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Abstract. A new, non adiabatic, description of the H+

2 molecular ion and its isotopomers is proposed : the

molecular system is treated as a three body Coulomb system, in the framework of non relativistic quantum

mechanics. The method takes advantage of the dynamical symmetries of the system. It relies on the choice

of the perimetric coordinates to describe the system, and of a generalized Hylleraas basis, in which the

Hamiltonian exhibits strong coupling rules. The method is described in detail both for S and P states

(i.e., states of total angular momentum J =0 or 1). We calculate the energies of all J =0 or 1 vibrational

levels of the H+

2 and D+

2 molecular ions with a very high accuracy (typically 10−14 atomic unit). This a

considerable improvement over previous calculations. The dependenece of these results on the proton to

electron mass ratio is also discussed.

PACS. 31.15.Ar Ab initio calculations – 31.15.Pf Variational techniques

1 Introduction

Since the early times of quantum mechanics [1], the H+
2 molecular ion has been studied in great detail, mainly because

it is the simplest molecular system, involving only one electron and two identical nuclei. It is also often studied in text
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books of molecular physics and quantum chemistry, in order to introduce chemical bounding and the LCAO method

[2]. It is also a prototype for the investigation of effects beyond the Born-Oppenheimer approximation. Despite this

apparent simplicity, the theoretical study of H+
2 is a difficult problem, because it is a typical three body Coulomb

system.

During the last years, many theoretical studies of H+
2 and its isotopic species have provided us with highly accurate

predictions for the energy levels of those systems. This renewed interest is partly due to new experimental results,

especially on the polarisability of the H+
2 ion, which has been extracted from the analysis of Rydberg series of H2 [3–5],

and partly to metrological applications: the ratio M/m of the proton mass to the electron mass could be deduced from

a high precision measurement of an optical transition in H+
2 , for instance between different rovibrational levels of the

1sσg electronic ground state.

Up to now, three different methods have been used : the first one is the variation - perturbation method developed

by Wolniewicz et al [6], the second one is a variational method using the full three body Hamiltonian, which has

been developed by several groups [7,8], and the last one is a method derived from the physics of collisions, using

a transformed Hamiltonian [9]. More recently [10], we have introduced a new method, first developed for atomic

systems [11,12]. It is also a variational method, but it differs from the previous ones by the choice of coordinates

used to describe the three body system. We use the so called perimetric coordinates, in order to take advantage of

the dynamical symmetries of the three body Coulomb system. Then, we can choose a basis in which the Hamiltonian

has strong coupling rules, and whose wavefunctions have the correct long-range behavior, i.e. an exponential decay

with respect to each of the inter-particle distances. This method can be used to obtain an accurate description of the

vibrationaly excited states.

The present paper is devoted to the description of the method and its application to H+
2 , D+

2 and HD+. In Sect. 2,

we take advantage of all the geometric symmetries of the problem to reduce the Hamiltonian of the three body system,

and we show that this reduction provides us with a scalar Schrödinger equation for J = 0 or 1 (J being the total

angular momentum of the system). Sect. 3 is devoted to the numerical method used for solving this scalar Schrödinger

equation: we show that, with perimetric coordinates, the use of a Hylleraas type basis set turns the Schrödinger

equation into a generalized eigenvalue problem involving sparse banded matrices, which can be efficiently solved with

the Lanczos algorithm. In Sect. 4, we discuss the convergence of the method and we present our results for the J=0

and J = 1 vibrational levels below the first dissociation limit, for H+
2 and D+

2 . These results are compared with the

most accurate published values. We also give some informations on the dependence of these results with M/m, and
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we discuss the interest of a high resolution spectroscopy measurement in H+
2 . Finally, the energies of the J=0 states

of HD+ are given in Sect. 5.

2 Formalism

We here explain the structure of the exact wave-functions, taking into account successively the rotational invariance,

the parity and (in the case of H+
2 and D+

2 ) the exchange of the two identical particles. We assume that particle 3 is an

electron with mass m and charge −e and particles 1 and 2 (not necessarily identical) have a charge +e. We use atomic

units where both m and e are taken equal to one. Obviously, the 9 degrees of freedom of the three-body system in the

laboratory frame can be reduced to 6 in the center of mass frame by setting:

RG =
M1R1 +M2R2 +mR3

M1 +M2 +m
,

R = R1 − R2,

r =
R1 + R2

2
− R3, (1)

where R1, R2, R3 are the positions of the three particles. The centered Jacobi coordinates R and r represent the

relative positions of the two nuclei and the electron with respect to their center or mass. If P and p denote the

canonically conjugate momenta, the Hamiltonian writes:

H =
p2

2
+

1

2µ12

(
P2 +

p2

4

)
+

p.P

2µ0
− 1

||R2 + r||
− 1

||R2 − r||
+

1

R
, (2)

where µ12 = M1M2/(M1 +M2) is the reduced mass of particles 1 and 2, and 1
µ0

= 1
M1

− 1
M2

. The two exact symmetries

of the Hamiltonian H are the rotational invariance and the parity Π. In the case of H+
2 and D+

2 , the two nuclei are

identical (M1 = M2), and the third term of the Hamiltonian vanishes. The system is invariant under the exchange P12

between particles 1 and 2.

2.1 Angular structure

Because of the rotational invariance, this Hamiltonian commutes with the total angular momentum J = R×P+r×p.

To take advantage of this symmetry, we introduce angular and radial coordinates in the following way: we use spherical

coordinates (R, θ, ψ) in the fixed frame for R, and cylindrical coordinates (ρ, φ, ζ) in the moving frame (uR,uθ,uψ)

for r. The three angular coordinates are nothing but the Euler angles that describe the position of the plane of the

three particles in the laboratory frame. Then the kinetic terms of the Hamiltonian can be expressed with the angular
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operators J2, Jz, J
′
z = J.uR and J ′

± = J.(uρ±iuφ) as:

T1 =
p2

2
= TS1 +

1

2ρ2
J ′ 2
z ,

T2 = P2 +
p2

4
= TS2 +

1

R2
J2 +

1

ρ2

(
ζ2

R2
− ρ2

R2
+

1

4

)
J ′ 2
z

+
ζ

2ρR2

(
(J ′

+ + J ′
−)J ′

z + J ′
z(J

′
+ + J ′

−)
)

+

(
ζ

ρR2

(
ρ
∂

∂ρ
+

1

2

)
− ρ

R2

∂

∂ζ

)
(J ′

+ − J ′
−), (3)

T3 = p.P = TS3 − 1

2R

(
∂

∂ρ
+

1

2ρ

)
(J ′

+ − J ′
−)

− 1

4Rρ

(
(J ′

+ + J ′
−)J ′

z + J ′
z(J

′
+ + J ′

−)
)

− ζ

Rρ2
J ′2
z .

TS1 , TS2 and TS3 will be given below in Eq. (9). The angular eigenfunctions DJ∗
M,T of J2, Jz and J ′

z are related to the

matrix elements of the rotation operator [13]:

DJ∗
M,T (ψ, θ, φ) =

√
2J + 1

8π2
RJ∗M,T (ψ, θ, φ). (4)

Thanks to the rotational invariance of the problem, the Hamiltonian commutes with J2 and Jz , but not with J ′
z, because

there is no invariance around the inter-nuclear axis. Therefore, for given values of J and M , the wave-functions can

be expanded as:

ΨJM =

J∑

T=−J

DJ∗
M,T (ψ, θ, φ)ΦJMT (R, ρ, ζ). (5)

It involves 2J + 1 unknown radial functions which satisfy 2J + 1 coupled Schrödinger equations. The wave-functions

can now be labelled by their parity (and by their exchange symmetry in the case of H+
2 ). The effect of the parity Π

and of the exchange operator P12 on the vectors R and r and on the coordinates (R, ρ, ζ, ψ, θ, φ) is:

Π : R → −R P12 : R → −R

r → −r r → r

ψ → ψ + π ψ → ψ + π

θ → π − θ θ → π − θ

φ→ π − φ φ→ −φ

R→ R R→ R

ρ→ ρ ρ→ ρ

ζ → ζ ζ → −ζ

(6)
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The symmetry properties of the DJ∗
M,T functions with respect to Π and P12 are:

Π DJ∗
M,T (ψ, θ, φ) = (−1)J+TDJ∗

M,−T (ψ, θ, φ), (7)

P12 D
J∗
M,T (ψ, θ, φ) = (−1)JDJ∗

M,−T (ψ, θ, φ). (8)

We now succesively study the simplest cases, namely the J=0 and J=1 states and show how to solve the 2J + 1

coupled differential equations.

2.1.1 S states

The S states, corresponding to J = M = T = 0, are even states because the angular dependence reduces to a constant

1/
√

8π2. There is a single term in the expansion , Eq. (5). Thus, the energy levels are determined by a scalar radial

Schrödinger equation with the effective Hamiltonian HS = TS1 + 1
2µ12

TS2 + 1
2µ0

TS3 + V where TS1 , TS2 and TS3 are the

terms of Eq. (3) that do not depend on the angular momentum. The three kinetic terms of the Hamiltonian as well

as the potential energy are:

TS1 = −1

2

(
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

∂2

∂ζ2

)
,

TS2 = − ∂2

∂R2
− 2

R

∂

∂R
−
(
ζ2

R2
+

1

4

)
∂2

∂ρ2
−
(
ρ2

R2
+

1

4

)
∂2

∂ζ2

−
(
ζ2

R2
− ρ2

R2
+

1

4

)
1

ρ

∂

∂ρ
+ 2

ζ

R2

∂

∂ζ
+ 2

ρζ

R2

∂2

∂ρ∂ζ
, (9)

TS3 = −
(

∂2

∂R∂ζ
− ζ

R

∂2

∂ρ2
+
ρ

R

∂2

∂ρ∂ζ
− ζ

Rρ

∂

∂ρ
+

2

R

∂

∂ζ

)
,

V = −1/

√(
ζ +

R

2

)2

+ ρ2 − 1/

√(
ζ − R

2

)2

+ ρ2 +
1

R
.

2.1.2 The P states

The P states correspond to J = 1. For each M value, the expansion of the wave-function in Eq. (5) involves three

unknown radial functions. Because of the symmetry of the Hamiltonian with respect to the parity Π, we can describe

the even and odd states separately. Since the parity only affects the angular dependence of the wave-functions, it is

useful to introduce one even and two odd angular functions on which the wave-functions may be expanded.

Even P states are very similar to S states, because there is a single even angular function (D1∗
M,1 +D1∗

M,−1)/
√

2, so

that an even P wave-function simply writes:

Ψ1M
e =

(D1∗
M,1 +D1∗

M,−1)√
2

Rρ Φ1M
e (R, ρ, ζ). (10)
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After multiplying the Schrödinger equation by Rρ, the radial function Φ1M
e obeys the scalar generalized Schrödinger

equation:

HP e

Φ1M
e = E R2 ρ2 Φ1M

e , (11)

involving the effective Hamiltonian HP e

= TP
e

1 + 1
2µ12

TP
e

2 + 1
2µ0

TP
e

3 + V P
e

where:

TP
e

1 = R2ρ2 TS1 −R2 ρ
∂

∂ρ
,

TP
e

2 = R2ρ2 TS2 +R ρ

(
−2ρ

∂

∂R
− 2R

(
ζ2

R2
+

1

4

)
∂

∂ρ
+

2ρζ

R

∂

∂ζ

)
, (12)

TP
e

3 = R2ρ2 TS3 +R ρ

(
2ζ

∂

∂ρ
− 2ρ

∂

∂ζ

)
,

V P
e

= R2ρ2 V.

The Rρ factor is introduced in Eq. (10) in order to regularize the terms of the Hamiltonian depending on the angular

momentum.

For odd P states, the situation is slightly more complicated. Indeed, the expansion in Eq. (5) can be reduced to

two terms associated with the two odd angular functions:

Ψ1M
o = D1∗

M,0 Φ
0(R, ρ, ζ) +

D1∗
M,−1 −D1∗

M,1√
2

Φ1(R, ρ, ζ). (13)

In the angular basis {D1∗
M,0, (D

1∗
M,−1 − D1∗

M,1)/
√

2}, the angular operators involved in Eq. (3) are represented by the

matrices:

J2 =




2 0

0 2


 , J ′

+ − J ′
− =




0 −2

2 0


 , J ′ 2

z =




0 0

0 1


 ,

(J ′
+ + J ′

−)J ′
z + J ′

z(J
′
+ + J ′

−) =




0 −2

−2 0


 .

The two radial wave-functions Φ0 and Φ1 obey the two following coupled Schrödinger equations:

HP o



Φ0

Φ1


 = E



Φ0

Φ1


 , (14)

where HP o

is a 2x2 matrix of differential operators that can be easily deduced from Eq. (3). Again, in order to

regularize the terms of the Hamiltonian depending on the angular momentum, we follow Wintgen and Delande [14]

who proposed to introduce the two radial functions F and G defined by:



Φ0

Φ1


 = M



F

G


 with M =



ζ + R

2 ζ − R
2

ρ ρ


 . (15)
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F and G are the solutions of the two coupled Schrödinger equations:

HP o



F

G


 = EP

o



F

G


 (16)

with HP o

= M† HP o

M and EP
o

= E M † M . The four contributions to HP o

= TP
o

1 + 1
2µ12

TP
o

2 + 1
2µ0

TP
o

3 + V P
o

can

be written as:

TP
o

1 =




T dir1 T exch1

T̃ exch1 T̃ dir1



,

TP
o

2 =




T dir2 T exch2

T̃ exch2 T̃ dir2



, (17)

TP
o

3 =




T dir3 T exch3

−T̃ exch3 −T̃ dir3



,

V P
o

= M†M V S .

In the previous equations, the ˜ operation is associated with the change ζ → −ζ, i.e., for a radial function f , we set

f̃(R, ρ, ζ) = f(R, ρ,−ζ), and, for an operator T , we set T̃ (R, ρ, ζ, ∂
∂R ,

∂
∂ρ ,

∂
∂ζ ) = T (R, ρ,−ζ, ∂

∂R ,
∂
∂ρ ,− ∂

∂ζ ).

The operators appearing in Eq. (17) are:

T dir1 =

((
ζ +

R

2

)2

+ ρ2

)
TS1 − ρ

∂

∂ρ
−
(
ζ +

R

2

)
∂

∂ζ
,

T exch1 =

(
ζ2 − R2

4
+ ρ2

)
TS1 − ρ

∂

∂ρ
−
(
ζ +

R

2

)
∂

∂ζ
,

T dir2 =

((
ζ +

R

2

)2

+ ρ2

)
TS2

−
(
ζ +

R

2

)
∂

∂R
+

(
ζ

R
− 1

2

)
ρ
∂

∂ρ
− 1

2

(
ζ +

R

2
+ 2

ρ2

R

)
∂

∂ζ
,

T exch2 =

(
ζ2 − R2

4
+ ρ2

)
TS2

+

(
ζ +

R

2

)
∂

∂R
−
(
ζ

R
+

1

2

)
ρ
∂

∂ρ
− 1

2

(
ζ +

R

2
− 2

ρ2

R

)
∂

∂ζ
,

T dir3 =

(
(ζ +

R

2
)2 + ρ2

)
TS3
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−
(
ζ +

R

2

)
∂

∂R
+

(
ζ

R
− 1

2

)
ρ
∂

∂ρ
− 1

2

(
ζ +

R

2
+ 2

ρ2

R

)
∂

∂ζ
,

T exch3 =

(
ζ2 − R2

4
+ ρ2

)
TS3

−
(
ζ +

R

2

)
∂

∂R
+

(
ζ

R
+

1

2

)
ρ
∂

∂ρ
+

1

2

(
ζ +

R

2
− 2

ρ2

R

)
∂

∂ζ
,

and M†M =



(
ζ + R

2

)2
+ ρ2 ζ2 − R2

4 + ρ2

ζ2 − R2

4 + ρ2
(
ζ − R

2

)2
+ ρ2


 .

The radial factorizations introduced in Eqs. (10), (13) and (15) can be understood from the following argument: the

formalism used here was first developed to describe an Helium atom (particles 1 and 2 become electrons and particle

3 is the nucleus)[14]. For an infinitely massive electron, and if the Coulomb interaction between the two electrons is

neglected, the Hamiltonian becomes H = p1
2

2 + p2
2

2 − 2
r1

− 2
r2

. The exact solutions of this three body problem are

products of hydrogenic wave functions in r1 and r2. Studying the structure of those solutions [15,16] that correspond

to either P e or P o states shows that it is always possible to factorize them as indicated.

So far, we have taken into account only the rotational and parity symmetries to derive the structure of the J =0

and J=1 wave-functions. The result stands for any potential energy V depending only on the inter-particle distances.

2.2 Exchange symmetry

In the case of H+
2 , we have an additional symmetry corresponding to the exchange of the two protons. The T3

contribution to the Hamiltonian disappears since 1
µ0

vanishes. The Hamiltonian then commutes with the exchange

operator P12: the wave functions are either symmetric or antisymmetric with respect to P12. Like in the atomic case,

we will note here spatially symmetric (respectively antisymmetric) states as singlets (resp. triplets). Alternatively,

they can be labelled para (resp. ortho). For J=0, we thus have singlet 1Se and triplet 3Se states. For J=1, the total

parity can be either even or odd, thus producing 1P e and 3P e (even) states as well as 1P o and 3P o (odd) states.

In fact radial wavefunctions of the singlet and triplet Se or P e states obey the same Schrödinger equation (9) or

(12), the only difference being their behaviour, either symmetric or antisymmetric under the transformation ζ → −ζ.

For the P o states of H+
2 , the two coupled Schrödinger equations obeyed by F and G are equivalent as one is

obtained from the other one by changing ζ into −ζ. From Eqs. (13) and (15), it can be seen that the singlet states are

obtained if G(R, ρ, ζ) = F̃ (R, ρ, ζ) = F (R, ρ,−ζ), and the triplet ones if G(R, ρ, ζ) = −F̃ (R, ρ, ζ). The two equivalent

equations can be seen as the following scalar Schrödinger equation:

(T dir + V dir)F ± (T exch + V exch)F̃ = E

([(
ζ +

R

2

)2

+ ρ2

]
F ±

[
ζ2 − R2

4
+ ρ2

]
F̃

)
. (18)
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The sign + or − stands for singlet or triplet states. This is no longer a usual partial derivative equation, but also a

functional equation, since it connects F and F̃ .

To summarize this discussion, we have considered all the symmetry properties of the Hamiltonian of H+
2 , and

obtained, for the J=0 and J=1 states, the structure of the wave-functions and the scalar Schrödinger equation which

they obey.

2.3 Connection with the molecular quantum numbers

As mentioned above, the only symmetries of the three-body problem are the rotational invariance, the parity Π and

the exchange P12 for a system with two identical particles, as H+
2 or D+

2 . Thus, there are only two exact quantum

numbers J and M to describe the eigenstates, i.e., two invariants related to a continuous symmetry. When J and M

are fixed, diagonalizing the exact Hamiltonian of H+
2 provides four series of eigenvalues, one series for each value of

the discrete symmetries (Π ,P12). The energy levels obtained in each series can just be labelled consecutively by a

single integer. Although the system has six degrees of freedom in the center of mass frame, each eigenstate cannot be

labelled by six quantum numbers, a direct consequence of the non separability of the problem.

The usual description of the molecular states of H+
2 uses a different set of quantum numbers, introduced i n the

frame of the Born-Oppenheimer (B.O.) approximation. Because the two nuclei are much heavier than the electron,

the coupling terms of the Hamiltonian between different values of T in Eq. (5) are small and can be neglected.

Consequently, we have an additional approximate symmetry, namely the rotation around the inter-nuclear axis, and

Λ = |T | becomes a good quantum number. Moreover, the remaining electronic and vibrational problem is separable [17]

using the variables η, ξ and R, where ξ = (r1 + r2)/R and η = (r1 − r2)/R are the spheröıdal or elliptical coordinates.

The electronic problem provides us with two Schrödinger equations along the η and ξ coordinates, which depend on

Λ and R, but not on J or M . The solutions are labelled by the two quantum numbers nη and nξ, which count the

number of zeros of the η or ξ wave-functions. The electronic energies thus depend on three quantum numbers nη, nξ

and Λ and are functions of the inter-nuclear distance R. Figure 1 shows the energy curves correlated to the two lowest

dissociation limits. This is the effective potential for the Schrödinger equation along the inter-nuclear coordinate R.

For each set of (J , nη, nξ, Λ), there is a series of vibrational levels (below the dissociation limit) and a continuum

(above the dissociation limit). The B.O. wave-function with parity Π writes:

Ψ
JM ;nηnξΛv
Π = (DJ∗

MΛ(Ψ, θ, Φ) +Π(−1)J+ΛDJ∗
M−Λ(Ψ, θ, Φ)) NΛ,nη

(η) ΞΛ,nξ
(ξ) FJ,nη,nξ,Λ,v(R). (19)



10 L. Hilico et al.: Ab initio calculation of the J =0 and J =1 states of the H+

2 , D+

2 and HD+ molecular ions

When Λ=0, only one parity, namely Π = (−1)J , is allowed. It is only for Λ 6= 0 states that both parities are allowed.

They are degenerate, at least in the B.O. approximation. Finally, in the usual spectroscopic notation for homonuclear

molecules, the electronic parity πe, or u/g symmetry, is used instead of P12. They are related by

Π = πe P12. (20)

With respect to πe, the angular and radial parts of the B.O. wave-function have respectively (−1)Λ and (−1)nη

signatures, and consequently, that of the B.O. wave function is (−1)Λ+nη .

The B.O. wave-function is labelled by six quantum numbers, as expected for a separable system with six degrees

of freedom. Two of them, J and M , are exact good quantum numbers, related to exact symmetries; the four other

ones, namely nη, nξ, Λ and v, are approximate quantum numbers, related to symmetries that hold in the frame of the

B.O. approximation, but are broken in the exact treatment of the three-body problem.

Consequently, for a given value of J , the different vibrational series and continua obtained at the B.O. approximation

with the same parity Π and the same exchange symmetry P12 are all mixed together in the exact treatment, and

give a series of discrete levels below the first dissociation limit, and one or several continua above, with some discrete

levels embedded in these continua. Of course, because the B.O. approximation is a good one, especially for the low

lying part of the spectrum, the structure of the levels is not deeply affected. We will use here the usual molecular

orbital notation, where the different orbitals with the same Λ and πe are distinguished by their quantum numbers in

the united atom limit, i.e. by the atomic orbital corresponding to the limit R → 0 of the molecular orbital.

Table 1 gives the correspondence between the exact quantum numbers (for J ≤ 1) and the molecular quantum

numbers, for the electronic states correlated to the two lowest dissociation limits, which support bound vibrational

levels.

3 Numerical Implementation

The Schrödinger equations we have obtained in Sect. 2 have to be solved numerically. The method consists in diag-

onalizing the matrix representing the Hamiltonian in a convenient basis. The choice of the basis has to obey several

constraints if we want to obtain highly accurate well converged energy levels:

– The matrix elements have to be computed using exact simple formulae in closed form.

– For maximum simplicity, we require to use “independent” coordinates, i.e., coordinates in which the Hilbert space

appears as a tensor product of Hilbert spaces along each coordinate. This makes it possible to use basis states

which are tensor products of simple states along each coordinate.
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– We have to choose a basis in which the Hamiltonian has strong coupling rules – i.e. most of the matrix elements

vanish – to get a sparse band matrix, in order to use very efficient diagonalization algorithms. A sufficient condition

(see below) is that the Hamiltonian can be expressed as a combination of polynomial functions of the coordinates

and the conjugate momenta.

– The long range behavior of the basis functions must be an exponential decrease in the inter-particle distances, as

expected for highly excited states of the three body Coulomb problem.

We now show how those four characteristics can be obtained thanks to the use of the perimetric coordinates.

3.1 Perimetric coordinates

In the Hamiltonian, the potential diverges if one of the inter-particle distances r1, r2 or R vanishes. This divergence

can be regularized through multiplication of the Schrödinger equation by 8r1r2R. Of course, there is a price to pay:

even for S and P e states, the scalar energy E is turned into a positive non diagonal operator E B. The Schrödinger

equation becomes a generalized eigenvalue problem, which is written as:

A|Ψ〉 = E B |Ψ〉, (21)

where A = AS = 8r1r2RH
S and B = BS = 8 r1r2R in the case of S states. For P states, the Schrödinger equation

is multiplied by 4 for convenience, so that A = AP
e

= 32 r1r2R HP e

and B = BP
e

= 32 r1r2R
3ρ2 for P e states and

A = AP
o

= 32 r1r2R HP o

and B = BP
o

= 32 r1r2R M†M for P o states.

The kinetic terms in the A and B operators are polynomials in R, ρ, ζ, ∂
∂R ,

∂
∂ρ ,

∂
∂ζ , but the potential energy term

in A contains square roots, and we have not been able to find a convenient basis where A has strong coupling

rules. We thus have to use an other set of coordinates. To remove the square roots, we could work with the radial

coordinates (r1, r2, R). The operators A and B are polynomials in r1, r2, R,
∂
∂r1

, ∂
∂r2

, ∂
∂R . However, those coordinates

are not independent, since their ranges are connected by the triangular inequalities |r1 − r2| ≤ R ≤ r1 + r2, and

the Hilbert space is not a tensor product of Hilbert spaces along the r1, r2 and R coordinates. The set of spheröıdal

coordinates, inherited from the Born Oppenheimer approximation, is a good candidate to represent the first energy

levels of a given symmetry, as it directly incorporates some useful physical properties of the system. On the other

hand, it lacks any simplicity in the matrix elements, and becomes inappropriate for the heavy numerical calculations

required for highly excited states.

The perimetric coordinates satisfy all the required criteria. They are defined by:
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x = r1 + r2 −R,

y = r1 − r2 +R,

z = −r1 + r2 +R.

(22)

The ranges of x, y and z are independent. They are 0 ≤ x < ∞, 0 ≤ y < ∞ and 0 ≤ z < ∞. The effect of the parity

and exchange operators on the perimetric coordinates are:

Π : x→ x P12 : x→ x

y → y y → z

z → z z → y,

(23)

They are connected to R, ρ and ζ by:

R =
y + z

2
,

ρ2 = xyz
x+ y + z

(y + z)2
, (24)

ζ =
(y − z)(2x+ y + z)

4 (y + z)
.

The expressions of the operators A and B in perimetric coordinates for the S, P e or P o states can be deduced from

the operators in (R, ρ, ζ) by a tedious but straightforward calculation. They are polynomials in x, y, z , ∂
∂x , ∂

∂y ,
∂
∂z .

For example, the operators for S states of H+
2 have been published by Saavedra & al [18]. In the Appendix, we give the

integral expressions of the scalar product of two wave functions of a given symmetry, as well as compact expressions

of the S and P e Hamiltonians.

3.2 Choice of the basis

The structure of the partial differential equations we have to solve is now very simple. Each term of the potential or

of the energy operator B is a polynomial in the perimetric coordinates. Each contribution to the kinetic terms is the

product of a polynomial in x, y and z by a first or second order partial derivative with respect to x, y or z. The long

range behavior of the basis functions has to match that of the wave-functions (an exponential decrease in the case of

the Coulomb interaction) in order to obtain a good description of the excited levels with a basis as small as possible.

Therefore, we have to use a basis built with orthonormal functions in each coordinate x, y and z defined in [0,∞[, and

having an exponential decrease at infinity. A solution is to use Laguerre polynomials.

More precisely, a vector of the basis is defined by:

|n(α)
x , n(β)

y , n(β)
z 〉 = |n(α)

x 〉 ⊗ |n(β)
y 〉 ⊗ |n(β)

z 〉, (25)
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where |n(α)〉 is the basis state whose wave-function is 〈u|n(α)〉 = χ
(α)
n (u). α and β are two positive real parameters,

whose choice is discussed below. The χ
(α)
n (u) functions are chosen to be orthonormal with respect to the scalar product

in perimetric coordinates, which depends on the class of states under study (see Appendix A.1). For the S and P o

states, the scalar product in perimetric coordinates involves the weight dx dy dz. Thus we introduce:

χ(α)
n (u) = (−1)n

√
α L(0)

n (αu) e−αu/2, (26)

where L
(p)
n are the generalized Laguerre polynomials [19]. These states form a complete orthogonal basis for this scalar

product.

For the P e states, the scalar product involves the weight xdx ydy zdz and we define:

χ(α)
n (u) =

(−1)n
√
α√

n+ 1
L(1)
n (αu) e−αu/2. (27)

In equation (25), α−1 and β−1 are two length scales. The long range behavior of the basis functions is, in terms of

the radial distances:

e−αr1/2e−αr2/2e(−β+α/2)R. (28)

For homonuclear molecular ions, r1 and r2 play symmetric roles, and it is thus natural to choose the same parameter

β along the y and z coordinates. For most of the energy levels computed here, the optimum values of α and β verify

β >> α, and we can consider that α−1 gives the electronic length scale while β−1 mainly determines the inter-nuclear

length scale. This is no longer true for weakly bound levels, close to a dissociation limit, for which we have α ≈ β.

Because of their structure, all the terms in the Hamiltonian have strong coupling rules (see Appendix A.2): non-zero

matrix elements between |nx, ny, nz〉 and |nx +∆nx, ny +∆ny, nz +∆nz〉 are obtained only if |∆nx|,|∆ny |,|∆nz| and

|∆nx| + |∆ny| + |∆nz| are smaller than 2, 2, 2, 3 for S states, 3, 3, 3, 4 for P e states, and 4, 4, 3, 5 for P o states,

giving respectively 57, 123 and 215 coupling rules. The analytical calculation of the matrix elements of the various

contributions to the Hamiltonian is very tedious and has been performed using the symbolic calculation language Maple

V. The results are directly output in FORTRAN code. An example of such a matrix element is given in Appendix A.2.

For the S and P e states of H+
2 and D+

2 , the singlet and triplet wave functions obey the same Schrödinger equation,

the only difference being the symmetric or antisymmetric character with respect to the exchange of y and z. We thus

use a symmetrized or antisymmetrized basis (the length scales α and β are omitted):

|nx, ny, nz〉± =
|nx, ny, nz〉 ± |nx, nz, ny〉√

2
. (29)

The vector indices are restricted to ny ≤ nz or ny < nz. This symmetrization requires the length scales in the y and

z directions to be equal, in order to preserve the coupling rules.
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For P o states, the radial F function has no longer any symmetry with respect to the exchange of y and z, so the

basis vectors are simply |nx, ny, nz〉. In the case of S states of HD+, the basis vectors are also |nx, ny, nz〉.

3.3 Numerical diagonalization

To perform the numerical calculations, the basis is truncated at nx + ny + nz ≤ N and nx ≤ Nx, with Nx ≤ N . If

the basis is symmetrized (resp. antisymmetrized), we add the condition ny ≤ nz (resp. ny < nz). The total number of

basis states Ntot scales as N2Nx.

The various basis vectors are ordered using an algorithm which builds a sparse band matrix with a width as small

as possible. The width (defined as the maximum distance in the ordered basis between two coupled vectors) scales as

NNx and it is typically a few percent of the size of the basis. Of course, it increases with the number of coupling rules.

The diagonalization of the generalized eigenvalue problem (21) is performed with the Lanczos algorithm [20]. The

amount of required memory and the efficiency of this algorithm depend on the width of the matrix.

The truncation of the basis turns the length scales α−1 and β−1 into variational parameters. They have to be

optimized, in order to minimize the eigenenergies of the Hamiltonian. Since the dependence on the variational param-

eters decreases if the size of the basis increases, and because we wish to determine as many levels as possible, we have

basis sets as large as possible, limited by the amount of memory of the computers (up to 1 GB is used on our local

workstations, and up to 32 GB on a Cray T3E supercomputer). Both α and β parameters are scanned on a range

large enough to observe the minimum of each eigenvalue. In practice, we obtain, for most of the eigenenergies, a well

defined region in the parameter space, where the energy does not depend on the variational parameters. Then, each

eigenenergy is determined with an accuracy limited only by the numerical noise due to round off errors. A typical

accuracy of the order of 10−14 is reached, as expected in double precision FORTRAN code. The convergence properties

are illustrated in Fig. 2 and Fig. 3. Note that the 10−14 accuracy is obtained for J = 0 states only. For J = 1 states,

there is a small numerical unstability of the algorithm – probably related to the condition number of the matrices A

and B – that prevented us from calculating more than eleven or twelve significant digits.

4 Numerical results

The energies of all the J = 0 and J = 1 bound levels of the H+
2 or D+

2 molecular ions below the first dissociation

limit have been computed. As shown in Table 1, the rovibrational levels of the 1sσg electronic ground state have 1Se

or 3P o symmetries, while the 2pσu excited states are either 3Se or 1P o states. There is no P e state below the first
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dissociation limit (see Table 1). The numerical results we have obtained in that case will be presented elsewhere. The

convergence control procedure is detailed only for the 1Se states, but the same procedure has been used for all the

levels reported here. All the numerical values shown in this paper have been checked to be well converged at the level

of the last printed digit.

The 1986 fundamental constants [21] are used. The proton to electron mass ratio and the deuteron to electron

mass ratio are 1836.152701 and 3670.483014. The atomic unit of energy is 219474.63067 cm−1.

4.1 1Se states of H+
2

4.1.1 Convergence region

The convergence of the results is illustrated in Figs. 2 to 4. For these computations, the truncation bounds have been

limited to N = 96 and Nx = 20. The basis contains 40846 functions, the (half-)width of the matrix is 1846 and the

required memory is about 500 MBytes. Fig. 2 shows the convergence region in the the (α, β) space for (a) the 5th and

(b) the 18th level. This is a logarithmic contour plot of the difference between the energy obtained for parameters α

and β and the best value obtained with a larger basis (see Table 2). The contour levels are shown in the figure. For

the 5th level, one observes a wide region in which the convergence at the 10−13 level is achieved. The dashed lines

correspond to the 10−14 contour. Its irregular shape arises from the numerical noise. For the 18th level, the energy is

converged only at the 10−13 level in a small region because the basis is not large enough. Of course, convergence at the

10−14 level is obtained with a larger basis (Table 2). Figure 3 shows the convergence regions at the 10−12 level for the

v=0 to v=17 states. When v increases, the region becomes narrower in the β direction, and is shifted down to smaller

values of β. Indeed, the wave functions have larger and larger extensions in R, and thus need smaller and smaller β

values to be well represented by our basis functions. On the other hand, they have faster and faster oscillations, which

cannot be represented if the basis is too small. This is why the two highest levels are not obtained with the small basis

chosen here, but require a larger basis size.
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4.1.2 Convergence of the eigenvectors

When the best parameter region is found (around α=1.7 and β=8 from Fig. 3), the quality of the results is checked

by analyzing the eigenvector expansion on the basis. Each eigenvector |Ψ〉 is numerically known as:

|Ψ〉 =
∑

0 ≤ nx ≤ Nx

0 ≤ ny ≤ nz ≤ N

nx + ny + nz ≤ N

Cnxnynz
|nx, ny, nz〉±. (30)

The eigenvectors |Ψ〉 are normalized for the scalar product defined in Appendix A.1. They verify the normalization

condition 〈Ψ | BS |Ψ〉/32 = 1. We introduce the projection operator Pnx
onto the subspace with fixed nx value. We

have:

Pnx
|Ψ〉 =

∑

0 ≤ ny ≤ nz ≤ N

ny + nz ≤ N − nx

Cnxnynz
|nx, ny, nz〉±. (31)

We then determine the weight of Pnx
|Ψ〉 in |Ψ〉 by computing the overlap:

Px(nx) = 〈Ψ | BS Pnx
|Ψ〉/32. (32)

The similar quantity Pz(nz) is also computed. Fig. 4 shows Px and Pz as functions of nx and nz in a logarithmic

scale. The dependence of Px on nx is an exponential decrease. That of Pz on nz exhibits first a flat behavior, and then

an exponential decrease indicating that calculation gets converged. This figure shows that the basis truncation can

be more drastic in the x direction than in the y and z directions. This is connected to the fact that the vibrational

excitation of H+
2 can increase a lot before the electronic part of the wave-function significantly changes. The coefficient

distributions for the levels v=0 to v=17 indicate that the convergence is obtained, but the distribution for v=18 and

v=19 is nearly flat without any decay, showing that the basis is not large enough to give the energies of those levels.

Again, increasing the boundary along the z coordinates (i.e., increasing the basis size) makes it possible to have these

levels converged too.

4.1.3 Results

Our results for the 1Se states of H+
2 are listed in Table 2. Note that we have obtained all the vibrational states of

the 1sσg electronic ground state. Except for the last one, the energies are known with an accuracy of 10−14. Most of
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them can be obtained using the truncation bounds N = 120 and Nx = 20. The last vibrational level requires a very

large basis, with N=220 and Nx=30, containing 332696 functions. The values of the variational parameters α and β

for which the results can be obtained are given in the tables. They were chosen close to the center of the convergence

region. The size of the region is shown in Figs. 2 and 3.

4.1.4 Comparison with previously published results

Several authors have published accurate energy levels of some J = 0 1sσg states of H+
2 corresponding to the 1Se

symmetry. But, up to now, only R.E. Moss has computed all of them. He achieved fully non adiabatic calculations

using a basis built from Laguerre and Legendre polynomials of the spheröıdal electronic coordinates, and gave all the

dissociation energies with an accuracy of 10−11 [22]. Our results are in full agreement with those of Moss, but with an

improved accuracy.

Much more work have been devoted to the two first 1Se states of H+
2 , allowing a more detailed comparison, as

summarized in Table 3. In 1998, we have demonstrated the efficiency of our method [10], and given the first two

vibrational levels of H+
2 with a 10−12 relative accuracy. At that time, we used only one variational parameter α, and

β had to be set to 2α. Saavedra et al. [18] have published the ground state energy of several three body Coulomb

systems, obtained with exactly the same method. They reached the same accuracy than in [10], but with a much

smaller basis, thanks to the introduction of the second variational parameter β.

T.K. Rebane and A. V. Filinsky [23] have also computed the ground state energy of many three body molecular

ions using perimetric coordinates and variational computations, i.e. a method probably very close to our method, but

still unpublished. The ground state energy of H+
2 that they obtained coincides with our values at the 10−14 level.

More recently, two high precision calculations of the energy levels of H+
2 have been published [24,25]. Both used a

variational method, which differs from the one described here by the fact that the electronic wave function is expressed

in terms of the prolate spheröıdal coordinates ξ and η. J. M. Taylor et al. [24] have published the first rovibrational

energies of H+
2 for (v, J)=(0, 0), (0, 1) and (1, 0) with an accuracy of 5 10−13. R. E. Moss [25] gives the same results,

with a improved accuracy of 10−13. Finally, in the same paper [25], R. E. Moss also uses a scattering method, together

with a transformed Hamiltonian, and obtains results in agreement with the previous ones at the level of 10−13.

In summary, our results are the most accurate ones on the whole sequence of vibrational levels, and agree perfectly

well with the (less accurate) previously published results. This makes us confident on the reliability of our numerical

code.
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4.2 J=1 1sσg states of H+
2

To obtain the rovibrational states of the ground electronic state of H+
2 with J = 1, the 3P o Hamiltonian has to be

diagonalized. In that case, the Schrödinger equation is more complicated than in the S state case, since it couples the

radial wave function F (x, y, z) to F̃ (x, y, z) = F (x, z, y) through the exchange terms of the Hamiltonian. The non-zero

matrix elements of the Hamiltonian not only come from the 215 coupling rules of the direct terms, but also from 205

pseudo-rules due to the exchange terms. Indeed, a coupling rule (∆nx, ∆ny, ∆nz) of an exchange term connects the

vector |nx, ny, nz〉 to the vector |n′
x, n

′
y, n

′
z〉 = |nx +∆nx, nz +∆ny, ny +∆nz〉, and induces a pseudo-rule δnx = ∆nx,

δny = n′
y − nz and δnz = n′

z − ny. We denote them pseudo-rules because they depend on the values of ny and nz.

Since we have |∆nx| ≤ 4, |∆ny| ≤ 3, |∆nz| ≤ 3 and |∆nx| + |∆ny| + |∆nz| ≤ 5 for the exchange coupling rules,

we obtain 205 pseudo-rules. Finally, we have up to 420 non-zero matrix element per row of the Hamiltonian matrix.

Consequently, the width of the P o matrices is much larger than in the Se case. In addition, for P o states, the basis

is not symmetrized. Thus, for the same bounds on N or Nx, the basis is nearly twice as large. Available computer

memory leads to smaller bounds for P o states than for S states. As a consequence, the accuracy of the eigenenergies

is smaller, and it is difficult to obtain convergence for the highly excited vibrational levels. The energies are given in

Table 4. The accuracy is only at the level of 10−11. This is due to round off errors. Because of the increased sizes of

the matrices, they accumulate more rapidly than for 1Se states; this could also be due to ill-conditioned matrices in

the case of 3P o states, which have eigenvalues separated by several orders of magnitude. In Table 5, we compare our

values to the high accuracy values previously published. Although they are slightly less accurate because of round off

errors, our results agree with the published ones and cover the full sequence of vibrational levels.

4.3 J=0 and J=1 2pσu states of H+
2

The 2pσu electronic curve of H+
2 has a long range minimum, which supports one bound state for J = 0 or 1. Those

states have either the 3Se or the 1P o symmetries (see Table 1). The computation of the 3Se and 1P o states are similar

to that for the 1Se and 3P o states. The only difference are in Eqs. (18) and (29), where the choice of the + or −

signs has to be inverted. For 3Se states, the indices of the basis vectors have to obey ny < nz . The accuracy for

the 3Se states is better than for the 1P o states, because, for a given amount of memory on the computer, the basis

can be chosen much larger for 3Se states. Since the 1P o state is closer to the dissociation limit, the extension of the

wave function is wider. This explains why the variational parameters are smaller. Table 6 compares our results to the

published values. Again, our values are more accurate, and agree with the previous results.
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4.4 Results for D+
2

Similar calculations have been done for all the Se and P o energy levels of D+
2 below the first dissociation limit. We

obtain 28 bound levels corresponding to the 1sσg electronic level of 1Se and 3P o symmetries, listed in Table 7. The

first rovibrational levels are compared with the results already published in Table 8. Finally, Table 9 gives the two

J =0 and the J =1 bound states corresponding to the 2pσu first electronic excited state (3Se and 1P o symmetries),

and compares them with the published values. The conclusions are essentially similar to the ones obtained for H+
2 :

with our method, we are able to compute all the vibrational sequence with an improved accuracy. No disagreement is

found with previously published results.

4.5 Mass effect

Highly accurate energy levels of H+
2 could be used for measuring the proton to electron mass ratio M/m. A high

accuracy frequency measurement of an optical transition between two rovibrational states of H+
2 can be done using a

Doppler free two-photon transition. It should be emphasized that such an experiment will give an information that can

be interpreted either as a M/m measurement, or a study of the relativistic and QED corrections in H+
2 . We discuss

here these two aspects.

First, we have determined the dependence of the 1Se energies of H+
2 on M/m by computing them for 21 values

of M/m around the 1986 codata values, separated by a 10−5 a.u. step. The slope ∂E
∂(M/m) is determined by a least

square linear fit. The results are given in Table 10. The order of magnitude of the slope is a few 10−6 in atomic units.

The third column of Table 10 gives the relative sensitivity of the v → v + 1 transition frequencies on the M/m ratio

defined as:

Tv =
M/m

ωv

∂ ωv
∂ M/m

, (33)

where ωv denotes the v → v + 1 transition frequency. The order of magnitude of Tv for the first transitions is close to

−0.5, which is the value expected if the nuclear vibration was harmonic. The dependence of Tv on v shows that the

sensitivity of the v → v + 1 transition frequency on M/m decreases with v. M/m is presently known with a relative

accuracy of 2.1 10−9 [26,27]. Thus, the relative uncertainty on the predicted transition frequencies due to the accuracy

of the M/m ratio is of the order of 10−9 for the first transitions. To be compared with some spectroscopic data upon

H+
2 , the energies computed here have to be corrected of relativistic and QED effects. Moss [22,28,29] has determined

these relativistic and QED corrections for the rovibrational levels of the 1sσg electronic states. The corrections are

given with an accuracy of 10−4 cm−1. Then, their contribution to the relative uncertainty on the lowest v → v + 1
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transition frequencies is about 5 10−8. The accuracy of the relativistic and QED corrections has to be improved by at

least two orders of magnitude to allow a M/m measurement through the H+
2 spectroscopy. We have briefly discussed

elsewhere the possibility to compute these corrections more accurately [10]. It should be noted that, in any case,

this calculation requires a good knowledge of the exact three body wave functions, which is provided by the method

described in this paper.

In a forthcoming paper, we will present the calculation of the two-photon transition matrix elements between

two rovibrational states of H+
2 or D+

2 , and we will discuss the feasibility of a Doppler free two-photon spectroscopy

experiment between two Se states. In such an experiment, the width of the transition is expected to be very small

because the levels are very long lived. Such an experiment could thus measure a transition frequency with a relative

accuracy of 10−10 or better. So far, it would provide a measurement of the difference of the corrections between the two

states involved in the transition, with an accuracy limited by the uncertainty on M/m. Yet any significant progress

on the calculation of the corrections would turn the experiment into a M/m measurement.

5 Se states of HD+

In this section, we give the energies of the 1sσ states of the HD+ molecular ion below the first dissociation limit

(Se symmetry). Here the quantity 1
µ12

is computed from the proton to electron mass ratio 1836.152701 and from the

deuteron to proton mass ratio 1.999007496 also taken from [21]. The basis is not symmetrized, and consequently, for

the same truncation bounds as for H+
2 , the basis is nearly twice as large. We were able to obtain convergence at the

10−14 level for most of the energy levels on usual workstations, with less than 1 GB of memory. The last vibrationally

excited states required extremely large basis sets, and the last level corresponding to v=22 is converged only at the

10−10 level. The results are given in Table 11. All of them, but the last one, agree with the dissociation energies given

by Moss [30]. Once more, our results are the most accurate ones for the full sequence of vibrational levels.

6 Summary and conclusion

In this paper, we have described a new method to treat a three body Coulomb system. This method takes advantage

of all the symmetries of the system, including dynamical symmetries. Perimetric coordinates are used to describe the

relative positions of the three particles, and generalized Hylleraas type basis functions are introduced, which correctly

describe the asymptotic behavior of the wave-functions. Two length scales are used as variational parameters. Some

comments can be done on this method:
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a - Obviously, it allows to compute very accurate values of the energy levels of the system. It also provides high

quality wave-functions, as shown by the exponential decrease of the weights in Fig. 4.

b - Because the basis functions have been chosen with the convenient asymptotic behavior, this method is suitable

to accurately describe the highly excited vibrational levels. The electronically excited states can also be described,

if the complex rotation method is used [11,12].

c - Our method is deeply J dependent. We used it here to study the J=0 and J=1 states. Obviously, for higher J

values, this method is less and less convenient. It is suitable only for very low J values.

The method is here applied to the H+
2 molecular ion and its isotopomers D+

2 and HD+. The energies of all the

J=0 and 1 states below the first dissociation limit have been computed. Our results are given with a accuracy up to

10−14 atomic unit. Their dependences on the proton to electron mass ratio M/m are also given. Finally, the interest

of a high precision two-photon spectroscopy experiment in H+
2 is discussed. Presently, such an experiment would give

information on the relativistic and radiative corrections. Only if the theoretical predictions of those corrections would

be known with two additional figures, a measurement of M/m with some metrological interest could be extracted

from such an experiment.

Laboratoire Kastler Brossel de l’Université Pierre et Marie Curie et de l’Ecole Normale Supérieure is UMR 8552 du

CNRS. We are grateful to IDRIS, which has provided us with many hours of computation on large memory computer

facilities. We are also grateful to Philippe Thomen, who has worked on the derivation of the HD+ Hamiltonian in

perimetric coordinates. The authors thank P. Indelicato for a careful reading of the manuscript.

A APPENDIX

A.1 Scalar product expressions

We recall here the structure of the wave-functions, and give the radial part of the scalar products for the S, P e and

P o states. The angular part of the scalar product is normalized using the standard spherical harmonics. The volume

element is :

R2 dR ρdρ dζ = (x+ y)(x+ z)(y + z)/32 dx dy dz.

In each case, the scalar product involves the positive B operator (representing the energy operator).

For Se states:

Ψ =
1√
8π2

ϕ(x, y, z),
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〈Ψ1|Ψ2〉S =

〈
ϕ1

∣∣∣∣
BS

32

∣∣∣∣ ϕ2

〉
=

∫ ∫ ∫
(x+ y)(y + z)(z + x)

32
ϕ∗

1(x, y, z)ϕ2(x, y, z) dx dy dz.

For P e states:

Ψ =
(D1∗

M,1(ψ, θ, φ) +D1∗
M,−1(ψ, θ, φ))

√
2

Rρ ϕ(x, y, z),

〈Ψ1|Ψ2〉P
e

=

〈
ϕ1

∣∣∣∣
BP

e

128

∣∣∣∣ ϕ2

〉

=

∫ ∫ ∫
(x+ y + z)(x+ y)(y + z)(z + x)

128
ϕ∗

1(x, y, z)ϕ2(x, y, z)xdx ydy zdz.

For P o states:

Ψ = D1∗
M,0(ψ, θ, φ) Φ0(x, y, z) +

(D1∗
M,−1(ψ, θ, φ) −D1∗

M,1(ψ, θ, φ))
√

2
Φ1(x, y, z)

with



Φ0

Φ1


 = M



F

G


 ,

〈Ψ1|Ψ2〉P
o

=

〈


F1

G1



∣∣∣∣
BP

o

128

∣∣∣∣



F2

G2



〉
, (34)

〈Ψ1|Ψ2〉P
o

=

∫ ∫ ∫
(x+ y)(y + z)(z + x)

128


F1

G1




†


(x+ y)2 x(x+ y + z) − yz

x(x+ y + z) − yz (x+ z)2






F2

G2


 dx dy dz.

A.2 Derivation of the matrix elements of S and P o states

As mentioned in Sect. 3.2, when using the perimetric coordinates x, y, z, each term of the kinetic part of the Hamil-

tonian appears as a product of a polynomial in x, y, z by a first or second order partial derivative with respect to

x, y and z. In order to obtain the matrix elements of the Hamiltonian, we have to efficiently take into account the

recurrence and differential properties of the Laguerre polynomials family [19]. At a deeper level, we can construct a

Lie algebra of operators that have simple connections with the various operators of interest (i.e., perimetric coordi-

nates and associated momenta) such that the Hilbert space appears as a representation (preferably irreducible) of the

associated Lie group.
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In the specific case of S and P o states of H+
2 or HD+, we introduce the following hermitean operators, written for

a variable u, and a length scale α−1:

S1 =
1

α

(
u
∂2

∂u2
+

∂

∂u

)
+ α

u

4
,

S2 = i

(
u
∂

∂u
+

1

2

)
, (35)

S3 = − 1

α

(
u
∂2

∂u2
+

∂

∂u

)
+ α

u

4
.

The commutation relations of those operators are closed:

[S1, S2] = −iS3 , [S2, S3] = iS1 , [S3, S1] = iS2, (36)

and characterize the SO(2, 1) group (Lorentz group in two spatial dimensions). Thus S1, S2 and S3 appear as the

generators of a SO(2, 1) group and Eqs. (35) define a representation of SO(2, 1) for which the Casimir operator can be

computed as S2
1 + S2

2 − S2
3 = 1

4 . It follows that the Hilbert space is a single irreducible representation of the SO(2, 1)

group of type D+
1/2 [31].

u, u ∂
∂u and u ∂2

∂u2 can be expressed as linear combinations of S1, S2 and S3, and consequently, each term of the

Hamiltonian can be expressed as a combination of the generators of three different SO(2, 1) groups.

For the S state Hamiltonian, the expressions are simpler if the following hermitean operators U = S1 + S3,

P = S1 − S3, Q = S2
1 − S2

3 and S = (S1 + S3) S2 + S2 (S1 + S3) are introduced. For example, we give the expressions

of the operators A and B of Eq. (21):

AS = α−1

(
AS1 +

1

2µ12
AS2 +

1

2µ0
AS3

)
+ α−2 V S ,

AS1 = −4 γ2 (Uy + Uz)
2 Px − 4 γ (Uy + Uz) Qx

−4 γ
(
U2
z Py + U2

y Pz + Uz Qy + Uy Qz − iSy iS2z − iSz iS2y

)
,

AS2 = −4 γ2 (U2
y + U2

z ) Px − 4 γ (Uy + Uz) Qx

− 8

γ

(
U2
x +

γ2

2
U2
z + γUx Uz

)
Py − 8 (Ux +

γ

2
Uz) Qy

− 8

γ

(
U2
x +

γ2

2
U2
y + γUx Uy

)
Pz − 8 (Ux +

γ

2
Uy) Qz

+4 iSx (iS2y + iS2z) + 4 iS2x (iSy + iSz),

AS3 = 4 γ Qx (Uy − Uz) − 4 iSx (iS2y − iS2z) + 4 γ iS2x (iSz − iSy)

+8 Ux (UyPz − UzPy) + 4 γ2 Px (U2
y − U2

z ) + 4 γ (U2
y Pz − U2

z Py)

−4 γ (Qy Uz −Qz Uy),
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V S = −16γ
(
Ux +

γ

2
(Uy + Uz)

)
(Uy + Uz) + 8 (Ux + γUy)(Ux + γUz),

BS = 8 α−3 γ (Ux + γUy)(Ux + γUz)(Uy + Uz),

where γ = α/β.

As all the operators involved in the generalized eigenvalue problem, Eq. (21), can be expressed in terms of the

generators S1, S2 and S3, it is natural to use a basis where the generators have simple matrix elements. We choose

the standard basis for the D+
1/2 representation of the SO(2, 1) group [31], i.e., eigenstates of the S3 operator that are

labelled with a non-negative integer n. All matrix elements of the generators are known and simple. They have strong

coupling rules (n changes by at most one unit) and are given by:

S1|n > =
n+ 1

2
|n+ 1 > +

n

2
|n− 1 >,

iS2|n > =
n+ 1

2
|n+ 1 > −n

2
|n− 1 >, (37)

S3|n > =

(
n+

1

2

)
|n > .

The wave-functions in the standard basis are also known. They are:

〈u|n(α)〉 = (−1)n
√
α L(0)

n (αu) e−αu/2. (38)

A vector of the basis used for the full problem (defined in Eq. (25)) is a tensor product over the three perimetric

coordinates |n(α)
x , n

(β)
y , n

(β)
z 〉, where different length scales are used in the x and y, z coordinates.

From the coupling rule |∆n| ≤ 1 of the elementary operators S1, iS2, S3, one can deduce those of U and P

(|∆n| ≤ 1) and of Q and iS (|∆n| ≤ 2). The detailed expression of the Se Hamiltonian shows that the coupling rules

connecting the basis vectors |nx, ny, nz〉 and |nx + ∆nx, ny + ∆ny, nz + ∆nz〉 are given by |∆nx| ≤ 2, |∆ny| ≤ 2,

|∆nz | ≤ 2 and |∆nx| + |∆ny| + |∆nz | ≤ 3 as announced in Sect. 3.2. The matrix elements of the Hamiltonian can be

easily deduced from those of S1, iS2, S3, using a symbolic calculation language like Maple V. Here, we only give as

an example the diagonal matrix element of the term depending on m/M :

〈a, b, c|AS2 |a, b, c〉 = − (4 + 8 γ b c+ 2 γ + 12 a+ 4 b+ 6 γ3 a b2

+6 γ3 a b+ 6 γ3 a c2 + 6 γ3 a c

+16 γ a b c+ 6 γ b+ 2 γ2 a2 b+ 2 γ2 a b

+2 γ2 a2 c+ 2 γ2 a c+ 2 γ b2 + 4 γ a+ 6 γ c

+2 γ c2 + 6 γ2 b+ 2 γ2 a+ 2 γ2 + 4 γ3 a

+3 γ3 b2 + 2 γ3 + 12 a2 + 12 a b+ 12 a2 b+ 12 a c
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+4 c+ 12 a2 c+ 4 γ a b2 + 4 γ a c2 + 12 γ a b+ 12 γ a c

+16 γ2 b c+ 4 γ2 b2 + 4 γ2 c2

+6 γ2 c+ 2 γ2 a2 + 3 γ3 c+ 3 γ3 c2

+8 γ2 b2 c+ 8 γ2 b c2 + 3 γ3 b)/γ.

The terms of the operator AP
o

can be expressed using the same elementary operators. The expressions are too long

to be reported here.

A.3 Derivation of the matrix elements of P e states

In the case of P e states, because the scalar product involves the weight xdx ydy zdz, the previous generators are no

longer hermitean. We thus have to define a new set of hermitean operators:

S1 =
1

α

(
u
∂2

∂u2
+ 2

∂

∂u

)
+ α

u

4
,

S2 = i

(
u
∂

∂u
+ 1

)
, (39)

S3 = − 1

α

(
u
∂2

∂u2
+ 2

∂

∂u

)
+ α

u

4
.

The commutation relations are still [S1, S2] = −iS3, [S2, S3] = iS1 and [S3, S1] = iS2, and the interpretation in terms

of group theory is similar. The Casimir operator is now computed as S2
1 +S2

2 −S2
3 = 0. Thus, the Hilbert space spans

a D+
1 representation of the SO(2, 1) group. The standard basis is again composed of eigenstates of S3 and the matrix

elements of the generators are:

S1|n > =

√
(n+ 1)(n+ 2)

2
|n+ 1 > +

√
n(n+ 1)

2
|n− 1 >,

iS2|n > =

√
(n+ 1)(n+ 2)

2
|n+ 1 > −

√
n(n+ 1)

2
|n− 1 >,

S3|n > = (n+ 1)|n > .

Finally, the wave-functions of the basis states are:

〈u|n(α)〉 =
(−1)n

√
α√

n+ 1
L(1)
n (αu) e−αu/2. (40)

The expression of the P e Hamiltonian involves the hermitean operators U = S1 + S3, M = S1 − S3, Q = S2
1 − S2

3 ,

N = (S1 + S3) S2 + S2 (S1 + S3), F = U M U and G = U S2 U . We have:

AP
e

= α−2

(
AP

e

1 +
1

2µ12
AP

e

2 +
1

2µ0
AP

e

3

)
+ α−3 V P

e

, (41)
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APe

1 = 8 γ3 (−Mx Uy
3 − 3Mx Uy

2 Uz − 3Mx Uy Uz
2 − Mx Uz

3)

+8 γ2 (−Uy
3 Mz − My Uz

3 − 2Qx Uy
2 − 4Qx Uy Uz − 2Qx Uz

2 − 2Uy
2 Qz

− 2Qy Uz
2 − Uy Uz − Uy Fz − Fy Uz + iNy iNz + 2 iS2y iGz + 2 iGy iS2z )

+8 γ (−Ux Uy
2 Mz − Ux My Uz

2 − Ux Uy Qz − Ux Qy Uz + Ux iNy iS2z

+ Ux iS2y iNz − Fx Uy − Fx Uz ),

APe

2 = −8 γ3 (Mx Uy
3 + Mx Uy

2 Uz + Mx Uy Uz
2 + Mx Uz

3)

+8 γ2 (−Uy
3 Mz − My Uz

3 − 2Qx Uy
2 − 2Qx Uy Uz − 2Qx Uz

2

+ iS2x Uy iNz + iS2x iNy Uz − 2Uy
2 Qz − 2Qy Uz

2 + 2 iS2x iGy + 2 iS2x iGz

− Uy Fz − Fy Uz )

+8 γ (−3Ux Uy
2 Mz − 3Ux My Uz

2 − 5Ux Uy Qz

− 5Ux Qy Uz + iNx Uy iS2z + iNx iS2y Uz − Ux Uy − 2Ux Fy − Ux Uz

− 2Ux Fz − Fx Uy − Fx Uz + iNx iNy + iNx iNz )

+16 (−2Ux
2 Uy Mz − 2Ux

2 My Uz − 2Ux
2 Qy − 2Ux

2 Qz + iGx iS2y + iGx iS2z )

+
−16Ux

3 My − 16Ux
3 Mz

γ
,

APe

3 = 16(Ux
2 Uy Mz − Ux

2 My Uz − iGx iS2y + iGx iS2z )

+ 8 γ3 (Mx Uy
3 + Mx Uy

2 Uz − Mx Uy Uz
2 − Mx Uz

3)

+8 γ2 (Uy
3 Mz − My Uz

3 + 2Qx Uy
2 − 2Qx Uz

2

+ iS2x Uy iNz − iS2x iNy Uz + 2Uy
2 Qz − 2Qy Uz

2

− 2 iS2x iGy + 2 iS2x iGz + Uy Fz − Fy Uz )

+8 γ (3Ux Uy
2 Mz − 3Ux My Uz

2

+ 3Ux Uy Qz − 3Ux Qy Uz + iNx Uy iS2z − iNx iS2y Uz + Ux Uy − Ux Uz

+ Fx Uy − Fx Uz − iNx iNy + iNx iNz ),

V P
e

= −16 γ (Uz + Uy) (γUy + γ Uz + 2Ux ) (Ux + γ Uy + γ Uz )

+ 16 (γUy + Ux ) (Ux + γ Uz ) (Ux + γ Uy + γ Uz ),
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BP
e

= 16α−4 γ (Uz + Uy) (γUy + Ux ) (Ux + γ Uz ) (Ux + γ Uy + γ Uz ).

The coupling rules are |∆n| ≤ 1 for U and M , |∆n| ≤ 2 for Q and iN , and |∆n| ≤ 3 for F and iG. The structure

of the Hamiltonian explains the coupling rules |∆nx| ≤ 3, |∆ny| ≤ 3, |∆nz | ≤ 3 and |∆nx| + |∆ny| + |∆nz | ≤ 4 given

in Eq. (3.2).
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Fig. 1. Born Oppenheimer potential energy curves, correlated to the first and the second dissociation limits. Full lines correspond

to binding curves and dashed lines to dissociative curves. The curves are indexed by the molecular quantum numbers nη, nξ

and Λ (see Table 1).
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Fig. 2. Convergence region, in a logarithmic scale, for (a) v = 4 and (b) v = 17 J = 0 1sσg states corresponding to the 1Se

symmetry. The labels indicate the level of convergence. The size of the basis is here N =96 and Nx =20, with 40846 functions.

The width of the matrix is 1846.
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Fig. 3. Convergence contours at the 10−12 level for all the energies converged with N =96 and Nx =20, from v=0 to v=17.
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Fig. 4. (a) Eigenvectors coefficient distribution Px(nx) versus nx. (b) Pz(nz) versus nz. The size of the basis is N =96, Nx =20

with 40846 functions and the variational parameters are α=1.7 and β=8.
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Molecular quantum numbers exact

Diss. limit orbital nη nξ Λ J Π P12 terms

1 1sσg 0 0 0 0 1 1 1Se

1 -1 -1 3P o

...

2pσu 1 0 0 0 1 -1 3Se

1 -1 1 1P o

...

2 3dσg 2 0 0 0 1 1 1Se

1 -1 -1 3P o

...

2pπu 0 0 1 1 1 -1 3P e

-1 1 1P o

...

4fσu 3 0 0 0 1 -1 3Se

1 -1 1 1P o

...

Table 1. Correspondence between exact and molecular quantum numbers of the H+

2 molecular ion.
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v Energy Param.

atomic units

0 -.597 139 063 123 40 (i)

1 -.587 155 679 212 75 ”

2 -.577 751 904 595 47 ”

3 -.568 908 498 966 77 ”

4 -.560 609 221 133 07 ”

5 -.552 840 750 219 66 ”

6 -.545 592 651 349 00 ”

7 -.538 857 387 347 02 ”

8 -.532 630 379 752 64 ”

9 -.526 910 124 421 61 ”

10 -.521 698 369 420 35 ”

11 -.517 000 365 677 16 ”

12 -.512 825 203 527 19 ”

13 -.509 186 248 723 35 ”

14 -.506 101 681 286 51 ”

15 -.503 595 085 267 77 ”

16 -.501 695 773 593 16 ”

17 -.500 437 040 589 81 (ii)

18 -.499 837 432 075 58 ”

19 -.499 731 230 655 8 (iii)

-.499 727 839 716 47 diss. limit

Table 2. J =0 1sσg energy levels of the H+

2 molecular ion below the dissociation limit, corresponding to the 1Se symmetry.

The proton to electron mass ratio is 1836.152701. In the last column, we give numerical details, namely the size of the basis

used, and the optimal values of the two variational parameters α and β. Three sets of computations have been done, using (i)

N =120, Nx =20, Ntot =66046. The matrix width is 2397. α=1.1, β =7.4. (ii) N =160, Nx =26, Ntot =121486, width=3444,

α=1.1, β =2.75. and (iii) N =220, Nx =30, Ntot =332696, width=6946, α=1.1, β =2.5. All the digits shown in this table are

converged.
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State Reference Energy

v=0 Grémaud [10] -0.597 139 063 123 (1)

Saavedra [18] -0.597 139 063 123

Moss [25](a) -0.597 139 063 123 4 (2)

[25](b) -0.597 139 063 123 5 (2)

Rebane [23] -0.597 139 063 123 40

Taylor [24] -0.597 139 063 123 9 (5)

This work -0.597 139 063 123 40 (1)

v=1 Moss [25](a) -0.587 155 679 212 7 (2)

Moss [25](b) -0.587 155 679 212 8 (2)

Taylor [24] -0.587 155 679 213 6 (5)

This work -0.587 155 679 212 75 (1)

Table 3. Comparison of the most accurate energies for the J=0 v=0, 1 1sσg states of H+

2 (1Se symmetry). The uncertainty on

the last figure is indicated. In ref. [25], R.E. Moss used two different methods, namely a variational method (a), and a scattering

method with a transformed Hamiltonian (b).
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v Energy Param.

atomic units

0 -.596 873 738 83 (i)

1 -.586 904 321 04 ”

2 -.577 514 034 24 ”

3 -.568 683 708 50 ”

4 -.560 397 171 69 ”

5 -.552 641 171 88 ”

6 -.545 405 344 31 ”

7 -.538 682 224 62 ”

8 -.532 467 311 60 ”

9 -.526 759 185 07 ”

10 -.521 559 686 76 ”

11 -.516 874 175 03 ”

12 -.512 711 867 25 ”

13 -.509 086 284 72 ”

14 -.506 015 805 76 ”

15 -.503 524 279 59 ”

16 -.501 641 393 74 (ii)

17 -.500 400 984 63 ”

18 -.499 821 792 38 ”

19 -.499 728 84 (iii)

-.499 727 839 716 diss. limit

Table 4. J =1 1sσg energy levels of H+

2 corresponding to the 3P o symmetry. The parameters are: (i) N = 58, Nx = 24,

Ntot =28850, width=3054, α=1.5, β =10.5. (ii) N =120, Nx =26, Ntot =159741, width=10776, α=1.1, β =5. (iii) N =140,

Nx =26, Ntot =223731, width=13294, α=1.1, β=2.5. All the digits shown in this table are converged.
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State Reference Energy

v=0 Moss [25] (a) -0.596 873 738 832 7(2)

[25] (b) -0.596 873 738 832 8(2)

Taylor [24] -0.596 873 738 832 8 (5)

This work -0.596 873 738 83 (1)

v=1 Moss [25] (a) -0.586 904 321 039 4 (2)

[25] (b) -0.586 904 321 039 6 (2)

This work -0.586 904 321 04 (1)

Table 5. Comparison of the most accurate energies for the J=1 v=0, 1 1sσg states of the H+

2 molecular ion (3P o symmetry).

The uncertainty on the last figure is indicated. For (a) and (b), see the caption of Table 3.

State Reference Energy Param.

J =0 Moss [22] -0.499 743 49

v=0 Taylor [24] -0.499 743 502 21(1)

This work -0.499 743 502 216 06(1) (i)

J =1 Moss [22] -0.499 739 268 0

v=0 Taylor [24] -0.499 739 267 93(2)

This work -0.499 739 267 984(1) (ii)

Table 6. J = 0 and J = 1 2pσu energy levels of the H+

2 molecular ion corresponding to the 3Se and 1P o symmetry. The size

of the basis and the variational parameters are : (i) N = 96, Nx = 26, Ntot = 48034, α = 1, β = 1.5 and (ii) N = 50, Nx = 30,

Ntot =21886, α=0.6, β=1.2.
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v 1Se Energy Param. 3P o Energy Param.

atomic units atomic units

0 -0.598 788 784 330 68 (i) -0.598 654 873 22 (iv)

1 -0.591 603 121 903 21 ” -0.591 474 211 53 ”

2 -0.584 712 207 009 99 ” -0.584 588 169 62 ”

3 -0.578 108 591 436 87 ” -0.577 989 311 96 ”

4 -0.571 785 598 647 78 ” -0.571 670 974 44 ”

5 -0.565 737 302 952 55 ” -0.565 627 243 61 ”

6 -0.559 958 514 224 37 ” -0.559 852 941 53 ”

7 -0.554 444 768 147 12 ” -0.554 343 616 12 ”

8 -0.549 192 322 064 81 ” -0.549 095 537 11 ”

9 -0.544 198 156 604 08 ” -0.544 105 697 81 ”

10 -0.539 459 983 348 84 ” -0.539 371 822 93 ”

11 -0.534 976 258 967 65 ” -0.534 892 382 86 ”

12 -0.530 746 206 332 14 ” -0.530 666 615 03 ”

13 -0.526 769 843 322 19 ” -0.526 694 552 89 ”

14 -0.523 048 020 189 49 ” -0.522 977 063 66 (v)

15 -0.519 582 466 538 98 ” -0.519 515 895 61 ”

16 -0.516 375 849 160 87 ” -0.516 313 736 44 ”

17 -0.513 431 842 030 72 ” -0.513 374 283 88 ”

18 -0.510 755 209 601 28 ” -0.510 702 329 90 ”

19 -0.508 351 903 540 02 ” -0.508 303 858 66 ”

20 -0.506 229 169 984 35 ” -0.506 186 155 52 ”

21 -0.504 395 655 362 65 ” -0.504 357 915 53 ”

22 -0.502 861 471 807 00 ” -0.502 829 312 71 ”

23 -0.501 638 094 774 32 (ii) -0.501 611 903 43 ”

24 -0.500 737 626 393 37 ” -0.500 717 894 62 ”

25 -0.500 169 272 907 36 ” -0.500 156 588 49 ”

26 -0.499 919 155 031 61 ” -0.499 913 606 76 (vi)

27 -0.499 868 405 490 (iii) -0.499 866 91 (vii)

-0.499 863 815 249 02 diss. limit

Table 7. J =0 and J =1 1sσg energy levels of the D+

2 molecular ion below the first dissociation limit, corresponding to the 1Se

and 3P o symmetries. The basis size and the variational parameters for the J =0 states are : (i) N =110, Nx =20, Ntot =44626,

the width of the matrix is 1999, α=1.7, β=10. (ii) N =180, Nx =30, Ntot =216756, width=5520, α=1.2, β=6.2. (iii) N =220,

Nx = 30, α = 0.9, β = 4. For the J = 1 states, they are : (iv) N = 54, Nx = 24, Ntot = 28850, width = 3054, α = 1.2, β = 19. (v)

N = 120, Nx = 20, Ntot = 130921, width = 9408, α = 1.7, β = 10. (vi) N = 140, Nx = 26, Ntot = 223731, width = 13294, α = 1.3,

β=7. (vii) N =140, Nx =26, α=1.1, β=5. All the digits shown in this table are converged.
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State Reference Energy

J =0 Moss [25](a) -0.598 788 784 330 7 (2)

v=0 [25](b) -0.598 788 784 330 7 (2)

Rebane [23] -0.598 788 784 33

Taylor [24] -0.598 788 784 330 8 (1)

This work -0.598 788 784 330 68 (1)

J =0 Moss [25](a) -0.591 603 121 903 2 (2)

v=1 Moss [25](b) -0.591 603 121 903 4 (2)

Taylor [24] -0.591 603 121 903 2 (1)

This work -0.591 603 121 903 21 (1)

J =1 Moss [25](a) -0.598 654 873 220 5 (2)

v=0 [25](b) -0.598 654 873 220 5 (2)

Taylor [24] -0.598 654 873 220 5 (5)

This work -0.598 654 873 22 (1)

J =1 Moss [25](a) -0.591 474 211 528 6 (2)

v=1 [25](b) -0.591 474 211 528 7 (2)

This work -0.591 474 211 53 (1)

Table 8. Comparison of the most accurate energies for the J =0 and J =1 1sσg states of the D+

2 molecular ion, for v=0 and

v=1. The uncertainty on the last figure is indicated.
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State Author Reference Energy Param.

J =0 Moss [22] -0.499 888 937 5

v=0 Taylor [24] -0.499 888 937 71 (1)

This work -0.499 888 937 709 33 (1) (i)

J =0 Moss [22] -0.499 865 221 0

v=1 Taylor [24] -0.499 865 217 (5)

This work -0.499 865 221 089 45 (1) (ii)

J =1 Moss [22] -0.499 886 382 5

v=0 Taylor [24] -0.499 886 382 63 (1)

This work -0.499 886 382 629 9 (1) (iii)

Table 9. J =0 and J =1 2pσu energy levels of the D+

2 molecular ion corresponding to the 3Se and 1P o symmetries. The size

of the basis and the variational parameters are : (i) N =96, Nx =26, Ntot =48034, width=2253, α=1.2, β =1.5. (ii) N =96,

Nx =26, α=1.2, β=0.8. (iii) N =50, Nx =30, Ntot =21886, width=2306, α=1.2, β=1.5.
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H+

2 D+

2

v slope T slope T

0 -1.5503 10−6 -0.46997 -0.5374 10−6 -0.47898

1 -4.1056 10−6 -0.43899 -1.4751 10−6 -0.45756

2 -6.3539 10−6 -0.40599 -2.3342 10−6 -0.43530

3 -8.3092 10−6 -0.37019 -3.1173 10−6 -0.41200

4 -9.9825 10−6 -0.33064 -3.8271 10−6 -0.38737

5 -11.3813 10−6 -0.28604 -4.4654 10−6 -0.36111

6 -12.5105 10−6 -0.23465 -5.0339 10−6 -0.33283

7 -13.3712 10−6 -0.17408 -5.5339 10−6 -0.30207

8 -13.9616 10−6 -0.10090 -5.9661 10−6 -0.26826

9 -14.2759 10−6 -0.01010 -6.3311 10−6 -0.23066

10 -14.3046 10−6 0.10603 -6.6289 10−6 -0.18838

11 -14.0333 10−6 0.25981 -6.8590 10−6 -0.14025

12 -13.4425 10−6 0.47228 -7.0207 10−6 -0.08475

13 -12.5065 10−6 0.78226 -7.1125 10−6 -0.01403

14 -11.1924 10−6 1.26958 -7.1326 10−6 0.05718

15 -9.4592 10−6 2.12550 -7.0786 10−6 0.15016

Table 10. Slope of the J = 0 1sσg energy levels as a function of M/m. The results are given in atomic units. All the digits

shown are converged, and the precision given is large enough to extrapolate the energy levels with a relative accuracy of 10−14

if the mass variation is less than 10−4 u.a. around 1836.152701 for H+

2 and 3670.483014 for D+

2 . T is the relative sensitivity of

the transition frequencies to the proton to electron mass ratio defined in Eq. (33).
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v Energy Param.

atomic units

0 -0.597 897 968 644 84 (i)

1 -0.589 181 829 653 33 ”

2 -0.580 903 700 369 05 ”

3 -0.573 050 546 750 85 ”

4 -0.565 611 042 318 30 ”

5 -0.558 575 521 103 93 ”

6 -0.551 935 949 266 56 ”

7 -0.545 685 915 628 61 ”

8 -0.539 820 641 902 02 ”

9 -0.534 337 013 932 52 ”

10 -0.529 233 635 946 89 ”

11 -0.524 510 910 556 38 ”

12 -0.520 171 148 158 82 ”

13 -0.516 218 710 336 09 ”

14 -0.512 660 192 612 32 ”

15 -0.509 504 651 672 98 ”

16 -0.506 763 878 125 82 ”

17 -0.504 452 699 135 14 ”

18 -0.502 589 234 013 41 (ii)

19 -0.501 194 799 285 79 ”

20 -0.500 292 454 306 87 ”

21 -0.499 910 361 490 78 (iii)

22 -0.499 865 778 5 (iv)

-0.499 863 815 249 02 dissociation limit

Table 11. 1sσ energy levels of the HD+ molecular ion below the dissociation limit. The size of the basis and the variational

parameters are : (i) N =80, Nx =20, Ntot =54061, width=2309, α=2, β=10. (ii) N =160, Nx =26, Ntot =298521, width=6508,

α=1.4, β =7.5. (iii) N =160, Nx =26, α=1.3, β =5. (iv) N =200, Nx =26, Ntot =480501, width=8372, α=1, β =3. All the

digits shown in this table are converged.


