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Abstract. In this paper, we study the application of the box counting
method (BCM) to estimate the fractal dimension of 3D plant foliage. We
use artificial crowns with known theoretical fractal dimension to char-
acterize the accuracy of the BCM and we extend the approach to 3D
digitized plants. In particular, errors are experimentally characterized
for the estimated values of the fractal dimension. Results show that,
with careful protocols, the estimated values are quite accurate. Several
limits of the BCM are also analyzed in this context. This analysis is used
to introduce a new estimator, derived from the BCM estimator, whose
behavior is characterized.

1 Introduction

Plant geometry is a key factor for modeling eco-physiological interaction of plant
and the environment. These interactions may concern either the abiotic (resource
capture, heat dissipation) or the biotic (disease propagation, insect movement)
environment. Depending on applications, plant geometry has been abstracted
in various ways [1] : simple volumic shapes (like ellipsoids, cones, or big leaves
used in turbid medium approaches) or detailed models to render realistic trees.
Global descriptions are simple and contain few parameters; however, they do not
capture the irregular nature of plant shapes which severely limits the generaliza-
tion capacity of the model. On the other hand, detailed descriptions tentatively
address this problem but require over-parameterization of geometry, leading to
non-parsimonious models. Characterizing the irregularity of plant shapes with a
few parameters is thus a challenging problem.

Fractal geometry was introduced as a new conceptual framework to analyze
and model the irregular nature of irregular shapes [2]. This framework has been
applied in different occasions to the modeling of plant structure. Generative ap-
proaches use fractal concepts to illustrate how intricate vegetal-like structures
can be generated using parsimonious models [3-5]. Such models were used to
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generate artificial plants in modeling applications [6,7]. Fractal geometry was
also used to analyze the irregularity of plants by determining their supposed
fractal dimension. This parameter is of major importance in the study of irreg-
ularity: it characterizes the way plants physically occupy space. Most of these
studies were carried out using the classical box counting method (BCM) [2] on
woody structures, and especially on root systems [8-10]. This method consists
of immersing the studied object in a grid with uniform cell size and studying the
variation of the number of grid cells intercepted by the plant as the size of the
cells decreases.

For practical reasons, in most works, fractal dimension is estimated from 2D
photographs [11,12]. Unfortunately, such a technique always under-estimates
the actual fractal dimension [13], and so is not accurate. Recently BCM was
used on 3D digitized root systems [10]; however, the accuracy of the estimated
values could not be evaluated. In this paper, we study the application of the
BCM to both artificial and real 3D plant foliage. We use artificial crowns with
known theoretical fractal dimensions to characterize the accuracy of BCM and
we extend the approach to 3D digitized plants. The limits of BCM is then ana-
lyzed and discussed in this context.

2 Plant Databases

Nine 3D plants were included in the study. Four real trees were digitized in
the field and five additional plants were generated from theoretical models. The
geometric scenes representing the plant crowns were designed using the PlantGL
library [14].

Digitized Plants Four four-year old Prunus Persica (peach) trees were digi-
tized [15], but due to the high number of leaves (~14,000), digitizing at leaf scale
was impossible. A magnetic digitizing device was therefore used to record the
spatial co-ordinates of the bottom and top of each leafy shoot. In addition, thirty
shoots were digitized at leaf scale in order to derive the leaf angle distribution,
and allometric relationships between number of leaves, shoot leaf area and shoot
length. Leaves of each shoot were then generated from those data and additional
assumptions for the internode length and the distribution of leaf size within a
shoot.

Theoretical Plants Three fractal plants were generated from 3D iterated func-

tion systems (IFS) [4]. The generation process is illustrated in Fig. 2, and the

finals artificial canopies are represented in Fig. 3. If the IFS satisfies the open

set condition [16], the theoretical fractal dimension of the IFS attractor is the
autosimilarity dimension,

__logn

o= .

log ¢

(1)
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Fig. 1. Four four-year old peach trees (cv. August Red) were digitized in May 2001 in
CTIFL Center, Nimes, South of France, at current-year shoot scale, one month after
bud break.

IS
b

Fig. 2. Construction of an artificial crown. The initial object was a tapered ellipsoid
and the IFS transformation was made of n = 5 duplications of a contracted object by
a factor ¢ = 3.

A classical 3D cantor dust [2] was also generated using an IFS (n = 8,¢ = 3).
Each IF'S was developed over 5 iterations. In addition to these self-similar plants
a stochastic 3D cantor dust was generated using a recursive algorithm derived
from the method known as curdling and random trema generation [2,17]. Each
iteration of the algorithm divides a given voxel into a set of subvoxels according
to a specified subdivision factor. A fixed proportion of voxels eligible for the
next iteration is chosen randomly from the subvoxels. At the end of the process,
final voxels are considered to be leaves. The stochastic cantor dust is created by
specifying a subdivision factor of 3 and % as the proportion of chosen voxels
for all 5 iteration levels. This object has the same theoretical dimension as the
classical cantor dust.

3 Estimation of the Fractal Dimension using the BCM

3.1 The Box Counting Method

The BCM has been extensively used to estimate fractal dimension of objects
embedded in the plane. Its adaptation to 3D consists of building a sequence of
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Fig. 3. From left to right, the three artificial canopies : AC1 (n = 5,¢ = 3), AC2
(n="7,¢=3), AC3 (n =9,c = 3), on the top, the cantor dust and on the bottom a
stochastic cantor dust.

3D grids dividing space in homogeneous voxels of decreasing size § and counting
the number Ny of grid voxels intercepted by the studied object. The estimator
of the fractal dimension of the object is defined as

(2)

To implement this estimator, we approximated all the geometric objects by tri-
angular meshes. The intersection of each triangle with the grid voxels can then
be computed in time proportional to the number of triangles in the mesh [18].
However, to decrease the overall complexity, we represent each triangle by a set
of points [19]. The number of points used is chosen such as the distance between
two points is small compared to the minimal voxel size. The intersection algo-
rithm is thus reduced to checking whether a voxel contains at least one point.
The grid sequence is obtained by dividing the original bounding-box size, dg, by
a range of consecutive integers acting as subdivision factors. Thus the series of
0, is a decreasing series formed by {%}0§i<n where S; is the i** subdivision
factor. Each sub-grid fits perfectly in the original bounding-box. It is important
to note that several factors may influence the accuracy of this method, e.g. the
choice of a proper range of scales and the orientation and alignement of the grid
[20,21]. In practice Dy is estimated as the slope of the regression line between
log Ns and log %.

3.2 Box Counting Method: Local Scale Variation Estimator

As pointed out in [22], a major problem of the BCM estimator is that the
numbers of intercepted voxels at each scale are correlated positively, and the
correlation structure is completely ignored in the estimation procedure. This
violates the assumption of data independency used in regression analysis. The
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consequence is an underestimation of confidence interval associated with the
estimated fractal dimension. To eliminate the correlation, we introduce a new
estimator, namely local scale variation estimator (LSV), based on the relative
increase of intercepted voxels against the relative decrease in scale. This estima-
tor can be derived from the BCM estimator as follows. Assuming the power law
is verified for each scale §

Nj (%)Db, 3)

the differential form of this equation leads to

1
dlog N5 o< d(Dy 10g(g))>

dNs dé

— x —Dyp— 4

o x-Dy (4)
which gives a variational interpretation of the fractal dimension. D;, thus ex-
presses the linear coefficient that corresponds to the ratio of new details due to
a certain ratio of zoom in the structure. However, in this equation it is assumed
that both dN and d§ ~ 0, which is not usually the case for the scales used in
BCM, except at very small scales. It is possible to generalize this variational
principle to non-infinitely small quantities. Let Ns be the number of intercepted
voxels at scale 0. We define AN; a5 as

ANs a5 = Nsyas — Ns. (5)

The relative increase in the number of boxes is denoted N = ANT‘ZA" Similarly,
we denote § = % the relative increase of zoom when passing from cell size ¢ to
0 + Ad. Thus, assuming Equation 3 is still satisfied, we have

_ (64 A5) D 5D Dy
N 0F ()sth = (143) -1, (6)

which leads to a generalized form of Equation 4, where variations of Ns and ¢
need not be infinitely small,

log(1 + N) oc —Dy log(1 +6). (7)

Dy, can thus be estimated by performing a linear regression between log(1 + N)

and log(1 + ¢).

4 Results

4.1 Number of voxels as a function of scale

In general, we may expect that the number of intercepted voxels is a monotonously
increasing function of scale. However this is not always the case due to a quanti-
zation effect which results from discrepancy between discretization with the 3D
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grid and space occupation of the plant at some scales. Fig. 4 contains plots of
the number of voxels intercepted at the different scales for each object. The local
variation of the curves comes from the fact that the number of intercepted voxels
at one scale depends of the adjustment of the grid. Some shiftings, up to a factor
0 in each direction, and reorientations of the grid may lead to overestimating
the number of voxels at one scale, causing local variation of the curve. Thus,
the discrete quantization of the 3D shape of the object into voxels introduces
some fuzziness in its representation, depending on scale. It can be seen in Fig. 4
that the quantization effect is far more pronounced with the artificial crowns
and Cantor dusts than the digitized peach trees. This difference is attributed to
the less deterministically distributed foliage of the digitized trees.

Artificial Crowns Cantor Dusts Peach trees

Classic Cantor ++Peach tree 1
10| Stochastic Cantor 1 Peach tree 2 Z
104 Peach tree 3 P 4 1
44 Peach tree 4 &
8 o
o

6 o
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Fig. 4. The number of intercepted voxels as a function of the scale.

4.2 Estimating Fractal Dimension from the BCM

Scale Range When the grid voxel size is smaller than the leaf size, the eval-
uation of the dimension is modified by the dimension of the leaves surfaces. To
avoid this effect, a minimum voxel size, dynin, is determined such as dpnin > VAj,
where A; is the mean leaf area. Since every voxel size §; is obtained from the
bounding box size dy as d; = %, the minimum size must be d,nin = <22—. Let

i Smaz
Vpp be the bounding box volume. An uni-dimensional proportionality factor is

defined by
3
Sy = YV (8)
VA
Setting Spqz as the upper bound for the subdivision factors {S; }o<i<n guaranties
that no voxel size will be smaller than a leaf size.

Grid Shifting When the voxel size is close to the leaf size, the local adjustments
of the grid may cause significant variations in the number of intercepted voxels,
as discussed above. Practically, to limit the effect of this local variation due



Box Counting Method For Tree Crowns 7

to grid shifting, a factor % instead of 5,4, as the contraction limit was
considered. This factor can be explained as follows. Let us consider a grid with
voxels equal in size to the mean leaf size. Optimally a leaf will be included into
a single voxel. All the possible shifting configurations of the grid may cause the
leaf also be included in any of the twenty-six neighboring voxels. Considering
voxels of bigger sizes with a factor 3 can be seen as including the twenty-seven
possible small voxels into the same large one and so limits the errors found
in finer grids. Of course, the optimal grid for one leaf will not be the optimal
grid for all leaves; therefore, artifact effects of grid adjustment may persist. We
experimentally observed that this persistence is limited (see Fig. 5).

eoee AC2 =
o slope=1.765
gl | — slope=1.286

slope=0.454

log(Ns)
o

Fig. 5. Evolution of AC2 slope during BCM evaluation. The number of voxels inter-
cepted at various scales for AC2 with the slopes highlighted. In the range [O, S’”’é‘”},
the slope is primarily influenced by the structure of AC2 and the fractal dimension Dy
= 1.765. In the range [S’”%, Smaz] , the slope is also partially influenced by the fractal
dimension of individual leaves and is sensible to local variation due to grid adjustment.
When this range is taken into account for the fractal dimension evaluation, D, drops
from 1.765 to 1.584. Finally for grids with voxel sizes smaller than Si.., the slope is
directly related to individual leaf fractal dimension (0 in our representation since we
use points). With a naive range of evaluation including all points, the fractal dimension
drops to 1.172.

Orientation of the Grid Optimal voxel coverage of the plant depends on
the orientation of the grid relative to the plant. For this, we made a sensitivity
analysis to evaluate how the estimated fractal dimension is affected by changes
in the grid’s orientation. A set of random grid orientations were selected and
fractal dimension was estimated for each orientation. Table 1 gives the mean
and variance of the estimated fractal dimension across orientations for all the
considered plants. We can observe a low variability in the absolute values of the
results: the standard deviations are inferior to one per cent of the mean values.
From this, we conclude that the orientation of the grid has only limited effect
on the BCM evaluation method.
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Error Characterization To characterize the error made during the estima-
tion, a comparison with theoretical fractal dimension can be used. In the case
of plants corresponding to IFS attractors, the theoretical fractal dimension, D,
is known. But there is no such dimension for real plants; however, it has been
shown that, when plant’s topology is known, a faithful estimate of the plant
fractal dimension can be obtained using the two-surface method [23]. This value
will be used as reference value for the peach trees.

A classical Student’s t-test on the computed D, distributions shows that a sig-
nificant bias in the BCM estimation exists. However, results reported in Table 1
(cols 3-6) show that this bias is less than 3.1% of the theoretical value for the
studied canopies.

Table 1. Fractal dimension results for studied canopies and their properties. D, is the
reference (theoretical) value of the fractal dimension. For Dy estimation, Dy gives the
mean estimated value and o the standard deviation over all considered rotations. The
minimum standard error r2 over all rotations is shown. All results are obtained with
S"’% as the upper limit.

BCM D, Relative LSV Dy
Canopy D.| Dy o r2 Bias Dy o r? Ve VA Smas
AC1 1.47|1.4889 0.0056 0.97| 0.0128 |1.8761 0.0457 0.33| 1.83 0.0143 128
AC2 1.77|1.7305 0.0053 0.99| 0.0223 |1.9409 0.06 0.58|2.29 0.0143 160
AC3 2 | 1.97 0.0074 0.99| 0.015 |2.0705 0.0534 0.74| 1.85 0.0143 129
Cantor  1.89(1.8835 0.0174 0.94| 0.0034 |2.2286 0.0852 0.09| 0.99 0.0041 243
Stoc. Cantor 1.89(1.8896 0.0105 0.97| 0.0002 |2.1218 0.0933 0.17| 2.43 0.01 243
Peach 1  2.33|2.3221 0.0043 0.99| 0.0033 |2.2832 0.0115 0.97| 2.97 0.439 67
Peach 2 2.36|2.3516 0.0056 0.99| 0.0035 |2.3416 0.0117 0.97| 2.97 0.459 64
Peach 3 2.38| 2.307 0.0064 0.99| 0.0306 |2.3022 0.0195 0.97| 3.04 0.0463 65
Peach 4  2.33|2.3218 0.0076 0.99| 0.0035 |2.3147 0.0175 0.98| 2.61 0.0449 72

4.3 Estimating Fractal Dimension from the LSV Method

We use the LSV estimator of the box counting method, presented on section 3.2,
on the theoretical and digitized plants. The § values were defined using couple
of successive scales

5o dit1 — 04 _ 1 ©)

di d;

and N values from the corresponding N values. Since it is based on a local es-
timation, it is sensible to the local variation of the number of box as a function
of scales introduced by the quantization effect. The local variations in this esti-
mation are reflected in the variance and standard error of the computed fractal
dimensions, giving a better estimation of the reliability of the results compared
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to the classical box counting method.

Experimentally, we observe that results on theoretical plants are very sensitive
to quantization effect as shown by dispersion of the data in the Fig. 6 and the
minimum standard error in Table 1 (cols 7-9). The minimum 72 for the estimated
dimensions on these objects are between 0.09 to 0.74. This effect is much less
important on real plants; the minimum 72 values are between 0.97 and 0.98. In
this case, the results seems more relevant. The difference with theoretical values
is small (less than 3.2%).

12 Artificial Canopy 2 LSV 25 Cantor Dust LSV 07 Peach 2 LSV
’ a AC2 ’ s Cantor Dust R . mmPeach 2
10[{ — Dy=2.266 r2 =0.581 A 20[1  — D,=3.097 7> =0.099 1 el —D=2337 r? =0.99
15} 1
08 . N N
06 1014 {1 osf
=Y = AA iz,
N . 05 J‘& M y
*oa * oa
o = 0.0 AA AA A A A 50
2 0, 2 2
’ 054" 4 1 03f
A A
00 10} &
A 02
0.2 15}
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$00 005 010 015 02 02 030 00 005 010 015 02 02 030 °G00 005 010 015 02 025 03
—log(1+9) —log(1+3) —log(1+3)

Fig. 6. Estimated fractal dimension with the LSV method for AC2, Cantor Dust and
Peach 2. This new estimator is very sensitive to quantization effect leading to a disper-
sion of the measurements in AC2 and Cantor Dust. On the contrary the method gives
an estimation of D close to that obtained with the two-surface method (i.e D = 2.36)
for Peach 2 tree.

5 Conclusion

In this paper the accuracy of the BCM for evaluating the fractal dimension of
3D crowns was studied. Several factors that may influence this accuracy were ex-
amined and practical solutions proposed. In particular a proper voxel size limit
is determined dependent on leaf sizes and the BCM bias was quantified. The
problem of data dependency used during the regression analysis was discussed
and a new estimator, LSV, that does not violate the independence assumption
is described. The LSV estimator appears to be an interesting indicator to deter-
mine whether the quantization effect disturb the fractal dimension estimation.
Eventually it has to be improved to support more robust evaluations.

References

1. Godin, C.: Representing and encoding plant architecture: A review. Annals of
Forest Science 57 (2000) 413-438
2. Mandelbrot, B.B.: The fractal geometry of nature. Freeman (1983)



10

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

D. Da Silva, F. Boudon, C. Godin, O. Puech, C. Smith and H. Sinoquet

Smith, A.R.: Plants, fractals, and formal languages. In: Siggraph’84, Computer
Graphics Proceedings. Volume 18., ACM Press (1984) 1-10

Barnsley, M.: Fractals Everywhere. Academic Press, Boston (1988)
Prusinkiewicz, P., Hanan, J.: Lindenmayer systems, fractals, and plants. Lecture
Notes in Biomathematics 75 (1989)

Chen, S., Ceulemans, R., Impens, I.: A fractal-based Populus canopy structure
model for the calculation of light interception. Forest Ecology and Management
69 (1994) 97-110

Prusinkiewicz, P., Mundermann, L., Karwowski, R., Lane, B.: The use of posi-
tional information in the modeling of plants. In: Siggraph’01, Computer Graphics
Proceedings, New York, NY, USA, ACM Press (2001) 289-300

Fitter, A.H.: An architectural approach to the comparative ecology of plant root
systems. New Phytologist 106 (1987) 61-77

Eshel, A.: On the fractal dimensions of a root system. Plant, Cell & Environment
21 (1998) 247+

Oppelt, A.L., Kurth, W., Dzierzon, H., Jentschke, G., Godbold, D.L.: Structure
and fractal dimensions of root systems of four co-occurring fruit tree species from
Botswana. Annals of Forest Science 57 (2000) 463-475

Morse, D.R., Lawton, J.H., Dodson, M.M., Williamson, M.H.: Fractal dimension
of vegetation and the distribution of arthropod body lengths. Nature 314 (1985)
731-733

Critten, D.L.: Fractal dimension relationships and values associated with certain
plant canopies. Journal of Agricultural Engineering Research 67 (1997) 61-72
Falconer, K.: Fractal geometry : mathematical foundation and applications. John
Wiley and Sons (1990)

Boudon, F., Pradal, C., Nouguier, C., Godin, C.: Geom module manual: I user
guide. Technical Report 3, CIRAD (2001)

Sonohat, G., Sinoquet, H., Kulandaivelu, V., Combes, D., Lescourret, F.: Three-
dimensional reconstruction of partially 3d-digitized peach tree canopies. Tree Phys-
iol 26 (2006) 337-351

Falconer, K.: Techniques in fractal geometry. John Wiley and Sons (1997)
Plotnick, R.E., Gardner, R.H., O’Neill, R.V.: Lacunarity indices as measures of
landscape texture. Landscape Ecology 8 (1993) 201211

Andres, E., Nehlig, P., Franon, J.: Supercover of straight lines, planes and triangles.
In: Proceedings of DGCI 97, London, UK, Springer-Verlag (1997) 243-254
Pfister, H., Zwicker, W., Baar, J.v., Gross, M.: Surfels: surface elements as ren-
dering primitives. In: Siggraph’00, Computer Graphics Proceedings, Los angeles,
ACM Press (2000) 335-342

Foroutan-Pour, K., Dutilleul, P., Smith, D.L.: Advances in the implementation of
the box-counting method of fractal dimension estimation. Applied Mathematics
and Computation 105 (1999) 195-210

Halley, J.M., Hartley, S., Kallimanis, A.S., Kunin, W.E., Lennon, J.J., Sgardelis,
S.P.: Uses and abuses of fractal methodology in ecology. Ecology Letters 7 (2004)
254-271

Reeve, R.: A warning about standard errors when estimating the fractal dimension.
Comput. Geosci. 18 (1992) 89-91

Boudon, F., Godin, C., Pradal, P., Puech, O., Sinoquet, H.: Estimating the fractal
dimension of plants using the two-surface method. an analysis based on 3d-digitized
tree foliage. Fractals 14 (2006)



