is a correction factor (or penalization) satisfying ΞX(t) = 1 + 2t + O(t2) with Ξ′′
X bounded on

a neighborhood of 0. A list of usual penalizations ΞX is presented in HHM. GCV which is defined by

ΞGCV(t) := (1 − t)−2, is one of the most popular. It has been shown in HHM that, for the setting (1.1)-

(1.4), each of these penalized criteria gives a bandwidth equivalent up to second order to ĥCV (that is,

with the same normal limiting distribution as the one above). Let ĥ generically denote any one of these

GCV-type selectors.

Now, the fast randomized version RG of G is obtained by using in place of t(h), in the definition (1.7),

the general randomized trace function :

Rt(h) :=
〈w, Ahw〉U
〈w,w〉U

,

where w is a simulated unitary “white noise” vector w of size n, i.e. such that Ew = 0 and Var(w) = I (the

same w being used for every h). These criteria have been introduced in Girard (1989) (in the unweighted

case) as fast Monte-Carlo-type approximations to the exact ones, for all the contexts where computing

trUAh is not an easy task: this is not the case in the setting (1.1)-(1.4) above, but typical important

examples are smoothing splines or penalized least squares procedures, additive modeling by backfitting,

iterative image restorations, etc.; see Girard (1995) for references to various applications.

In the setting above, it has been shown in Girard (1998) that

L
(
n3/10(ĥR − ĥ0)

)
→ N (0, σ2

R),

with σ2
R < 2σ2

2 , where ĥR denotes a generic minimizer of any one of these randomized GCV-type criteria.

1.2. Outline of results and structure of the article

In this paper, we propose a rather general method for building up inferences concerning the optimally

smoothed curve, optimal in terms of the loss ∆(·). It simply consists of repeatedly rerunning, for example,

the randomized GCV procedure, and, in order to approximate the desired distribution of ĥGCV − ĥ0, of

using the empirical distribution of the so-obtained randomized choices ĥRGCV which is thus conditional to

the data y, centered about its mean or about ĥGCV (these two centerings being asymptotically equivalent).

We claim (see Section 2, Corollary 2.3, and Remark 8.2 for extensions of the theory) that this permits

to construct, under classical regularity conditions, a consistent estimate (in probability) of the distribution

of ĥGCV − ĥ0 as n → ∞. To be more precise, the obtained conditional distribution slightly underestimates

the targeted distribution in the sense

L
(
ĥRGCV − ĥGCV

∣∣y
)

and L
(
κ(ĥGCV − ĥ0)

)
have the same limit

in probability with respect to y, where the constant κ < 1 is function of K and in general of m and u (and

of the density of the xi in the nonequispaced case). We used the word “slightly” because κ will be shown

to be often “reasonably close” to 1 (Section 3) : for example, for second order kernel, if u is a characteristic

function, then 1/
√

3 ≤ κ ≤ 1. However, in some cases (e.g. kernel of high order) κ may be too small.
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We then show in Sections 4 and 5 that this possible trouble can be completely eliminated via a second

simulation method similar as the above one, except that the randomized trace is appropriately modified so

that it has an “augmented randomness”. Note, that the first simulation study, with second order kernel,

that we will describe in Section 8, demonstrates that even without such a correction, these randomization-

based estimates of var
(
ĥGCV − ĥ0

)
are satisfactory. After some comments on how to use confidence

bounds on ĥ0, we also describe in Section 7 two other useful byproducts of a simulated population of

randomized choices. An additional attractive property is that the variation of the GCV criterion over

such a population yields a simple consistent estimate of the supplement of risk E
(
∆(ĥGCV)

)
−E

(
∆(ĥ0)

)

from estimation of ĥ0 (or “risk regret”). An appealing feature of the methodology is that its theoretical

justification does not require any additional smoothness assumption on m.

1.3. General heuristics and other definitions

The underlying idea can be more easily described by considering instead the Mallows unbiased risk

estimate which is a basic criterion for choosing h when σ2 is known:

CL(h) :=n−1‖(I − Ah)y‖2
U + 2σ2n−1trUAh

(Mallows (1973)). The fast randomized version of CL is

RCL(h) := n−1‖(I − Ah)y‖2
U + 2σ2n−1〈w, Ahw〉U

The following discussion will remain relevant for cross-validation or GCV-type criteria, because it has been

shown that typically CL (respectively RCL) produces a smoothing parameter equivalent up to second order

(and essentially equivalent in practice; see e.g. Hastie and Tibshirani (1990) Section 3, Girard 1995) to

any one of the G-selectors (1.6)-(1.7) (respectively RG-selectors). Now algebraic manipulations show that:

CL(h) − n−1‖εεεεεεεεεε‖2
U − ∆(h) = −2n−1

(
〈εεεεεεεεεε, Ahεεεεεεεεεε〉U − σ2trUAh

)
+ 2n−1〈εεεεεεεεεε, (I − Ah)m〉U

= e1(εεεεεεεεεε, h) + e2(m, εεεεεεεεεε, h),
(1.8)

say, while the analog intrinsic error of the randomized version is

RCL(h) − n−1‖εεεεεεεεεε‖2
U − ∆(h) = e1(εεεεεεεεεε, h) + e2(m, εεεεεεεεεε, h) − e1(εεεεεεεεεε

∗, h) (1.9)

where εεεεεεεεεε∗ = σw is independent and distributed identically to εεεεεεεεεε at least for the first and second moments.

This means that the additional “randomization error” −e1(εεεεεεεεεε
∗, h) is similar to one of the two components

of the intrinsic error of CL (see Girard(1995) for an extension to the randomized GCV criterion).

Now, for the case Ah a kernel smoother, it is well known that, under classical regularity conditions, the

asymptotic distribution of ĥ is typically obtained by the following linearization of the equation G′(ĥ) = 0,

where “ ′ ” denotes differentiation w.r.t. h:

0 = G′(ĥ) ≈ G′(h0) + (ĥ − h0)M
′′(h0)
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where the error in “≈” is small enough relatively to the centered normal limit distribution of G′(h0); and

it is known that this also typically holds (with linearization errors of the same order) for the couple G′, ĥ

replaced by CL′, ĥ or ∆′, ĥ0 (Rice (1984), HHM), and also by RCL′, ĥR as may be expected from the

above comments (Girard 1998). As discussed in HHM, Nychka (1991), Girard (1998, Section3) and others,

one can anticipate that the so-obtained three linearizations can yield satisfying approximations also for

numerous other classes of linear smoothers Ah, provided Ah is twice continuously differentiable w.r.t. h.

Now by linearly combining these three approximations using the relations (1.8) and (1.9), we obtain

−M ′′(h0)(ĥ − ĥ0) ≈ e′1(εεεεεεεεεε, h0) + e′2(m, εεεεεεεεεε, h0), (1.10)

−M ′′(h0)(ĥR − ĥ) ≈ −e′1(εεεεεεεεεε
∗, h0). (1.11)

It is important to note that the right hand term of this last approximation is independent of εεεεεεεεεε. This will

permit us, under usual regularity conditions, to show the following: the observable fluctuations of ĥR for

a given y, about the associated ĥ, tend (in probability) to have the same distribution as the unconditional

difference ĥR − ĥ. Now it is often already known that the two components e′1(εεεεεεεεεε, h0) and e′2(m, εεεεεεεεεε, h0) are

asymptotically distributed as two independent, centered, normal variables of the same order (identical

to that of G′(h0)). We shall show that moreover, in the second order kernel setting, their asymptotic

variances are numerically close for typical weight functions u, independently of m. So that lower bounds

on the underestimation factor κ, as the one mentioned above, will be obtained (Section 3).

A second set of heuristics is the following. In order to automatically drop this underestimation factor,

the expressions (1.8)-(1.9) suggest that RCL(h) should ideally have a second additional error ±e2(m, εεεεεεεεεε∗, h).

If m were known, it would suffice to add such a term to RCL(h). We propose here to add −e2(m̂g, εεεεεεεεεε
∗, h)

where g, a pilot smoothing parameter, has to be chosen. We choose to use the sign minus and the same

εεεεεεεεεε∗ as the one already used for generating RCL because the whole additional error now “exactly mimics”

up to the factor −1 the intrinsic error of RCL, and because the corresponding new randomized criterion,

that we call the “augmented randomized” version of CL (or ARCL ), then has the natural expression

ARCL(h) := RCL(h) − e2(m̂g, εεεεεεεεεε
∗, h)

= n−1‖(I − Ah)y‖2
U + 2n−1〈εεεεεεεεεε∗, Ah (Agy + εεεεεεεεεε∗) − Agy〉U .

(1.12)

where the adjustment of the residual can be recognized similar to “a bootstrap realization of the optimism”

in the work of Efron (1986). There, the average of such bootstrap realizations was used to estimate an

“expected optimism” whose definition was not limited to linear Ah(·) (nor to quadratic ∆) in case of

which it is a function of m. As far as we know, there is no published paper touching on the methodology

proposed here for kernel or spline-like smoothers where each bootstrap realization is used, via numerical

minimization of ARCL, to produce a randomized choice.

The corresponding penalized criterion ARG(h) naturally uses the following augmented-randomized-

trace function in place of t(h) in the definition (1.6) − (1.7) :

ARt(h) :=
〈εεεεεεεεεε∗, Ah (Agy + εεεεεεεεεε∗) − Agy〉U

〈εεεεεεεεεε∗, εεεεεεεεεε∗〉U
. (1.13)
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Note that contrary to Rt(h), this is no longer invariant by a renormalisation of εεεεεεεεεε∗ and an estimate of σ is

thus required for generating ARG(h). In practice many good estimates exist for estimating σ. We fell that

the arguments which follow should still hold with σ2 replaced by any one of these variance estimates.

We consider in this paper, the natural automatic choice g = ĥGCV for the pilot bandwidth. Other

choices might be “better” but this one is very appealing since it does not add any complications in practice.

Now, with enough regularity assumptions and n large enough, the following stochastic representation

typically approximates well the true behavior of the minimizer of ARCL, say ĥAR,

−M ′′(h0)
(
ĥAR − ĥ

)
≈

(
ARCL′ − CL′

)
(h0)

≈ −e′1(εεεεεεεεεε
∗, h0) − e′2(Ah0

y, εεεεεεεεεε∗, h0)

≈ −e′1(εεεεεεεεεε
∗, h0) − e′2(m + Ah0

εεεεεεεεεε, εεεεεεεεεε∗, h0) − e′2(Ah0
m − m, εεεεεεεεεε∗, h0).

(1.14)

The third term is typically negligible relatively to the second. Let us define

v1:=8n−2σ4tr((A′
h0

Ah0
)T U2A′

h0
Ah0

),

v2:=8n−2σ4tr(A′
h0

T
U2A′

h0
)

b2:=4n−2σ2‖A′
h0

m‖2
U2

(1.15)

(these are analogs of V1, V2 and B2 of Theorem 2.1; note that Nychka (1991, Section 3), in addition of

the bootstrap strategy, also studies an analytic strategy which uses similar formulae for general spline

smoothers and replaces the unknowns terms by consistent estimates). Straightforward differentiation of e1

and e2 and variance calculus show, assuming for example that εεεεεεεεεε and εεεεεεεεεε∗ are Gaussian, that, conditionally to

a given y, the first term and the second one are independently distributed with an approximate law for the

first typically given by N (0, v2) and an exact law for the second equal to N (0, 4n−2σ2‖A′
h0

m+A′
h0

Ah0
εεεεεεεεεε‖2

U2)

which, for large n, will be closed to N (0, b2 + (1/2)v1) with a high probability; and thus the conditional

distribution of the sum of the three terms will typically be an inflated version of the “target” N (0, b2 +v2),

i.e. the approximate unconditionned law of −M ′′(h0)(ĥ − ĥ0), with inflation (or overestimation) factor

given by

κ =
√

(b2 + v2 + (1/2)v1) / (b2 + v2) ≤
√

1 + (1/2)(v1/v2).

We will see (Sections 5-6) how to easily eliminate this biais. However it is worth to point out that κ

will be not much larger than 1 in many context. For example, for spline-like smoother where Ah and A′
h

are symmetric matrices with a common base of eigenvectors, and where the eigenvalues of Ah are bounded

by 1, we have, for example for U = I, that v1/v2 = tr(A′
h0

Ah0
)2/tr(A′

h0
)2 ≤ 1 and thus 1 ≤ κ ≤

√
3/2.

All this will be rigorously proved in the kernel context, Section 4, and extended to other contexts

Remark 8.2, for large sample. Moreover we will prove in Section 5 (and 6) that we can in fact linearly

combine the variance estimate obtained from the simulated ĥR’s and the one from the simulated ĥAR’s to

obtain an asymptotically unbiased estimate of var
(
ĥ − ĥ0

)
.
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1.4. Comparison with a more classical bootstrap methodology

Nychka (1991) has proposed a parametric bootstrap approach to approximate the distribution of

ĥ − ĥ0. His approach seems quite natural from a practical point of view: after having estimated m and σ

using cross-validation, one can generate new independent data sets by taking these estimates in place of

the true m and σ. Since typically these estimates are consistent as n → ∞, one may think that these data

sets will have a distribution similar as that of the observed data set for large n. One can then compute

the empirical distribution of the differences between cross-validation choice and optimal choice associated

to these simulated data sets and use this distribution as an approximation of the desired distribution of

ĥCV − ĥ0. Simulations with some typical test functions m in Nychka (1991) demonstrate that this method

may be rather effective. However, note that the theoretical results in Nychka (1991) state that the mean

of the bootstrap distribution actually converges to a constant (< 1) multiply of h0. Asymptotic theory

suggests that this may be corrected by using an oversmoothed m̂g for the generation of the pseudo-data;

but in practice choosing such a pilot bandwidth g is a difficult matter. This (uncorrected) bootstrap

methodology is compared to our proposal in the simulation study, Section 8. The randomized-choices

methodology will prove to be more accurate in these experiments.

2. Statement of results for kernel regression estimates

For the sake of clarity and simplicity, we shall state our results for the case of one-dimensional data, in

the widely studied setting of second order kernel as in Section 1.1. However, as in Girard (1998) we relax

the condition of equispaced design: we assume that there exists a smooth distribution function F over

[0, 1] such that xi :=F−1((i − 0.5)/n), i = 1, · · · , n, and, for simplicity, that the density f = F ′ is known.

Then we can still use a simple explicit modified version of (1.2): m̂h(x) := 1
nhf(x)

∑
K(

x−xj

h )yj , for which

an asymptotic study remains relatively easy. We shall require the following classical assumptions.

a) The errors εi are iid with mean 0 and all other moments finite. b) K is symmetric, compactly

supported and has a Hölder continuous second derivative. c) m is C2[0, 1]. d) f is C2[0, 1] and f(x) ≥ c > 0

on the support of u which is assumed C1[0, 1].

As is usual in asymptotic studies of kernel estimates, the minimization of the various selection criteria

is assumed to be restricted to an interval Hn = [n−1+ǫ, n−ǫ] for an arbitrary (small) constant ǫ > 0. Let

us define

Ju(m) =

[∫
((mf)′′)

2
f−1u

]/ ∫
u.

Then it is known (e.g. Härdle and Marron (1985)), that h0 ∼ C0n
−1/5 with C0 = (C1/C2)

1/5 and

C1 = σ2

∫
u

∫
K2, C2 =

(∫
x2K

)2

Ju(m)

∫
u, (2.1)

and that ĥ
h0

→ 1 and ĥ0

h0
→ 1 in probability. And setting C3:=5C1/C3

0 we have

M(h0) ∼
5

4

C1

C0
n−4/5, M ′′(h0) ∼ C3n

−2/5.
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Well known important works by Rice (1984) and HHM have established the following asymptotic stochastic

behaviors of the non-randomized selectors (the extension to nonequidistant designs is analyzed in Girard

1998) that we recall for the sake of completeness. To simplify the statements of properties that are shared

by various selectors, in the following, ĥ (respectively ĥR) also denotes the minimizer of CV(h) or the one

of CL(h) (resp. the minimizer of RCL(h)) in addition to the G-selectors (resp. the RG-selectors).

Theorem 2.1. (HHM, Girard (1998)) Under a), b), c) and d) (i.e. the assumptions of HHM except that

the design may be non-equidistant, its density f being C2 and bounded from below on the support of u),

we have

L
(
C3n

3/10(h0 − ĥ0)
)
→ N (0, B2 + V1), L

(
C3n

3/10(ĥ − ĥ0)
)
→ N (0, B2 + V2)

with, denoting by L the kernel L(x) = −xK ′(x),

B2 = 4C2
0σ2

(∫
x2K

)2

Ju2(m)

∫
u2,

V1 =
8

C3
0

σ4

∫
(K ∗ K − K ∗ L)2

∫
u2, V2 =

8

C3
0

σ4

∫
L2

∫
u2.

In the following, the convergence of the conditional distribution of a randomized quantity Xn given y

(i.e. the randomization-based distribution of Xn) toward X will be stated in probability, in the sense that

for any fixed t where the distribution of X is continuous, |P (Xn ≤ t|y) − P (X ≤ t) | → 0 in probability.

Theorem 2.2. Under the assumptions of Theorem 2.1, assumptions on the generated w identical to those

on σ−1εεεεεεεεεε and assuming w independent from εεεεεεεεεε,

L
(
C3n

3/10(ĥR − ĥ)
∣∣y

)
→ N (0, V2)

in probability, where the constants C3 and V2 are the same ones as in Theorem 2.1.

Proof: Let Xn denotes C3n
3/10(ĥR− ĥ). The unconditional version of this result, that is, the convergence

in distribution of Xn toward N (0, V2), can be classically shown from the approximation

Xn = n7/10e′1(εεεεεεεεεε
∗, h0) + oP (1), (2.2)

where e1 is defined in (1.18), which is immediately obtained by combining the two linearizations stated

in Girard (1998, equations (2.5) and (3.3)), and from the convergence in distribution (Lemma 4 of the

Appendix of Girard (1998)):

n7/10e′1(εεεεεεεεεε
∗, h0) → N (0, V2). (2.3)

Recall that one classical way to prove the well known fact that (2.2) and (2.3) are sufficient for Xn →
N (0, V2), is to obtain the following inequality which holds for any η > 0 (e.g. section 20.6 of Cramer 1970):

|P (Xn ≤ t) − F (t)| ≤ max{|Fn(t + η) − F (t)|, |Fn(t − η) − F (t)|} + 2P (|rn(h0, εεεεεεεεεε, εεεεεεεεεε
∗)| > η) ,
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where Fn is the distribution of n7/10e′1(εεεεεεεεεε
∗, h0), F is the distribution N (0, V2), and rn(h0, εεεεεεεεεε, εεεεεεεεεε

∗) = Xn −
n7/10e′1(εεεεεεεεεε

∗, h0); next, to observe that this bound can be made arbitrarily small with an appropriate choice

of η and with n large enough.

Concerning the conditional Xn, by noticing that Fn is also the distribution of n7/10e′1(εεεεεεεεεε
∗, h0)|y, it is

easy to see that this inequality actually also holds with the probability P (·) replaced by the conditional

probability P (·|y). Now, it suffices to observe that the so-obtained bound of |P (Xn ≤ t|y) − F (t)| can

also be made arbitrarily small in probability since, of course, αn(y) = P (|rn(h0, εεεεεεεεεε, εεεεεεεεεε
∗)| > η|y) →P 0 (which

results from E|αn(y)| = P (|rn(h0, εεεεεεεεεε, εεεεεεεεεε
∗)| > η) → 0 and Markov inequality).

Recalling that all the selectors are restricted to a compact set, one can define ŜDRAND by

ŜDRAND := var
1

2

(
ĥR

∣∣y
)

. (2.4)

We could have used

√
E

(
(ĥR − ĥ)

∣∣y
)2

instead of (2.4). For large samples, this would be equivalent.

However, for finite samples this is, of course, always greater than var
1

2

(
ĥR

∣∣y
)
, and might then improve

it in view of the underestimator factor we discuss in the following. We come back to this point in the

simulation study.

By simply combining Theorem 2.1 and Theorem 2.2 and using the expression of C5
0 given by (2.1), we

now obtain the following corollary which describes the behavior of the variances of the normal asymptotic

laws (that we simply call asymptotic variances):

Corollary 2.3. Under the assumptions of Theorem 2.2, ŜDRAND, defined in (2.4), is a consistent estimate

of κ var
1

2

(
ĥ − ĥ0

)
, in the sense that ĥR

∣∣y has the same asymptotic variance than κ(ĥ − ĥ0), where

κ =

(
V2

B2 + V2

)1/2

=

(
1

2

Ju2(m)

Ju(m)

∫
K2

∫
L2

+ 1

)−1/2

≤ 1.

We will study in more depth this downward bias of ŜDRAND in the next section.

3. The underestimation factor κ is never “too small” for second order kernel

At first look, one may think that the underestimation factor κ should be estimated in order to

appropriately inflate ŜDRAND. However, we show in this section that for second order kernel and typical

u, V2 can never be a small part of the whole variance B2 + V2 and thus κ is reasonably close to 1. From

the expression of κ in Corollary 2.3, we see that an important case can be first considered: the case u2

proportional to u since κ is then independent of m and of the density f . We thus give in Table 3.1 the values

of this factor κ in this case, for four typical kernels K, with a now standard terminology (e.g. Priestley

and Chao (1972)). Notice that the first and last columns are extremal cases (see Lemma 3.1 below). It is

seen that these values of κ are all reasonably close to 1.

10



K “Rectangle” Quadratic Biweight Gaussian exp(−|x|) “Kmin”∫
K2

∫
L2

0 2
3 1 4

3 2 4

κ 1 .8660 .8165 .7746 .7071 .5774

Table 3.1. Case u2 proportional to u

In order to derive general lower bounds for κ (like the last column of Table 3.1), let us state the two

following lemmas:

Lemma 3.1. Assume that K is a continuously differentiable function with compact support. Then

∫
K2 ≤ 4

∫
|xK ′|2 = 4

∫
L2.

Proof: By integration by parts, we have
∫

K2 = −
∫

x(2K ′K) whose square is bounded by
∫

(2xK ′)
2 ∫

K2

by Cauchy-Scharwz.

Furthermore, it can be easily shown that this inequality is “sharp”, i.e. there exists a minimizing

sequence of kernels (denoted “Kmin” in Table 3.1) for which the ratio
∫
|xK ′|2/

∫
K2 converges to the

lower bound 1/4.

Lemma 3.2. Under the assumptions of Theorem 2.1,

Ju2(m)

Ju(m)
≤

∫
u∫
u2

max u.

Proof: Note that this ratio can be written

∫
u∫
u2

∫
gu∫
g

for a certain positive function g.

It immediately follows that:

Theorem 3.3. If u2 ∝ u then the underestimation factor κ which appears in Corollary 2.3 always satisfies:

1/
√

3 ≤ κ ≤ 1.

Otherwise, this still holds, for any m and f , with
√

3 replaced by

√
1 + 2

∫
u∫
u2

max u. When the chosen u

is a Gaussian density of any width,

∫
u∫
u2

max u =
√

2 if the integrals are taken over (−∞,+∞).

The case u Gaussian considered here is of practical interest since it is a natural weight function often

used to define local bandwidths (e.g. Vieu (1991)). Note that if the width of a Gaussian u is chosen to be

small enough relatively to the local variation of (mf)
′′

f−1, then Ju2(m)/Ju(m) will actually be closer to

1 than to the approximate upper bound
√

2.

4. Augmenting the randomization error in ĥR for another accuracy estimate

We have seen in the previous section, that the intrinsic error (1.9) of the randomized criterion RCL

has an additional error (compared to the error (1.8) of CL) which actually may be not large enough for
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our precise objective here. And this becomes even more acute for kernel of higher order, as detailed in

Remark 8.2. So we consider the augmented-randomized-version of CL (i.e. ARCL defined in (1.12)) as

well as ARG(h) using the augmented-randomized-trace function defined in (1.13).

To simplify the presentation, we assume σ is known in (1.12)-(1.13). However many estimates with

good asymptotic property exist for estimating σ and the following result should remain true when replacing

σ by one of them, for example the estimate of Rice (1984).

As discussed in Section 1.3, we use here the natural automatic choice g = ĥGCV for the pilot bandwidth.

Note that the condition on g in Theorem 4.1 below is then satisfied.

Assuming also the standard conditions of Theorem 2.2, it can be shown that the minimizer of ARCL(h)

and those of any one criterion of the family ARG(h) are all equivalent up to second order. So, let ĥAR

denote a generic one of these selectors.

We claim that the simulation of ĥAR given y, provides useful inferences on the underlying distribution

of ĥ− ĥ0 (by comparing Theorem 4.1 to Theorem 2.1). It is important to note that we do not require any

additional smoothness condition on the underlying m(·). Note that our approach is quite different from

the natural bootstrap approach where generated pseudo-data y∗ = m̂g + εεεεεεεεεε∗ would produce “bootstrap

replications” of both ĥ and ĥ0, as considered by Nychka (1991).

Theorem 4.1. Under the assumptions of Theorem 2.2, and assuming that the pilot bandwidth g (random

or not) used in ARCL or in ARG satisfies, for some ǫ > 0, |g − h0|/h0 = Op(n
−ǫ), then

L
(
C3n

3/10(ĥAR − ĥ)
∣∣y

)
→ N (0, V2 + B2 +

1

2
V1) in probability,

where the constant C3, B, V1 and V2 are the same ones as in Theorem 2.1.

Proof: The first step is to show that there still exists a approximate linearized form for expressing ĥAR.

We only sketch its derivation because it uses similar lines of proof as for ĥ in HHM or ĥR in Girard (1998).

For example, letting Bh denote the smoothing operator associated with the kernel L, what is required in

supplement of (A.8) of HHM is now

sup
h,g

|h−h0|+|g−h0|≤n−1/5−ǫ

| 1

nh
〈(Ah − Bh)Agy, εεεεεεεεεε∗〉U − 1

nh0
〈(Ah0

− Bh0
)Ah0

y, εεεεεεεεεε∗〉U | = oP (n−7/10)

which can be shown by similar bounds and partitioning argument to those used in HHM. This per-

mits us to replace both ĥAR and g by h0 in the right hand term of the approximation ĥAR − h0 ≈
−

(
ARCL′ − M ′

)
(ĥAR)/M ′′(h0) obtained by standard first order Taylor expansion and then, subtracting

the known analog Taylor approximation of ĥ − h0, to derive (with e1 and e2 defined as in (1.8))

−M ′′(h0)
(
ĥAR − ĥ

)
= −e′1(εεεεεεεεεε

∗, h0) − e′2(Ah0
y, εεεεεεεεεε∗, h0) + oP (n−7/10).

The second step is to establish the limiting normal distribution of e′2(Ah0
y, εεεεεεεεεε∗, h0) conditioned to y. First,

we can imitate the proof for L
(
e′2(m, εεεεεεεεεε, h)/var1/2e′2(m, εεεεεεεεεε, h)

)
→ N (0, 1) which uses the Lindeberg condition
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(e.g. Eubank and Wang 1994). For this, it suffices to observe that e′2(Ah0
y, εεεεεεεεεε∗, h0) = 2n−1h0

−1〈(Bh0
−

Ah0
)Ah0

y, εεεεεεεεεε∗〉U where the vector (Bh0
− Ah0

))Ah0
y has ith element

h0
2

(
1

2

∫
x2(K − L)

)
(m̂h0

f)
′′

(xi)f
−1(xi) + oP (h0

2),

uniformly in i, and quadratic mean

n−1||(Bh0
− Ah0

))Ah0
y||2U2 = h4

0

(
1

2

∫
x2(K − L)

)2

Ju2(m̂h0
)

∫
u2(1 + oP (1)).

Second, the additional term 1
2V1 results from n−1||(Bh0

− Ah0
)Ah0

y||2U2 ∼ n−1||(Bh0
− Ah0

)Ah0
m||2U2 +

σ2n−1h0
−1

∫
(K ∗K −K ∗ L)2

∫
u2, in probability, where the two terms are of the same order and can be

checked to be proportional to B2 and 1
2V1 (for this, note

∫
x2(L − K) = 2

∫
x2K).

Let us now define ŜDAUG−RAND by

ŜDAUG−RAND := var
1

2

(
ĥAR

∣∣y
)

, (4.1)

then

Corollary 4.2. Under the assumptions of Theorem 4.1, ŜDAUG−RAND, defined in (4.1), is a consistent

estimate of κ var1/2(ĥ − ĥ0), in the sense that ĥAR

∣∣y has the same asymptotic variance than κ(ĥ − ĥ0),

where

κ2 =
B2 + V2 + 1

2V1

B2 + V2
= 1 +

1

2

V1

V2
κ2 ≥ 1.

It is important to point out that the overestimation factor κ is also typically reasonably close to 1. For

example, for any positive K, it can be shown that V1 ≤ V2 (e.g. HHM) and thus κ ≤
√

3/2 = 1.2247. If K

is the Gaussian kernel, we obtain the numerical value V1/V2 =
√

2/8 and thus κ ≤
√

1 +
√

2/16 = 1.0432.

Such an appealing closeness to 1 will be also obtained for the cubic smoothing spline setting, Section 6.

5. Estimating var(ĥ − ĥ0) without asymptotic bias

In the general case where u2 6∝ u, neither κ nor κ are known, but they are known functions of

the functionals Ju(m) and Ju2(m). So, one might be tempted to work with standard estimates of these

functionals. In fact, we do not need such estimates to derive a consistent estimate of var(ĥ− ĥ0). Indeed,

Theorem 5.1. Under the assumptions of Theorem 2.1, and for κ and κ given in Corollaries 2.3 and 4.2,

let us assume that
(
n3/10S̃DRAND/κ

)2

and
(
n3/10S̃DAUG−RAND/κ

)2

both converge in probability toward

the asymptotic variance of n3/10(ĥ − ĥ0); then

(
n3/10S̃DAUG−RAND

)2

− 1

2

∫
(K ∗ K − K ∗ L)2∫

L2

(
n3/10S̃DRAND

)2

(5.1)
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converges in probability toward the asymptotic variance of n3/10(ĥ − ĥ0).

Proof: It can be derived from Corollary 4.2 that κ2/κ2 = 1/κ2 + (1/2)(V1/V2), where V1

V2
is a constant

depending only on K. On the other hand, S̃DAUG−RAND/S̃DRAND is a consistent estimate of κ
κ . Thus a

consistent estimate of κ (or of Ju2(m)/Ju(m)) is deduced of this ratio. Plugging it in
(
n3/10S̃DRAND/κ

)2

,

it is checked this is equivalent to use the stated linear combination of S̃D
2

AUG−RAND and S̃D
2

RAND.

Note that the convergence in probability of n3/10ŜDRAND or n3/10ŜDAUG−RAND is not claimed in

Corollaries 2.3 or 4.2; indeed it is well known that convergence in distribution of a random sequence

does not imply convergence in moment. A classical technical condition sufficient for this, is a uniform

integrability condition that we were not able to obtain here. Nevertheless Theorem 5.1 is already useful

for percentile-based variance estimates (such as those in (7.3) below) in place of empirical moments: such

estimates are classical in case of asymptotic normality and are even often proposed as robust standard

deviation estimates (e.g. Efron (1982)); their consistency holds true in our setting (see Section 7.2).

6. Extension to other nonparametric regression settings

From the heuristics of Section 1.3 (mathematical rigor as for the theorems above, is clearly possible

in some other settings as outlined in Remark 8.2) these accuracy estimators have a large potential but the

estimator given Theorem 5.1 is, at first glance, not as easily applicable as ŜDRAND or ŜDAUG−RAND since

the appropriate general factor −(1/2)(v1/v2) in this linear combination (where v1 and v2 are defined in

(1.5)) is specific to the setting. However, note that for all the settings where v1/v2 is independent of h0, a

general version of this estimate could be constructed simply be replacing this constant by an approximation

that can be obtained, for a given family Ah of smoothing operators, by a natural simulation based approach

as follows: choose one (or several) realistic “true” function m’s and a corresponding σ, simulate several

data-sets for each m, and adjust the above linear combination so as to optimize its observed average

performance (in a least-squares sense for example) on these simulated problems. This should work in the

general smoothing spline setting where Ah = (I + hΩ)−1 with Ω a given symmetric ≥ 0 matrix, at least

for u ≡ 1. Indeed it can be checked, by using that A′
h = −h(I −Ah)Ah in the formulae given Section 1.3,

that the appropriate constant in this linear combination becomes

−(1/2)(v1/v2) = −(1/2)trA4
h(I − Ah)2/trA2

h(I − Ah)2 (6.1)

where, strictly speaking, h should be set to the unknown h0; but it is known in the spline literature that

such a ratio of traces is typically asymptotic to a constant independent of h (e.g. Nychka (1990) for a

proof of this for the one-dimensional polynomial smoothing spline). In fact, v1/v2 can be simply evaluated

form the expression (6.1) where the replacement of h0 by ĥGCV should not degrade the approximation.

Moreover numerical values close to a few percents can often be expected for this ratio, in case of which

the correction of ŜDAUG−RAND is not really mandatory. Indeed for example in the cubic spline setting one

obtains (e.g. Kou 2003) (1/2)trA4
h(I−Ah)2/trA2

h(I−Ah)2 ∼ (1/2) [Γ(15/4)/Γ(6)] / [Γ(7/4)/Γ(4)] = 0.118.
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7. Various uses of these accuracy estimates

7.1. The empirical distribution of the randomized GCV choices, and the one for the augmented-randomized

version, both obtained by simulation, can be used in several different ways. The first one is classical and was

already developed in Nichka (1991) : even if, strictly speaking, such a simulation furnishes a consistent, say

95%, confidence interval for the difference ĥ− ĥ0, it is natural to very simply transform it (by translating

it by ĥ) in a prediction (called “confidence” in Nichka (1991)) interval for ĥ0 which can be interpreted as

follows. For the data in hand, the ∆-optimal ĥ0 can be claimed to belong to the produced interval with

a confidence level of 95%, that is, the claim being incorrect for only 5% (assuming that the large sample

approximation is correct) of the possible replicated data sets from the stochastic structure of the problem

at hand. If a data analyst draws the curve estimates for every bandwidth in this interval and observes

“little” changes at each design point of the essential support of the weight function u, then he/she may

be assured, with a confidence level of 95%, that he/she has found the ∆-optimal fit (up to the mentioned

“little changes” in it). The epithet “little” for a change in the curve at a design point may be made more

precise by adding the phrase “relatively to the width of a confidence band for the curve around this point”

(we come back to the topic of confidence bands in Section 7.3) since perturbing the center of a such band

by “little” changes will then have “little” consequence on its coverage probability.

As advocated by Nychka (1991), a good practice is to report the 2 curve- or surface-estimates which

correspond to the lower and upper points of the produced interval. When, contrarily to the first situation,

the two fits associated with the endpoints of such a (1 − α)100% confidence interval have rather different

aspects as α passes from, say, 30% to 5%, the choice of α has a large influence on the report for the data

analyst. Note that, concerning two different bandwidths which are in a such 95% confidence interval for

ĥ0, one can say that there is no objective reasons to think that one of the two corresponding fits should

be better (for the ∆ criterion) than the other. In the following we state a further interpretation of the two

fits reported, which may give a guide for the choice of α in terms of expected loss.

7.2. Consider, again to simplify the presentation, the setting of Sections 2-5. Let τ a given constant and let

Ĉ any statistic (i.e. a function of y) assumed to be a consistent estimate of τ(B2 +V2)
1/2/C3; and consider

ĥGCV(τ) = ĥGCV+n−3/10Ĉ a perturbed version of ĥGCV. Then it can be shown that C3n
3/10(ĥGCV(τ)−ĥ0)

is asymptotically distributed as (B2 + V2)
1/2N (τ, 1) and that the known asymptotic laws for the “excess

loss” (i.e. the difference between the (data-driven) resulting ∆ and the best possible ∆)

L
(
n

[
∆(ĥ) − ∆(ĥ0)

])
→ 1

2C3
(B2 + V2)χ

2
1 (7.1)

which are stated in HHM and Girard (1998), can be easily generalized for ĥGCV(τ) in place of ĥ : the

standard χ2
1 must simply be replaced by decentred chi-square [N (τ, 1)]

2
(the proofs are very similar to the

ones in HHM, Girard (1998)) and are not repeated here).
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On the other hand, for α, β ∈ (0, 0.5) let us denote by ĥR(β) and ĥR(α) the (β)100th and (1−α)100th

percentiles of the randomization-based distribution, i.e. defined by

P (ĥR ≤ ĥR(β)
∣∣y) = β, P (ĥR ≤ ĥR(α)

∣∣y) = 1 − α (7.2)

Besides providing a standard simulation-based (1− (α+β))100% confidence interval, these percentiles also

furnish variance estimates whose consistency can be proven by classical techniques, namely

n3/10 ĥR(α) − ĥR(β)

z1−α − zβ
, n3/10 ĥR(α) − ĥ

z1−α
or n3/10 ĥ − ĥR(β)

−zβ
(7.3)

where zβ and z1−α are the (β)100th and (1−α)100th percentiles of the N (0, 1), both converge in probability

toward κ(B2+V2)
1/2/C3. By combining the above statement, using z1−α times the second of this standard

deviation estimates in place of Ĉ in the above perturbation, which implies the coincidence ĥ + n−3/10Ĉ =

ĥR(α), we obtain

Theorem 7.1. Let α ∈ (0, 0.5). Under the assumptions of Theorem 2.2,

L
(
n

[
∆

(
ĥR(α)

)
− ∆(ĥ0)

])
→ 1

2C3
(B2 + V2)

(
N (z1−ακ, 1)

)2

where the constants C3, B, V2 and κ are the same ones as in Theorem 2.1 and Corollary 2.3.

By combining this with the expression (7.1) for the asymptotic law of ∆(ĥ) − ∆(ĥ0), one obtain a

very simple bound about what is sacrificed, comparatively to the CV choice, in the fit corresponding to

the upper point ĥR(α), in terms of relative increase of the excess loss, in average, also called relative “risk

regret” :

E
[
∆

(
ĥR(α)

)
− ∆(ĥ0)

]

E
[
∆(ĥ) − ∆(ĥ0)

] = 1 + (z1−ακ)2 ≤ 1 + z2
1−α (7.4)

where E denotes here the asymptotic variance.

For example, a data analyst concerned by data reduction will look after a kind of “parsimonious yet

near optimal” fit of his data : Theorem 7.1 implies that the fit corresponding to the upper point ĥR(0.16)

has a theoretical justification “almost” as good as the CV fit, namely the relative risk regret is bounded

by 1 + z2
0.84 = 2. As another example, by choosing ĥR(0.32), the bound becomes 1 + z2

0.68 = 1.21.

Recall that modifying the CV choice toward more smoothing is commonly made in practice (e.g. Gu

(2002) Section 6.3.2): the standard modification consists of multipying the trace term in CL(h) (or t(h) in

the GCV-like criteria) by a factor larger than 1 (e.g. 1.4). This is had hoc but often works well. It would

certainly be interesting to compare these two ways of producing “more parsimonious yet near optimal”

fits.

It is obvious that an analog of Theorem 7.1 exists for a lower point : the ∆ performance of the fit

obtained with ĥR(β) in place of ĥR(α) has the same expression with N (z1−ακ, 1) replaced by N (−zβκ, 1).
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Using such a fit might be useful for a data analyst concerned by discovering features (like peaks) in a data

set.

Analogs of these results can also easily be stated for an upper point and a lower point (denoted

respectively by ĥAR(α) and ĥAR(β)) of the empirical conditional distribution of repeated bandwidth choices

by the augmented-randomized-trace version. The only change is that κ is then replaced by κ.

7.3. One can in fact estimate the absolute value of the risk excess itself, simply from the randomization-

based distribution. For this task one might estimate the curvature of ∆(·) near ĥ0, estimate E
(
ĥ − ĥ0

)2

and invoke the usual second order Taylor approximation ∆(ĥ) − ∆(ĥ0) ≈ (1/2)
(
ĥ − ĥ0

)2

∆′′(h0). But

it can be shown, as a consequence of the previous results, that the variations of, say, GCV(·) over the

population of the randomized choices, thus conditional to the observed y, furnishes (at least) as much

information :

Theorem 7.2. Let G be any one of the G-selectors defined in (1.6)-(1.7) and ĥ (resp. ĥR and ĥAR) the

minimizer of G (resp. of its randomized-trace version and its augmented-randomized-trace version). Under

the assumptions of Theorem 4.1,

L
(
n

[
G(ĥR) − G(ĥ)

] ∣∣∣y
)
→ κ2 1

2C3
(B2 + V2)χ

2
1

L
(
n

[
G(ĥAR) − G(ĥ)

] ∣∣∣y
)
→ κ2 1

2C3
(B2 + V2)χ

2
1

in probability, where the constants C3, B, V2 , κ and κ are the same ones as in Theorem 2.1 and Corollaries

2.3 and 4.2.

Proof: Similar steps as in the proof of Theorems 2.2 and 4.1, along with the stochastic approximations

for ∆(h) − ∆(ĥ0) developed in HHM and Girard (1998) for h = ĥ, ĥR, give the results.

Either by sample moment estimates or by appropriate percentiles-based estimates, one can then

produce a “sandwich” of estimates of lower and upper bounds reasonably (from the “nearness” of κ and

κ to 1) closed to the risk regret due to the inaccuracy of CV. One example of percentiles-based estimate,

denoted by R̃RRAND for future references, is simply the median of the empirical conditional distribution

of G(ĥR) − G(ĥ) divided by the median (≈ 0.45) of χ2
1. R̃RAUG−RAND can be defined similarly with ĥR

replaced by ĥAR. From Theorem 7.2, these 2 estimates can be easily proven to be consistent up to the

bias factor κ2 and κ2 respectively. By an argument similar as in the proof of Theorem 5.1, it is seen that

R̃RAUG−RAND − 1

2

V1

V2
R̃RRAND (7.5)

is an asymptotically unbiased estimate of the asymptotic risk regret from using ĥ, E
[
∆(ĥ) − ∆(ĥ0)

]
. Note

that when u2 ∝ u, one can check that the ratio (B2 + V2)/C3 is in fact independent of m (e.g. Section

4.4.5 of Hall and Johnstone 1992 for the case f ≡ 1); but this does not hold any longer when u2 6∝ u.
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Let us mention how these simple risk-regret estimators might be used in the production of inferences

about m. Of course for any selector h(y) the risk E∆(h(y)) measures the (local) performance of m̂h(y);

one of the possible uses of an estimate of this risk is the following:

A methodology which is now very popular, in the smoothing spline setting, for accompanying the

point estimate m̂ĥ(x), with an interval estimate, is the so-called 90% Bayesian confidence interval

m̂ĥ(x) ± z0.05σ
√

trUAĥ/trU (7.6)

which is well known, at least for the one-dimensional polynomial spline and u ≡ 1, to have good frequentist

“across the curve” properties for m deterministic provided ĥ is a good estimate of ĥ0 or of h0. Such an

interval indeed takes account the fact that m̂ĥ is biaised. However a possibly very serious weakness is that

the error in ĥ is not taken in account. Indeed the true (1 − γ)100% interval for any h(y) should be

m̂h(y)(x) ± zγ/2

√
E∆(h(y)/trU (7.7)

while the justification of (7.6) stems on a consistency result σ2trUAĥ ≈ E∆(ĥ) which is in fact a consistency

toward E∆(h0) and thus neglect the risk-regret term(s). Before to see how this could be attacked, we

point out that the theoretical justification of (7.7) developed by Nychka (1990) can be easily seen to also

holds for a weight function u 6≡ 1 and more general smoothing spline or kernel estimates: the only required

assumptions are that the associated smoothing operator is symmetric and that the chosen weight function

u is smooth enough so that Ahu ≈ u (where u = (u(x1, · · · , u(xn))T ) over the domain of considered h’s.

The meaning of “across the curve” is now that the coverage probability of the interval (7.7) is not only

relatively to the distribution of εεεεεεεεεε but also for x drawn with the discrete probability which assigns the mass

u(xi)/trU at each xi.

Now by decomposing ∆(h(y) = ∆(ĥ0) +
(
∆(h(y) − ∆(ĥ0)

)
we see that

1. The risk regret from using h(y), i.e. the expectation of the second term, is a minorant of E∆(h(y). Of

course for any one of the selectors h(y) studied theoretically here, the relative size of this minorant,

compared to E∆(h(y), tends to 0 as n → ∞, but we must keep in mind that it may take very large

sample sizes before this risk regret is a small part of E∆(h(y); indeed for the second order kernel setting

of Section 2, this relative size decreases to zero at a rate only of n−1/n−4/5 = n−1/5 (and n−1/(2k+1) for

kernel of order k, see Remark 8.2); in fact this becomes n−1/10 if we come back (by taking square roots)

to the correct scale for the width of the confidence band. Moreover it can be checked that, for any

fixed n, one can obtain a setting for which the constant factor c, in the approximation cn−1/10 of the

relative size of this minorant, is arbitrarily large simply by taking a more concentrated weight function

u. Thus a first use of risk-regret estimates like (7.5) may be as follows, using the fact that, for the

trivial no-smoothing curve estimator (or “h(y) = 0”), the value of the risk, E∆(h(y), is known (and

equal to σ2trU) : indeed as soon as the data analyst observes that the estimated lower bound (7.5) for

E∆(ĥCV) is not a small part of σ2trU , the CV-choice should be considered as likely not better than
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the raw data in terms of ∆-performance. (this may be called a “first diagnostic for a failure of (local)

CV”). A similar assessment can clearly also be constructed for the toward-more-parcimony selectors

ĥR(α) (or ĥAR(α)) proposed section 7.2. For example let us state this for ĥAR(α): a consistent estimate

of the associated risk regret E
(
∆(ĥAR(α) − ∆(ĥ0)

)
∼ (2nC3)

−1[B2 + V2 + z2
1−α(B2 + V2 + (1/2)V1]

is

R̃RAUG−RAND − 1

2

V1

V2
R̃RRAND + z2

1−αR̃RAUG−RAND.

2. By decomposing further ∆(ĥ0) = ∆(h0)−
(
∆(h0) − ∆(ĥ0)

)
and using the previous asymptotic laws,

we see that, for example, again for the choice h(y):=ĥAR(α),

E
(
∆(ĥAR(α))

)
≈ M(h0) −

1

2nC3
(B2 + V1) +

1

2nC3
(B2 + V2)(1 + (z1−ακ)2),

the error in this approximation being o(n−1) if we take for granted that the invoked moments at finite

size n are asymptotic to the moments of the asymptotic laws. The sum of the second and third terms

is easily seen, from the above results, to be consistently (thus up to oP (n−1) ) estimated by

(1 − V1

V2
)R̃RRAND + z2

1−αR̃RAUG−RAND. (7.8)

An as much accurate estimate, say M̂0, of the minimum M(h0) is available, in theory, provided the

well known asymptotic version (nh)−1C1 + (1/4)C2h
4 of M(h) is accurate enough and, as is well

known too, some additional smoothness can be assumed so that
√

n-consistent estimates of C2 and

h0 are available. Unfortunately such accurate M̂0 requires a good choice of pilot bandwidths which is

not easy. This is beyond the scope of this article, and we do not include any experimental study.

3. In some contexts, the M(h) function can be bounded, say by B(h), from a priori bound on the

“roughness” of m (like on Ju(m) as in Speckman (1985)). There, another possible use of the above

correction (7.8) of M(h0) may be to apply it to the minimum of B(h) over the considered h (since

M(h0) ≤ M(argminhB(h)) ≤ minh B(h)) to yield an accurate conservative confidence band centered

at m̂
ĥAR(α)

.

Further work is certainly useful to develop a methodology for constructing confidence bands or regions

ready for practical use.

It is noteworthy that the produced confidence-bands for the toward-more-parcimony selectors ĥR(α)

and ĥAR(α), have a width which increases with z2
1−α : this is very satisfactory and is in contrast with

the standard procedure when one uses the mentioned standard had hoc modification of the criterion to

translate ĥ toward a little bit more smoothing and still retains the above formula (7.6) for the width of a

90% confidence-band (indeed trUAh is generally a decreasing function of h).

8. Simulations, discussion and further remarks

In practice, one may thus propose the following general methodology: First compute ŜDRAND by

repeatedly rerunning the fast randomized version of, for example, GCV. Then, if this estimated lower

19



bound (for the accuracy of ĥGCV) is reasonably “small” (otherwise the use of GCV is very questionable),

one next computes ŜDAUG−RAND by repeating the whole previous procedure with, this time, the augmented

randomized GCV using the cross-validation choice as pilot bandwidth g and one of the usual estimates of

σ: one thus obtains a less optimistic estimate of the variance of ĥGCV − ĥ0 which is thus more reliable for

providing a conservative confidence interval for ĥ0. Note that this second stage has the same cost as the

first one and requires no further analytic or programming effort (if computing exact GCV is costly, g may

be taken as the mean of the randomized choices of the first stage, instead of the exact ĥGCV).

8.1. Simulation study

For our experiments, we used a setting which has already been used in Rice (1984), HHM, and many

others. So, the chosen mean function was

m(x) = x3(1 − x)3,

and we used equispaced designs for simulating data sets. We consider a gaussian noise, i.e. εεεεεεεεεε ∼ N (0, σ2I).

A periodic version of the kernel estimate (1.2) was considered, as this is described e.g. in HHM. This is

appropriate because m is “smoothly” periodic with period 1. We used u ≡ 1 as weight function, which

is possible in this periodic setting. The computational cost of the simulation is then greatly reduced by

using fast Fourier transforms (the randomized criteria are also easily generated in the Fourier space) as in

the studies mentioned above and in Nychka (1991).

The kernel function was taken as the biweight

K(x) = (15/8)(1 − 4x2)21[−.5,.5](x).

In this simulation study, among all the selectors which are asymptotically equivalent to GCV, we only

consider the Mallows’ CL selector for which we assume σ is known (since this criterion is then the only

one which is exactly unbiased).

We report here the results that we obtained for the following two sample sizes: n = 128 and n = 512;

and two noise levels: σ = 0.0015 and σ = 0.011 (the first one corresponds to a peak signal-to-noise equal to

10), these four cases being rather representative of “small” and “large” samples with “small” and “large”

noise levels, respectively.

For each of the so-obtained four cases, 100 samples (i.e. 100 data sets) of size n are simulated. A

reasonably good approximation of the targeted var
1

2 (ĥCL − ĥ0) is first computed by its empirical version

(denoted SD in the following) over these 100 samples. For each of these 100 samples, first, we generated 200

realizations of the randomized selector RCL, each one using a w drawn from N (0, I) to compute ŜDRAND;

next, using the exact CL selector as pilot bandwidth, we generated 200 realizations of the augmented

randomized version (ARCL), also using εεεεεεεεεε∗’s from N (0, σ2I), to compute ŜDAUG−RAND.
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ĥ0 ĥCL ĥCL − ĥ0 ŜDRAND ŜDAUG−RAND ŜDBOOT .5796 ĥ
3/2
CL

n = 128 .209 .200 −.009 .052 .060 .107 .053
(.033) (.038) (SD = .054) (.014) (.014) (.034) (.014)

n = 512 .156 .151 −.005 .035 .040 .050 .034
(.025) (.026) (SD = .040) (.010) (.010) (.013) (.008)

Table 8.1. σ = .0015. Summary (mean and, in brackets, standard deviation) over 100 samples

ĥ0 ĥCL ĥCL − ĥ0 ŜDRAND ŜDAUG−RAND ŜDBOOT .5796 ĥ
3/2
CL

n = 128 .480 .457 −.023 .168 .195 .255 .185
(.093) (.129) (SD = .188) (.044) (.042) (.044) (.072)

n = 512 .346 .326 −.020 .109 .130 .155 .111
(.072) (.090) (SD = .133) (.027) (.028) (.032) (.042)

Table 8.2. σ = .011. Summary (mean and, in brackets, standard deviation) over 100 samples

First, it should be observed that, as suggested from the theory, it is reasonable here to neglect the

“bias” in quantifying the accuracy of the CL selector: more precisely, one see in the third column of these

tables, that the mean of ĥCL − ĥ0 is rather “negligible”, in absolute value, as compared to SD.

Second, one observes in Tables 8.1 and 8.2 that the “sandwich” (ŜDRAND, ŜDAUG−RAND), is quite

satisfactory: the expected value of this interval approximately includes SD and it has reasonably small

width in view of the variability of each of these two “bounds”. The “noise” in these randomization estimates

is of course not negligible : in each of the four cases, their standard deviation is roughly one fourth of SD.

But in view of the rather large range of the different values for the scale SD, even with such a noise, these

randomization-based estimates prove to be useful in these experiments.

In this simulation study, we also considered the bootstrap approach mentioned in the Introduction,

using, essentially as in Nychka (1991), the exact CL choice for each data set as a simple pilot bandwidth

for generating 200 pseudo-data sets (each one drawn from N (m̂ĥCL
, σ2I)). A striking fact, summarized in

Tables 8.1 and 8.2, is that ŜDBOOT tends to over-estimate SD, even more than ŜDAUG−RAND, especially

for small samples. The noise in all these accuracy estimates is rather similar, except in the “small sample,

small noise” case where ŜDBOOT is much more variable than ŜDRAND or ŜDAUG−RAND.

As another benchmark, we also consider the “plug-in” variance estimate proposal of HHM, mentioned

in the Introduction, which is based on the asymptotic analysis of this specific setting: from Theorem 2.1

and the expressions of C0 and C3 (given in Girard (1998) for the case f 6≡ 1), the following expression for

the targeted asymptotic variance is easily derived:

var
(
ĥCL − ĥ0

)
∼ h3

0

∫
u2

∫
K2

(∫
u
)2

4

25

(
Ju2(m)

Ju(m)
+ 2

∫
L2

∫
K2

)
.

So, in the case u2 ∝ u, a natural and very simple approach is to plug-in ĥCL in place of h0 in this expression,

and to compute the required constant : this yields the estimate (.5796)2ĥ3
CL for our choice of K which is

displayed in the last column of Tables 8.1 and 8.2. It is remarkable that this plug-in estimate, although it

uses a detailed analysis of this specific setting, has a noise which is either only comparable to or worse than

that of the randomization-based estimates. Note that, in the general case u2 6∝ u, this plug-in proposal

requires estimates of the ratio Ju2(m)/Ju(m) and an additional noise can then be apprehended.
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Notice that in these experiments, we observed relatively small differences between ŜDRAND and

ŜDAUG−RAND, and so computing ŜDAUG−RAND actually was not very useful. For the same reason, we

have also not implemented here the more sophisticated estimate of Section 5. However, since this second

stage has the same cost as the first one, it may well be worth implementing it in other applications.

8.2. Further remarks

Remark 8.1. Extensions (and limitations) of the proposed randomization-based methodology. Various

variants and extensions are possible. For example

1. In this article, we focus on the estimation of var1/2(ĥ − ĥ0). Other measures for the “accuracy” of

ĥ could have been chosen, or a logarithmic scale (or other monotone transformations, like the one

giving the popular equivalent degree of freedom, e.g. Hastie and Tibshirani (1990)) could have been

taken as well. Of course, a standard deviation is a good summary only for an error distribution which

is roughly normal. Note that this is rather typically the case for kernel bandwidths, as shown by the

simulations in HHM, Section 4, and e.g. in Hall and Johnstone (1992, Section 5 and Remark 7.2).

2. When considering the generality of the GCV-type criteria and their randomized versions, and the

underlying heuristics (Section 1.3), one may guess that this methodology can be applied to many other

curve-, surface- or image-estimation techniques. However, one must keep in mind that the approximate

stochastic representations of ĥ−ĥ0 and ĥR−ĥ of Section 1.3 are based on local quadratic approximation

of the considered criteria at their minima, and thus, at least second order differentiability of Ah as a

function of h seems to be required as in e.g. Kneip (1995, Section 5.2). Note also that the theory here

does not deal with the behavior near zero of the distribution of the GCV selector (since this selector

has been appropriately restricted to the interval Hn); for a discussion of this disturbing behavior for

small samples, see Wahba and Wang (1995). One may also guess that the augmented randomization

technique should generally provide a certain correction of the downward bias of ŜDRAND; but in

situations where such a correction would be mandatory (theory says this might be the case for kernels

of very high order, see Remark 8.2 below), the upper-bound property of ŜDAUG−RAND stems on the

consistency properties of the GCV-selector. Note that, if the practitioner desires that ŜDAUG−RAND

be reliably conservative, then a pilot parameter which would undersmooth, compared to the optimal

ĥ0, seems more appropriate than one which oversmoothes.

3. Nonparametric curve or surface estimators using a multidimensional smoothing parameter could be

considered as well. One of the popular multidimensional examples is additive modeling with back-

fitting. There, the randomization-based methodology could naturally produce accuracy estimates,

simultaneously for each component of the vector ĥ of GCV bandwidth estimates; an estimated co-

variance matrix (or even a confidence region for the vector ĥ0 of the optimal bandwidths) might be

constructed. This proposal would, of course, need to be investigated carefully.

Remark 8.2. Extensions of the theory. The theoretical results above can be extended to several contexts.
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We point out that typically the underestimation factor κ still remains reasonably close to 1.

1. Consider for example the setting of Section 2, with only K replaced by a higher order kernel, that is
∫

K = 1,

∫
xK = · · · =

∫
xk−1K = 0,

∫
xkK > 0,

and assume that m and f have uniformly continuous kth derivatives. Then all the theoretical results

of Sections 2, 4, 5 and 6, still hold with appropriate changes in the exponents of convergence (n3/10

becomes n3/2(2k+1)) and with modifications in the constants classically calculated. A very simple

modification can be easily proved for the expression of κ in Corollary 2.3, which becomes:

κ =

(
k

4

Ju2(m)

Ju(m)

∫
K2

∫
L2

+ 1

)−1/2

,

where again L(x) = −xK ′(x) but Ju(m):=[
∫ (

(mf)(k)
)2

f−1u]/
∫

u, for which Lemmas 3.1 and 3.2

are also valid, and thus Theorem 3.3 still holds with
√

3 replaced by
√

1 + k, and the factor 2 simply

replaced by k in the expression

√
1 + 2

∫
u∫
u2

max u. This implies thus reasonable lower bounds for κ

when the order k remains small.

2. A justification for this methodology is also possible in the context of smoothing spline estimate.

For one-dimensional cubic smoothing spline, a convincing development in Nychka (1991, Section 3)

indicates that the asymptotic formulae agree with those of a fourth-order kernel regression estimate.

In the case of equidistant design, by exploiting that the smoothing spline framework is very well

approximated by a known Gaussian white noise framework using Butterworth filter (whose range

is parametered by h) in the frequency domain, to which correspond a particular kernel for which

compactness condition (a) in Section 3 can be dropped, a rigorous development can be made as in

Hall and Johnstone (1992, section 6.2).

3. Extensions to multidimensional settings could also be stated. See HHM and Girard (1998, Remark

3.2) for a two dimensional example using Gasser-Muller kernel estimate for which the result of this

paper can be extended with classical modifications in the rate (the power 3/10 replaced everywhere

by (d + 2)/(8 + 2d) with d = 2) and in the expressions for the constants; see Girard (1998, Remark

3.2) for the definition of the analog of Ju(m).

Remark 8.3. It would be interesting to study the rate of convergence for these accuracy estimates: this

deserves further study.

Remark 8.4. Computational cost. Since the theoretical results in this paper only describe the behavior

of e.g. ŜDRAND which uses an infinite number of randomized choices, it is natural to wonder how many

repeated minimizations one has to simulate. A complete theoretical analysis of this question would first

require an answer to Remark 7.3. In our above experiments where n = 128 or n = 512, sufficiently

stabilized estimates were already obtained by simulating 50 randomized choices : Simulating further 150

randomized choices, as was done here, did not actually produce great improvement.
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HÄRDLE,W. and MARRON, J.S. (1985). Optimal bandwidth selection in nonparametric regression func-
tion estimation. Ann. Stat. 13, 1465-1481.

HART, J.D. (1992). Comment on “Empirical functionals and efficient smoothing parameter selection” by
HALL, P. and JOHNSTONE, I. . J. R. Statist. Soc. B. 54 No. 2. 518.

HASTIE, T. and TIBSHIRANI, R. (1990). Generalized additive models. Chapman and Hall, London

HUTCHINSON, M.F. (1990). A stochastic estimator of the trace of the influence matrix for Laplacian
smoothing splines. Commun. Statist. -Simula. 19 433-450.

KNEIP, A. (1994). Ordered linear smoothers. Ann. Statist. 22 835-866.

KOHN, R., ANSLEY, C.F. and THARM, D. (1991). The performance of cross-validation and maximum
likelihood estimators of spline smoothing parameters. J.A.S.A. 86 1042-1060.

KOU S.C. (2003). On the efficiency of selection criteria in spline regression. Probab. Theory Relat. Fields
127, 153-176.

LOADER, C. (1999). Bandwidth selection : Classical or plug-in ? Ann. Statist. 27 415-438.

LI, K.-C. (1985). From Stein’s unbiased risk estimates to the method of generalized cross-validation. Ann.
Statist. 13 1352-1377.

LI, K.-C. (1986). Asymptotic optimality of CL and generalized cross-validation in ridge regression with
application to spline smoothing. Ann. Statist. 14 1101-1112.

24



MALLOWS, C.L. (1973). Some comments on CP . Technometrics 15 661-675.

NYCHKA, D.(1990). The average posterior variance of a smoothing spline and a consistent estimate of
the average squared error. Ann. Statist. 18 415-428.

NYCHKA, D.(1991). Choosing a range for the amount of smoothing in nonparametric regression. J.A.S.A.
86 653-664.

PRIESTLEY, M.B. and CHAO, M.T. (1972). Non-parametric function fitting. J. R. Statist. Soc. B. 34
385-392.

RICE, J. (1984). Bandwidth choice for nonparametric regression. Ann. Statist. 12 1215-1230.

SPECKMAN, P. (1985). Spline smoothing and optimal rates of convergence in nonparametric regression
models. Ann. Statist. 13 970-983.

SCHUCANY, W.R. (1995). Adaptive bandwidth choice for kernel regression. J.A.S.A. 90 535-540.

THOMPSON, A.M., BROWN, J.C., KAY, J.W. and TITTERINGTON, D.M. (1991). A study of methods
of choosing the smoothing parameter in image restoration by regularization. IEEE Trans. Pattern Anal.
Machine Intell. 13 326-339.

THOMPSON, A.M., KAY, J.W. and TITTERINGTON, D.M. (1989). A cautionary note about crossval-
idatory choice. J. Statis. Comput. Simul. 33 199-216.

VIEU, P. (1991). Nonparametric regression: local optimal bandwidth choice. J. R. Statist. Soc. B. 53
453-464.

WAHBA, G. (1985). A comparison of GCV and GML for choosing the smoothing parameter in the gen-
eralized spline smoothing problem. Ann. Statist. 13 1378-1402.

WAHBA, G., AND WANG, Y. (1995). Behavior near zero of the distribution of GCV smoothing parameter
estimates. Statist. and Probability Letters 25 105-111.

Résumé

En régression non-paramétrique, il est généralement crucial d’utiliser des paramètres de lissage “à peu
près optimaux”. Il a été observé par de nombreux statisticiens que le choix validation croisée (CV), comme
le choix GCV, se révèle dans certaines applications ne pas être “très précis” en tant qu’estimateur du
choix optimal. Aussi le développement d’estimateurs fiables pour cette précision, serait très utile pour la
pratique. Dans cette article nous montrons que la simulation du choix ‘GCV randomisée’, et d’une variante
naturelle, peut fournir d’utiles inférences sur la précision du choix CV (ou GCV), comme un intervalle
de confiance consistant pour le paramètre optimal ou un estimateur consistant de l’excès d’erreur (dans
l’espace des courbes) due à l’imprécision du choix CV. Des preuves rigoureuses, ainsi qu’une vérification
expérimentale, sont données pour les estimateurs de courbes du type noyau. Un ensemble d’heuristiques
montre que la méthodologie générale donnée ici, pourrait être utile pour de nombreux autres techniques
d’estimation d’une courbe -ou surface ou image- moyenne sous-jacente à des observations bruitées.
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