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A pragmatic approach for modular control synthesis 
and implementation 

 
 

D. GOUYON†*, J.F. PETIN† and A. GOUIN‡ 
 

 
Abstract: 
Within the framework of Supervisory Control Theory, synthesis algorithms 
enable automatic generation of control rules from behavioural models of the 
process to be controlled and of goals to be achieved. This paper talks about a 
pragmatic use of these algorithms within an automation engineering context 
and focuses on two key issues: process and goals modelling and supervisory 
controller implementation. In this way, the approach presented in this paper 
combines the synthesis techniques and algorithms with an object-oriented 
automation method that supplies guidelines for the analysis, the design and 
the implementation of a modular control system. This pragmatic approach is 
applied to the synthesis and implementation of the control of an assembly 
station. It highlights the difficulties of the modelling step and its great 
influence on the synthesis result itself but also demonstrates the feasibility of 
our synthesis approach through a successful implementation in conformance 
with the IEC 61131-3 standard. 
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1. Introduction 
Automatic synthesis of control systems, as proposed by (Fusaoka et al. 1983), 

consists in defining the (unknown) control rules of the (known) dynamics of a 
physical system, starting from the behavioural goals (known) to be met, while 
satisfying the following condition: Control Rules ∧  Dynamics ⊃ Goal. In this way, 
the Supervisory Control Theory (SCT) (Ramadge and Wonham, 1987) defines a 
formal framework aiming to analyse Discrete Event Systems (DES) and provides 
algorithms that enable an automatic synthesis of supervisory controllers in such a 
way that the controlled plant behaves according to some given goals. Even if these 
various algorithms (Wonham and Ramadge 1987, Kumar et al. 1991) have 
demonstrated their efficiency, industrial applications of synthesis techniques in the 
area of automated manufacturing systems remain very limited. 
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To explain this situation, several reasons can be pointed out (Zaytoon and Carré-
Ménétrier 2001): the synthesis algorithms demand correct models of the system and 
of its goals that are not easy to capture in an industrial context (Morel et al. 2001), 
synthesis may lead to supervisory controllers having an unrealistic size due to a 
possible explosion of the state space, the model interpretation given by SCT is more 
permissive than the one required to implement deterministic control systems. 

In order to cope with these difficulties, the approach proposed in this paper takes 
advantages of combining SCT formal framework and synthesis algorithms with 
automation engineering methods based on the re-use of control software objects 
(Combacau and Courvoisier 1990, Elkhattabi et al. 1992, Lhoste and Morel 1996, 
Feliot and Staroswiecki 1998, Tiller 2001). It leads to a pragmatic approach where 
modular supervisory controllers are obtained by applying an iterative algorithm of 
synthesis and are implemented inside Programmable Logic Controllers (PLC) by 
translating them into functional control blocks in conformance with the IEC 61131-
3 standard (IEC 1993) recommendations. 

This paper is organised as follows. Issues about the process and goals modelling 
as well as implementation in the SCT framework are given in section 2. In section 3, 
an approach combining automation engineering methods with synthesis techniques 
is presented.  In section 4, this approach is applied to a station of the AIP-Primeca 
Lorraine experimental assembly system. Results of this application, especially those 
dealing with the modelling step and its great influence on the synthesis result itself 
are discussed in section 5. At least, in section 6, some conclusions and future works 
are drawn.  

 
2. Modelling and implementation issues within SCT framework 
  
2.1. SCT framework 

The supervisory control theory (Ramadge and Wonham 1987) provides a formal 
framework for DES analysis based on the models of the process to be automated 
(called generator) and the supervisory controller (called supervisor). 

The process model is described by an automaton of the following form:  
G = (Q, Σ, δ, Qm, q0) 

where Q is a set of states q, Σ is a non-empty set of event labels called an alphabet, 
δ is transition function described by states transitions, Qm ⊆ Q is the set of marked 
(terminal) states and q0 ∈ Q is the initial state. 

It is assumed to ‘generate’ spontaneously controllable and uncontrollable events. 
Controllable events are those whose occurrence can be disabled while 
uncontrollable events can not be prevented and are permanently enabled.  

The supervisor can affect the behaviour of the process model by enabling or 
disabling controllable events to maintain the process in a space of acceptable states 
for a given specification. It is described by an automaton of the following form: 

S = (X, Σ, ξ, Xm, x0) 
where X is a set of states x, Σ is the alphabet used by G, ξ is transition function, Xm 
is the set of marked states and x0 is the initial state. 
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In this framework, synthesis algorithms (Wonham & Ramadge 1987, Kumar et 
al. 1991) generate automatically the optimal supervisor that enables the maximum 
set of events that do not contradict the goal specifications. These specifications 
define the enabled sequences of events that belong to G alphabet. Considering the 
generator model as the physically possible sequences, and the goal specifications as 
the legal sequences, the synthesised supervisor is expected to inhibit the process 
behaviour so that only desirable sequences are generated. Benefit is that the 
generated supervisor is correct, by construction, with regards to the specifications 
and deadlock-free. 

 
2.2. Modelling issues 

Executing synthesis algorithms requires concrete and detailed models of the 
process behaviour and of the goal to achieve which are more or less considered as 
given inputs of the control design activities. However, practical automation of 
complex systems often relies on a progressive refinement of the models (Brandin et 
al. 2000, Hiraishi 2001) that are not considered within the engineering process as 
fixed points. Indeed, the modelling of systems of industrial complexity requires a 
preliminary analysis, based on the use of abstract and more or less formal 
representation formalisms, under a shape of function, set, … allowing to grasp, in a 
pragmatic, intuitive, even qualitative way, the global functioning of a system to be 
designed (Marikar et al. 1998). 

If we consider the SCT formalisms and methods for process and goal modelling, 
it clearly appears that:  

– more structured representations such as Petri Nets (Xie 1994), synchronous 
languages (Marchand et al. 2000) or predicate (Sanchez and Macchieto 1995) and 
temporal (Fusaoka et al. 1983) logics would be preferable to capture the behaviour 
of complex systems, 

– the definition of a methodological framework, that could help the designer to 
progressively transform the end-user's requirements and the plant operations into 
formal specifications of the expected behaviour and process dynamics, should be 
very helpful to facilitate the use of synthesis techniques within an automation life 
cycle. 

A well known answer to these needs consists in decreasing the complexity of the 
modelling phases by promoting a decomposition strategy that leads to introduce 
modularity and hierarchy within the SCT framework. In the field of supervisory 
control, the interest of modularity has been widely demonstrated through extensions 
of the theoretical frame that propose: 

- distributed (Figure 1) (Fen and Wonham 1990) or hierarchical (Zhong and 
Wonham 1990, Gohari and Wonham 1998) decomposition of the supervisory 
controllers to be synthesised that implicitly requires a decomposition of the 
associated goals specifications, 

- modular modelling of the process (generator) to be controlled (Yoo and 
Lafortune 2002) (Figure 2) 

- mixed approaches where both process models and supervisory controllers are 
modelled in a modular way (Chafik and Niel 2000). 
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Figure 1: Distributed supervisory control (Fen and Wonham 1990) 
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Figure 2: Decentralised supervisory control 
 
Whatever the type of decomposition is, the objective is mainly to decrease the 

explosion of state space (Queiroz and Cury 2002) generated by the algorithms of 
synthesis, notably by processing these algorithms on smaller models that involves a 
reduced number of states and transitions. In this way, the chosen criteria for the 
decomposition of the models are those who lead to a set of automata that minimizes 
the intersections between their alphabets, in order to be able to synthesize, in an 
independent way, several supervisors of smaller size. 

The benefit of these approaches is real to master the complexity of the modelling 
phase. However, focusing the decomposition rules on the only problem of state 
space size hide more or less the methodological aspects involved by modularity and 
hierarchy within control systems. 
 
2.3. Implementation issues 

Implementation issues must be addressed in order to fully use synthesis 
techniques within an automation life cycle. The main problem results from the 
different interpretations of the supervisor model given by SCT and by traditional 
automation methods for the design and implementation of real-time control systems. 

Indeed, within the framework of the SCT, the process (generator) is supposed to 
generate events in a spontaneous way; the only way for the supervisor to affect the 
behaviour of the process is then to enable or to disable the controllable events. 
Moreover, the synthesis algorithms (Wonham and Ramadge 1987, Kumar et al. 
1991) provide the maximal permissive supervisor that maintains the process 
behaviour in legal states and sequences for a given specification. So, the result can 
be described by automata where several sequences of controllable events are 
enabled from a given state.  

Nevertheless, a reactive control system is expected to force some events to occur 
and not only to enable and disable some of them. It is often based on a set of 
predetermined evolution rules that calculate the appropriate actions (controllable 
events) to be applied on the process according to observations (uncontrollable 
events) of its current state. This computation is said deterministic in the sense that a 
given sequence of observations always generates the same sequence of actions. 
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These various interpretations of a what is called supervisor by SCT and 
controller by the forcing events approaches (Marikar et al. 1998) requires some 
additional features to make these two notions compliant with implementation issues. 

A first solution considers that real systems require the addition of an external 
control agent that forces some events to occur. It consists in modifying the SCT 
theoretical framework by adding an intermediate model dedicated to the reactive 
and deterministic process control (Figure 3) (Charbonnier et al. 1999). In this case, 
process and control models are supposed to be known. Generated supervisor aims at 
ensuring that process associated with its control behaves according to given 
specifications. This approach is too restrictive for our initial objectives of synthesis 
and implementation. 
 

Process to be 
controlled

Control 
system

Extended process

Σpr

Σco

Supervisor

Σ = Σco ∪ Σpr
(autorised and generated

events)

Φ(i)

(set of forbidden
events)

Σco =

Σpr =

set of events generated
by the control
set of events generated
by the process

Σco =

Σpr =

set of events generated
by the control
set of events generated
by the process

 
 

Figure 3: Supervisory control principle according to (Charbonnier et al. 1999) 
 
Another approach consists in preserving the SCT theoretical framework while 

introducing an input-output interpretation of the SCT controllable and 
uncontrollable events (Balemi et al. 1993). This reactive interpretation requires that 
every supervisor sequences must have at least one controllable event between two 
uncontrollable events. Indeed, it means that the controller must react to a given input 
by emitting an output before a new input occurrence. Assuming this hypothesis is 
verified, this interpretation can be applied for implementation of SCT supervisors 
(Brandin 1996, Niel et al. 2001). 

At least, more direct approaches that transform a SCT supervisor into a 
controller able to be implemented have been proposed (Sanchez and Macchieto 
1995 (Figure 4), Marikar et al. 1998, Fabian and Hellgren 1998). This 
transformation requires removing the non deterministic choices contained in the 
supervisor and to translate the evolutions rules of a finite state automaton in terms of 
target languages such as the Ladder Diagram of the IEC 61131-3 standard (IEC 
1993). The benefit is that SCT approach is kept without any additional interpretation 
constraints. However, in order to guarantee that the controller maintains the 
properties of the supervisor, such as controllability and deadlock-freeness, a formal 
translation mechanism is required. Most of the above mentioned approaches are 
based on the representation of automaton behaviour in terms of algebraic equations 
and a partial order relation between equations for their implementation. 
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Figure 4: Controller synthesis procedure (Sanchez and Macchieto 1995) 
 
The approach presented in this paper conserves the basic foundations of SCT. It 

aims at defining a methodological framework for using this theory within a real 
automation life cycle (Figure 4). More particularly, modelling and implementation 
issues will be addressed by combining existing automation methods that provide 
guidelines for a structured design and implementation of control systems and the 
SCT framework.  

 
3. An approach for modular control synthesis and implementation 

 
3.1. Automation engineering 

During last decade, industrial practices in automation engineering have 
promoted the re-use of ‘on-the-shelf’ control components in the same way of 
generic hardware components that exist in Electronics. From a technical point of 
view, this is justified by the development of distributed control system (remote I/O, 
fieldbus, intelligent actuators and sensors) and by the introduction of the functional 
block concept in the programming languages such those supplied by the IEC61131-
3 (IEC 1993) or IEC61499 (IEC 2000) standards. 

Automation methods have followed the same evolution. Object oriented 
reasoning that included modularity and hierarchy in the design of control systems 
has been widely explored (Combacau and Courvoisier 1990, Elkhattabi et al. 1992, 
Lhoste and Morel 1996, Feliot and Staroswiecki 1998, Pétin et al. 1998). These 
methods are more or less based on bottom-up decomposition of a control system in 
terms of functional elementary modules that ensure the control and the monitoring 
of their associated resources. In these bottom-up approaches, structured design starts 
by the process modelling.  

Manufacturing systems appear to be built with similar technological elements - 
cylinders, pumps, motors – involved in the various actuation and measurement 
processes. Most of the time, these field devices are standard and they can be 
associated with a logical behaviour independent from their context of use. It results 
that the behaviour of such a manufacturing system can be represented as an orderly 
network of interconnected elementary behaviours (Tiller 2001) that could be 
plugged from a library of standardised components. 
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An original application of this work considers that a field-device behavioural 
model can be used as model for low level control and monitoring. It modifies the 
classical distribution ‘Control system / Process system’ by adding a local control of 
the field devices acting as an interface between technology and functional features 
(Figure 5) (Vogrig et al. 1987) in order: 

– to filter the functional requests submitted by the control system and to 
compute appropriate actions to be applied on the technological device in such a way 
that these actions are compliant with the device current state and status, 

– to filter the observations supplied by the device sensors and to compute 
reports about device state and status to be sent to the control system in such a way 
that these reports are consistent with the expected behaviour. 
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Figure 5: Device control placed as an interface 
 
In other words, the ‘Behavioural Filter’ constitutes a step towards autonomous 

agents that are able to manage their mission according the current state of their 
resources, to monitor themselves and to elaborate a synthetic report about their 
functioning state. It could be implemented on supports such as PLC, distributed 
remote I/O or embedded electronics in the case of intelligent actuators and sensors. 
This clear distinction between what refers to functional control objectives of the 
application and what depends on the field devices technology is efficient to increase 
control flexibility and adaptation to changing needs and technology. 

Generalization of this approach at less technological levels leads to iteratively 
aggregate basic behaviours to built more complex ones in a bottom-up way. The 
resulting hierarchical architecture involves a set of coordinated and/or cooperative 
modules having to control and monitor the execution of their own mission 
(Combacau and Courvoisier 1990, Elkhattabi et al. 1992, Lhoste and Morel 1996). 
These modules, called ‘automation object’, are able to accept or not the requests 
they receive, to chose the appropriate actions they will transmit to their resources 
(lower level modules), to monitor the execution of these actions and to report to the 
higher level modules. 
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3.2. Modular control synthesis 
Our approach combines the iterative way of thinking proposed by the 

automation object-oriented methods and the modular synthesis techniques: 
– criteria used for structuring the control system are not only driven by state-

space explosion issues (Queiroz and Cury, 2002), but must be given by the structure 
of the physical process itself; it leads to an iterative bottom-up design starting from 
the field device models, 

– synthesis algorithms (Wonham & Ramadge 1987) will be used to 
automatically generate a supervisor associated to a module (or automation object) of 
the control architecture; for a given module, the supervisor will be computed from 
specification describing the mission allocated to this module and from process 
model (generator) given by the lower level supervisors associated to its resource 
modules. 

Like ‘behavioural filter’, these supervisors ensure the orderly occurrence of 
events into supervised modules by filtering functional requests and observations in 
order to separate functional aspects from technological ones and to guarantee 
consistency with an expected behaviour.  

Let us consider the synthesis of the supervisors associated to the control of the 
field devices. These supervisors (noted S1 and S1' in Figure 6) are allocated to the 
level 1 in the control hierarchy scale. Two supervisors of the same level do not share 
events because each part of the system to be controlled has only one supervisor.  
Supervisors can be synthesised, in a classic way, from the elementary behavioural 
models of the devices (noted P1 and P1’ in Figure 6) and from specifications 
describing the rules of filtering (Figure 5) presented in section 3.1. 

A supervisor of higher levels (level n >1) in the control hierarchy scale can then 
be synthesised from the specification of its goals, which are of coordination of lower 
level resources, and from a process model given by: 

– projection of the lower level supervisors (level n-1) considered as required 
resources in order to keep the only observable events from the given level (n), 

– controllability status modification: kept events that were controllable in the 
lower level supervisors are seen as uncontrollable by the higher level and vice-
versa, 

– synchronous product of the above projections (they do not share events). 
 

P1

S1

P1’

S1’

P1’ : Process for the
synthesis of S1’

P1 : Process for the
synthesis of S1

P2 : Process for the
synthesis of S2

S2

P2

 
 

Figure 6: Iterative synthesis process 
 

Deadlock freeness is preserved when synthesising supervisors at level n because: 
– level n-1 supervisors are deadlock free by construction (property ensured by 

synthesis techniques), 
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– we assume that level n-1 supervisors have disjoint alphabets; consequently 
no deadlock problem may be introduced when coordinating these supervisors.  

This last assumption is justified in the case of a hierarchical coordinated 
architecture where same level modules do not directly exchange information. 
However, it is not verified in the case of heterarchical architecture where both 
coordination and cooperation between same level modules are enabled. In this 
second case, preserving properties assume conditions, as studied in works on 
decentralized control (Jiang & Kumar 2000), such as prefix-closure of the alphabets. 

Expected behaviour is defined through specification dedicated to each supervisor 
to be synthesised. Assuming the same hypothesis about the control architecture, 
these specifications are disjoint. Consequently, conformance of each supervisor at 
each hierarchical level with its own expected behaviour is preserved by synthesis 
techniques. 

All the operations upon automata – synchronous product, projection, supervisor 
synthesis – are performed using the software tool TCT developed at the University 
of Toronto and downloadable at http://odin.control.toronto.edu/DES/. 

 
3.3. Modular implementation of supervisors 

Previous synthesis step results in a hierarchical set of supervisors. Current step 
aims at implementing these supervisors in a target language supported by most of 
the Programmable Logic Controllers (IEC 1993). As discussed in section 2.3 several 
ways can be used to achieve this implementation objective. Chosen approaches are 
the ones that provide translation mechanisms from supervisor to controller (Marikar 
et al. 1998, Fabian and Hellgren 1998) without modifying SCT framework 
(Charbonnier et al. 1999) and interpretation (Balemi et al. 1993). 

In these approaches, two main steps have to be performed: translation from the 
most permissive supervisor into a deterministic controller and coding the controllers 
into a programmable language. Our proposal adapt the translation and coding rules 
proposed by Fabian and Hellgren (1998) in order to take into account the modular 
structure of our supervisors. 

Translation rules have to simplify the supervisors in such way that the following 
property is satisfied: two transitions t1 and t2 may exit the same state if and only if 
the two events associated to both transitions are uncontrollable. This strong 
hypothesis is justified by the fact that: 

– two controllable transitions from a same state mean that two actions are 
possible from a given situation while a reactive controller have to force one of them. 

– two transitions, one controllable and the other uncontrollable, may generate 
non deterministic reaction depending on the sampling period where events are seen.  

To avoid these kinds of situations, a mechanism of priority allocation must be 
applied. In the first case, priority will be given to the event that belongs to an 
alphabet of highest level supervisor (in Figure 7, report have higher priority than 
action); if the two events have the same hierarchical level, allocating priority refers 
to a designing choice. Whatever the choice is, the controller is nevertheless proved 
to maintain the process in enabled states. In the second case, priority depends on the 
controllability of the events: uncontrollable events have higher priority than the 
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controllable ones (in Figure 7, observation has higher priority than action), 
preserving the reactivity property and the orderly occurrence of events. 

Supervisor
level n

requestreport

action

1

observation

request
1

action

action
Controllable events : {action, report}

:   transition with priority
:   transition without priority

1

1
action

observation

Level n-1

Level n+1

 
Figure 7: example presenting the priorities used 

 
Coding rules of such deterministic controllers into the chosen target 

programmable language, which is Ladder Diagram of the IEC 61131-3, is based on 
algebraic equations that represent the synchronous activation (Ait) and deactivation 
(Dit) of a state (Sit) according to Sit+1 = Ait ∨ (Sit ∧ ¬Dit) (Figure 8). 

 
S6

S7

e

f

A7 = (S6 ∧ e)
D7 = S7 ∧ f
…
S7 = A7 ∨ (S7 ∧ ¬D7)
…

S1 S2

S3

a b

c

A3 = (S1 ∧ a) ∨ (S2 ∧ b)
D3 = S3 ∧ c
…
S3 = A3 ∨ (S3 ∧ ¬D3)
…

 
 

Figure 8: Algebraic translation by activation/deactivation 
 

Implementation of these algebraic equations on a sequential machine requires an 
executing algorithm that evaluates ‘activation’ variables before ‘state’ variables in 
order to ensure non-blocking and reactivity properties of the implemented 
controller. Chosen algorithm is said ‘without stability research’ and consists, for 
each sampling period of the PLC, in: reading external events (uncontrollable), 
evaluation of the new situation (Ai and Di calculation), deactivation and activation 
of states (updating Si), calculation of internal events and output (controllable) 
writing. 

At least, the hierarchical structure of our synthesised supervisors and controllers 
is coded using the Function Blocks notation provided by the IEC 61131-3 standard. 

 
3.4. Overview of the proposed approach 

The approach here above presented is based upon an iterative way of reasoning 
that leads to a modular control synthesis. It can be summarized by the Figure 9 
which shows the various stages of synthesis, projection, composition and coding of 
supervisory controllers. Next section demonstrates the feasibility of our proposal 
through a case study from initial steps of modelling until to the implantation stages. 
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Figure 9: Overview of modular control synthesis 
4. Application 

Application focuses on the control of a pneumatic manipulator that is involved in 
an assembly station of the manufacturing cell of the ‘Atelier Inter-Etablissement de 
Productique Lorrain’ (AIP-PRIMECA Lorraine). It allows product (part) move from 
a picking post to a placing one following a ‘U’ cycle (Figure 10). The horizontal 
and vertical moves are performed by double-acting air cylinders provided with 
magnetic position detectors and respectively piloted by a 5/2 bi-stable and 
monostable solenoid valve. Holding system is carried out by a system of vacuum 
generator with Venturi effect. The control system is made up of a Siemens S7 PLC. 

 

picking area placing area

Initial and idle position

Move with a part
Move without part

part

picking area placing area

Initial and idle position

Move with a part
Move without part

part

 
 

Figure 10: Overview of the pneumatic manipulator 
 

4.1. Synthesis of supervisors associated to field devices control 
 

4.1.1. Process models 
The double-acting air cylinders with their control valve are represented (Figure 

11a) by two marked states, drawn by a double circle, in which the observable 
devices behaviour is steady (cylinder in a pushed or retracted position) and by two 
moving states which represent the evolution from a steady state to another one. The 
model of the holding system (vacuum generator) is described by two steady states: 
‘sucking on’ or ‘sucking off’ (Figure 11b). The vacuum generator being not 
equipped with a held part detector, a part will be considered as being held as soon as 
the vacuum generator is in ‘sucking on’ state. A complete list of events is provided 
in Table 1. 
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Figure 11: Models of the field devices  

Label Significance Controllabilty 
rqR Cylinder Retracting request uncontrollable 
rqP Cylinder Pushing request uncontrollable 
rpR Cylinder Retracted position report controllable 
rpP Cylinder Pushed position report controllable 
Rord Cylinder Retracting order controllable 
Pord Cylinder Pushing order controllable 
Rpos Cylinder in retracted position (given by detectors) uncontrollable 
Rpos Cylinder in retracted position (given by detectors) uncontrollable 
rqS Sucking request to vacuum cups uncontrollable 
rqF Freeing request for vacuum cups uncontrollable 
rpS Sucked Part report controllable 
rpF Free Part report controllable 
Sord Sucking order for vacuum cups controllable 
Ford Freeing order for vacuum cups controllable 
 

Table 1: events for figures 11 – 15 
 

4.1.2. Specifications of field devices control 
The specification of the devices behaviour is done according to the basic 

filtering functions assigned to the ‘behaviour filters’ presented in section 3.1 without 
considering monitoring and fault detection aspects. 

For the air cylinders, two automata describe rules that filter or validate some 
pushing and retracting requests according to the device current state. For example, a 
pushing request generate a pushing order if the cylinder is not already in ‘pushed 
state’ and if no ‘retracting request’ is active (Figure 12). 

Two other automata describe the observations filtering: an event occurring from 
a position detector (‘retracted’ for example) may generate a report (‘retracted 
report’) only if it follows an order (pushed order) that has been computed and sent 
to the solenoid valve as a reaction to a validated request received by the device 
controller (Figure 12). 
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Figure 12: Specifications used for the filter of a cylinder and its bi-stable valve 
 
The complete specification of the cylinder controller results from the 

synchronous product of these four automata (21 states, 68 transitions). Same 
approach is used for the specification of the vacuum system (8 states, 25 
transitions). 

 
4.1.3. Synthesis of field devices control 

From the behavioural models of these devices and their specification, TCT tool 
is used to generate the largest (or ‘supremal’) controllable language that defines the 
most permissive supervisor (Figure 13) as usually done in a SCT synthesis 
framework. 
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Figure 13: Supreme controllable of the air cylinder with 5/2 control valve 
 

4.1.4. Implementation of the synthesized supervisors 
Translation and coding rules presented in section 3.3 are then applied to 

implement three controllers associated with the two air cylinders and the vacuum 
generator. Algebraic equations are translated into Ladder networks (example Figure 
14) that are implemented into three Functional Blocks of the S7 Siemens PLC. 
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Figure 14: Example of translation into Ladder Diagram 
 
Each controller has been independently tested on the field devices. The observed 

behaviour is in conformance with the expected one. 
 

4.2. Coordination module Synthesis  
Previous step aimed to synthesise generic controllers usable for a given class of 

field devices. Next step has to deal with the synthesis of a coordinating supervisor 
that schedules the requests sent to the controllers of the air cylinders and vacuum 
cups in such a way that a ‘pick and place’ move is realized. As said in section 3.2, 
synthesis of this coordinating supervisor is based on a process model that is 
automatically built from the local supervisors of the field devices. Figure 15 shows 
the partial process model built from the supervisor associated to the air cylinder that 
ensures the horizontal move. This partial process (noted PPM1) model results from: 

– projection of the local supervisors by preserving the only events that are 
interacting with the superior level, and controllability status modification (requests 
are now seen as controllable while reports are now seen as uncontrollable) 

– instantiation of the generic supervisor to each of the field devices; it is done 
by renaming the projected events (for example by adding an ‘h’ for the horizontal 
cylinder of Figure 15) to create a specific alphabet for each instances. 
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{rqPh,rpRh}
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rqRh
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rqPh
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rpRh
rqRh rqPh

 
 

Figure 15: Supervisor projection for a cylinder and its 5/2 bi-stable valve 
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Same procedure is applied to build the other partial process (noted PPM2 for 
vertical air cylinder and PPM3 for vacuum system). The global process model 
(noted GPM) results from the synchronous product of PPM1, PPM2 and PPM3 
using the SYNC procedure provided by TCT. 

 

rpRv

{rpPh,rqRh}

rpRh

rpF

rpRv

{rpPh,rqRh,rpRv}

rpF
{rpPh,rqRh

,rpF}
rpRv

rpRh

rpRh

rpF

{rpRh,rpRv}
rpF

{rpRh,rpRv
,rpF}

{rpRh,rpF}

rpRv

rpRh

{rpRh,rpRv}

rpF

{rpPh,rqRh,rpRv,rpF}

start

{rpRh,rqPv,rpRv,rpF}

rpPv

{rpRh,rpPv,rqS,rpF}

rpS

{rpRh,rpPv,rqRv,rpS}

rpRv

{rqPh,rpRh,rpRv,rpS}

rpPh

{rpPh,rqPv,rpRv,rpS}
{rpPh,rpPv,rpS,rqF}

rpPv

{rpPh,rpPv,rqRv,rpF}
{rpPh,rqRh,rpRv,rpF}

{rpRh,rpRv,rpF}

rpFrpRvrpRh

eocrpRh

 
Figure 16: Coordination supervisory specification 

The specification model (Figure 16) describes coordinating rules of the three 
field devices in order to realize a ‘pick an place’ cycle. In the corresponding 
automaton, two main parts can be identified: initialization steps toward the initial 
position, ‘pick and place’ cycle. 

Synthesis of the coordinating supervisor is generated from this specification 
model and the above global process model GPM. It involves 38 states and 106 
transitions: 18 states are devoted to the control of ‘pick and place’ cycle and 20 
states refer to initialization. As previously done, the coordinating supervisor is 
translated and coded into Ladder Diagrams. They are implemented within a 
Function Block (FB) that calls the FB of section 4.1.4 (control of the field devices 
behaviour). 

The whole program, including the different FB we have developed using our 
synthesis approach, has been successfully tested on the manipulator of our assembly 
cell. However, limitations clearly appeared and are discussed in the next section. 

 
5. Discussion 

In the previous section, feasibility of our approach has been showed using a 
realistic case study. However, some modelling and implementation limits have still 
been encountered. In order to evaluate their impact on the synthesis result itself, 
several test cases are proposed on this example. 

 
5.1. Modelling impact on the synthesis result 

 When establishing the models of process and specifications, it clearly appears 
that several solutions, which could more or less differ from each other, are enabled 
to capture the process behaviour and the user requirements. Among the various 
possible models, test cases are proposed in order to reflect two problem classes: 
identification of the marked states and identification of the significant states.  
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a) Device control specification: addition of a state (report persistence) 
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b) Coordination module specification: degree of permissiveness in the cycle 
 

Figure 17: Various examples of test sets to the specifications models 
Models that are involved in those test cases are the following: 
– two different specifications (noted F1 and F2 in tables 2 and 3) are proposed 

for the synthesis of the cylinder controller; they differ by the signification of the 
involved states and the persistence of the reports (Figure 17a), 

– four specifications (noted C1, C2, C3 and C4 in table 3) are proposed for the 
synthesis of the coordinating module; they mainly differ by their level of 
permissiveness and by their initialization (Figure 17b). 

– for each of these specifications models, two different state markings have 
been evaluated. 

 
5.1.1. Identification of the marked states 

Marked states are defined in (Ramadge and Wonham 1987) as end of sequences 
belonging to the marked language Lm: « Lm(G) ⊂ L(G) is a distinguished subset of 
these sequences that may be « marked », or recorded, perhaps representing 
completed « tasks » (or sequences of tasks) carried out by the physical process that 
G is intended to model ». This definition can be differently interpreted by every 
modeller with regards to its expectations about process behaviour. 

For the model of the field devices, the problem is quite simple. Indeed, stable 
states of these elements can be clearly identified. For example, marked states of the 
air cylinder model correspond to a cylinder end of move, that is to say ‘pushed’ or 
‘retracted’ states (Figure 11).  

On the other hand, identification of the states that has to be marked is more 
difficult when modelling goal specifications. For example, which states should be 
marked in the specification of the ‘pick and place’ cycle: are they limited to the only 
state that characterise the initial or idle position of the manipulator, or are they 
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extended to the whole states that characterise the end of a manipulator move 
(horizontal and/or vertical one)? 

As far as the synthesis algorithms (and more particularly the TCT procedures) 
depends on which are the marked states, the generated supervisors are far different 
from each other when a change, even if small, is introduced in the marks of the 
specification automata. The first two lines of the Table 2 present two different 
markings for the specifications of air cylinder supervisors: 

– if all the states are marked (note all marked), the size of the generated 
supervisors is not realistic with regards to the given problem; however, even if most 
of the involved states have no meaning, the controller, that can be implemented 
from this supervisor, successfully works; main benefit is that finding the marked 
states is a systematic procedure, 

– if the marked states correspond to end of a cylinder move (noted normal), the 
generated supervisors are more realistic and better correspond to the expected 
controller; they also require more intuitive interpretation from the modeller.  

In table 2, notation [8,20,4] means that the automaton has 8 states, 20 transitions 
and 4 marked states. Note that the differences between devices controllers size, 
according to the different marks, become blurred when a projection is applied to 
give rise to the process model of a supervisory higher level (two last lines of the 
Table 2). 

 
Specification F1 Specification F2 Devices control Normal All marked Normal All marked 

bi-stable device [13,26,2] [33,80,33] [13,30,2] [41,102,41] 
monostable device [13,31,1] [13,31,13] [13,35,1] [13,35,13] 
Projection bi-stable [9,24,2] [11,32,11] [7,20,2] [9,28,9] 

Projection monostable [8,20,1] [8,20,8] [6,16,1] [6,16,6] 
 

Table 2: Influence of specifications marking on the result of synthesis; 
 

5.1.2. Identification of significant states 
The other problem is related to the various ways to write specification models. 

Let’s take the example of the air cylinder specification. According to the ‘behaviour 
filter’ concept, it has to filter the actions and observations to/from the field device 
according to its internal current state. These filtering constraints can easily be 
written in natural language as predicates (Figure 18). Formalisation of these 
properties as algebraic equations is reachable and Roussel et al. (2004) showed that 
a synthesis procedure is applicable from them. On the other hand, modelling these 
properties as finite state automata is a more delicate task: how to capture the 
significant and marked states, how to define the required permissiveness given by 
self-loops? 
 

P1. A ‘pushing request’ assigned to the ‘behaviour filter’ generate a ‘pushing order’ to be 
applied on the cylinder control valve if and only if the cylinder is not already in a ‘pushed 
state’ and no ‘pushing request’ is active. 

P2. A ‘pushed state’ is reported if and only if the evolution of the position detector from 0 
to 1 follows an exit order emitted beforehand. 
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… 
 

Figure 18: Examples of predicates for the specifications 
 
Considering the various possible answers to these questions, several models can 

be written to capture the specification of the expected behaviour. Test cases are 
applied to evaluate the sensitiveness of the synthesis procedure with regards to the 
specification panel (Figure 12 and Figure 16). 

Considering device control, F1 specification differs from the F2 specification by 
the number of significant states. Indeed generation of a pushed or retracted report is 
considered as a fugitive event in one case and as a persistent state in the other.  The 
influence of these different versions on the synthesis result (see Table 2) seems 
weak. In the case of ‘normal’ marked states, the supervisor involves the same 
number of states (13) and few additional transitions (26 for F1 bi-stable instead of 
30 for F2 bi-stable). These differences are justified as far as the additional 
transitions are self-loops that enable the persistent report. On the other hand, these 
different versions of device control specifications lead to very different coordinating 
supervisors as illustrated in Table 3. For example, specifications F1 and F2 lead to 
very different coordinating supervisors ([25,63,2] and [41,184,2]) for a same 
specification C2. 

 
Among the variations introduced by C1, C2, C3 and C4, the degree of 

permissiveness seems to be the element that generates the major differences on the 
synthesis results (see Table 3). Permissiveness is characterised by the number of 
events that are enabled in the automata self-loops. 

Self-loops of the C1 and C3 specifications involve a single controllable event 
(see first automaton on Figure 17b) that corresponds to the action that should be 
performed in a given state. C1 and C3 are then said the most permissive ones in the 
sense that all unexpected events are disabled in the self-loop. These specifications 
capture the accurate behaviour of the manipulator but do not allow the synthesis of a 
supervisor (see Table 3). Indeed, only a single uncontrollable event – the expected 
one – is enabled for exiting a state; that means that all states are considered as 
forbidden by the synthesis procedure and are consequently eliminated. 

The opposite way of modelling (cf. the second automaton on Figure 17b) 
consists in enabling all the uncontrollable events in the different self loops. It allows 
the synthesis of a supervisor but the relevance of such a specification can be 
discussed. Indeed, for a given state of the specification, occurrence of any 
uncontrollable events is considered as normal behaviour of the process. This 
requires a strong hypothesis, which is not realistic, stating that any detectors failures 
can be avoided. 

 Defining an alternative solution (C2 and C4 specifications, see Figure 16), 
whose permissiveness is relevant for synthesis but nevertheless realistic, remains a 
uncertain task. 
 

Device specification F1 Device specification F2 Coordination Normal All marked Normal All marked 
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Spec C1 : non permissive cycle [0,0,0] [0,0,0] [0,0,0] [0,0,0] 
Spec C2 : permissive cycle [25,63,2] [29,77,6] [41,184,2] [41,184,41] 

Spec C3 : non permissive cycle + init [0,0,0] [0,0,0] [0,0,0] [0,0,0] 
Spec C4 : permissive cycle + init [38,106,1] [38,106,8] [38,164,1] [38,164,38] 

 

Table 3: Influence of the specifications structure on the synthesis result 
 
At last, the results obtained using the C4 specification are homogeneous: only 

few differences concern the number of transitions. It is due to the self loops 
involving persistent reports that distinguish the F1 and F2 specifications. 

More generally speaking, we must admit that our pragmatic way of modelling 
has been driven by the implicit knowledge we had about what the resulting 
supervisors have to look like. Indeed, specifications have been written again, 
through iterative attempts, until the synthesised supervisor, and consequently its 
controller, looks like the ones we have already implemented. In the same way than 
the use of formal abstract methods such as the B method allows to progressively 
eliciting the good invariants of a given problem, synthesis techniques may provide a 
help for defining the good models of specification. 

  
5.2. Impact of supervisors size on implementation 

If we look at the behaviour control of air cylinders, the simplest synthesised 
supervisor involves thirteen states and twenty-five transitions. Vogrig et al. (1987), 
have proposed an equivalent controller for the same device that requires only four 
states and six transitions of a Grafcet model. The increase of the size between our 
supervisor and this Grafcet model is still preserved when implementing its 
associated controller. Indeed, this controller is coded within fifty-five Ladder 
networks while only twelve Ladder networks are needed to code the Grafcet model 
of the controller. 

In the same way, the control of the whole manipulator – three local controllers 
for the field devices and one for the coordination module – is described through an 
hundred of states and transitions and coded by more than four hundred Ladder 
networks. When comparing the scale of our case study to complex industrial 
systems, the size of the synthesised program can still be said as too big. 

 
6. Conclusion & Future Work 

This paper presents a modular approach for control synthesis within the SCT 
framework. It relies on the use of automation object-oriented methods that introduce 
a bottom-up hierarchical reasoning that gradually aggregates the control and process 
behaviours starting from the most technological levels. It mainly aims at providing 
methodological help for the preliminary modelling works as well as some coding 
rules for the implementation on industrial control architecture compliant with the 
IEC 61131-3 standard. 

In this way, major benefits are the systematization of the modeller work and the 
modularity of the process and goal models. Indeed, process (or SCT generator) 
modelling takes a systematic character as far as the models are built either by 
instantiation from a library of generic field devices, either by projection and 
synchronous product of lower level supervisors. Specification modelling is simpler 
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because properties to be satisfied are distributed among the various levels of control. 
Projection mechanism is very useful because it reduces the number of handled states 
by keeping, at every step of the iteration, only a sub-part of the processed alphabet. 
At last, implementation is facilitated by the modular structure of our supervisors and 
controllers which is close to the architecture promoted by most of the development 
tools of the current Programmable Logic Controllers. 

Application of the proposed approach using the case study available at the AIP-
PRIMECA Lorraine has demonstrated its feasibility. Nevertheless, the writing of the 
specifications stays a difficult task having a real impact on the result of the synthesis 
procedures. Indeed, last section of the paper has shown that several accurate 
formalisations of the same specification could lead to very different synthesis 
results. 

In the same way than the ‘behaviour filter’ concept promotes tightly coupled 
control and monitoring systems, further work should take advantages from taking 
into account, within the control synthesis, the description of the normal behaviour of 
a system as well as its incidental one. Indeed, control synthesis including monitoring 
aspects should lead to clear distinction between what refers to the normal behaviour 
and what refers to a failure occurrence. This notably helps in reducing the problem 
linked to the definition of the permissiveness degree of a given specification. 

At last, this approach is currently being extended to product-driven 
manufacturing systems. In this kind of modern architecture, the product is supposed 
to have an active role within the production scheduling. Synthesis techniques will 
then be used to automatically generate the different product possible trajectories 
(supervisor) among the available machines (generator) in such a way that the 
performed operations are compliant with the product definition (specification). The 
controllers will be embedded in the product information processing capabilities and 
coupled with the machine controllers that are developed according to the modular 
control synthesis presented in this paper. 
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