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come    

books of molecular physics and quantum chemistry, in order to introduce chemical bounding and the LCAO method [START_REF] Slater | Quantum theory of matter[END_REF]. It is also a prototype for the investigation of effects beyond the Born-Oppenheimer approximation. Despite this apparent simplicity, the theoretical study of H + 2 is a difficult problem, because it is a typical three body Coulomb system.

During the last years, many theoretical studies of H + 2 and its isotopic species have provided us with highly accurate predictions for the energy levels of those systems. This renewed interest is partly due to new experimental results, especially on the polarisability of the H + 2 ion, which has been extracted from the analysis of Rydberg series of H 2 [START_REF] Sturrus | [END_REF][4][5],

and partly to metrological applications: the ratio M/m of the proton mass to the electron mass could be deduced from a high precision measurement of an optical transition in H + 2 , for instance between different rovibrational levels of the 1sσ g electronic ground state.

Up to now, three different methods have been used : the first one is the variation -perturbation method developed by Wolniewicz et al [6], the second one is a variational method using the full three body Hamiltonian, which has been developed by several groups [7,8], and the last one is a method derived from the physics of collisions, using a transformed Hamiltonian [9]. More recently [10], we have introduced a new method, first developed for atomic systems [11,12]. It is also a variational method, but it differs from the previous ones by the choice of coordinates used to describe the three body system. We use the so called perimetric coordinates, in order to take advantage of the dynamical symmetries of the three body Coulomb system. Then, we can choose a basis in which the Hamiltonian has strong coupling rules, and whose wavefunctions have the correct long-range behavior, i.e. an exponential decay with respect to each of the inter-particle distances. This method can be used to obtain an accurate description of the vibrationaly excited states.

The present paper is devoted to the description of the method and its application to H + 2 , D + 2 and HD + . In Sect. 2, we take advantage of all the geometric symmetries of the problem to reduce the Hamiltonian of the three body system, and we show that this reduction provides us with a scalar Schrödinger equation for J = 0 or 1 (J being the total angular momentum of the system). Sect. 3 is devoted to the numerical method used for solving this scalar Schrödinger equation: we show that, with perimetric coordinates, the use of a Hylleraas type basis set turns the Schrödinger equation into a generalized eigenvalue problem involving sparse banded matrices, which can be efficiently solved with the Lanczos algorithm. In Sect. 4, we discuss the convergence of the method and we present our results for the J = 0 and J = 1 vibrational levels below the first dissociation limit, for H + 2 and D + 2 . These results are compared with the most accurate published values. We also give some informations on the dependence of these results with M/m, and we discuss the interest of a high resolution spectroscopy measurement in H + 2 . Finally, the energies of the J = 0 states of HD + are given in Sect. 5.

Formalism

We here explain the structure of the exact wave-functions, taking into account successively the rotational invariance, the parity and (in the case of H + 2 and D + 2 ) the exchange of the two identical particles. We assume that particle 3 is an electron with mass m and charge -e and particles 1 and 2 (not necessarily identical) have a charge +e. We use atomic units where both m and e are taken equal to one. Obviously, the 9 degrees of freedom of the three-body system in the laboratory frame can be reduced to 6 in the center of mass frame by setting:

R G = M 1 R 1 + M 2 R 2 + mR 3 M 1 + M 2 + m , R = R 1 -R 2 , r = R 1 + R 2 2 -R 3 , (1) 
where R 1 , R 2 , R 3 are the positions of the three particles. The centered Jacobi coordinates R and r represent the relative positions of the two nuclei and the electron with respect to their center or mass. If P and p denote the canonically conjugate momenta, the Hamiltonian writes:

H = p 2 2 + 1 2µ 12 P 2 + p 2 4 + p.P 2µ 0 - 1 || R 2 + r|| - 1 || R 2 -r|| + 1 R , (2) 
where

µ 12 = M 1 M 2 /(M 1 + M 2 )
is the reduced mass of particles 1 and 2, and

1 µ 0 = 1 M 1 -1 M 2 .
The two exact symmetries of the Hamiltonian H are the rotational invariance and the parity Π. In the case of H + 2 and D + 2 , the two nuclei are identical (M 1 = M 2 ), and the third term of the Hamiltonian vanishes. The system is invariant under the exchange P 12 between particles 1 and 2.

Angular structure

Because of the rotational invariance, this Hamiltonian commutes with the total angular momentum J = R × P + r × p.

To take advantage of this symmetry, we introduce angular and radial coordinates in the following way: we use spherical coordinates (R, θ, ψ) in the fixed frame for R, and cylindrical coordinates (ρ, φ, ζ) in the moving frame (u R , u θ , u ψ ) for r. The three angular coordinates are nothing but the Euler angles that describe the position of the plane of the three particles in the laboratory frame. Then the kinetic terms of the Hamiltonian can be expressed with the angular operators J2 , J z , J z = J.u R and J ± = J.(u ρ ±iu φ ) as:

T 1 = p 2 2 = T S 1 + 1 2ρ 2 J 2 z , T 2 = P 2 + p 2 4 = T S 2 + 1 R 2 J 2 + 1 ρ 2 ζ 2 R 2 - ρ 2 R 2 + 1 4 J 2 z + ζ 2ρR 2 (J + + J -)J z + J z (J + + J -) + ζ ρR 2 ρ ∂ ∂ρ + 1 2 - ρ R 2 ∂ ∂ζ (J + -J -), (3) 
T 3 = p.P = T S 3 - 1 2R ∂ ∂ρ + 1 2ρ (J + -J -) - 1 4Rρ (J + + J -)J z + J z (J + + J -) - ζ Rρ 2 J 2 z .
T S 1 , T S 2 and T S 3 will be given below in Eq. ( 9). The angular eigenfunctions D J * M,T of J 2 , J z and J z are related to the matrix elements of the rotation operator [START_REF] Messiah | Mécanique Quantique-tome[END_REF]:

D J * M,T (ψ, θ, φ) = 2J + 1 8π 2 R J * M,T (ψ, θ, φ). (4) 
Thanks to the rotational invariance of the problem, the Hamiltonian commutes with J 2 and J z , but not with J z , because there is no invariance around the inter-nuclear axis. Therefore, for given values of J and M , the wave-functions can be expanded as:

Ψ JM = J T =-J D J * M,T (ψ, θ, φ)Φ JM T (R, ρ, ζ). (5) 
It involves 2J + 1 unknown radial functions which satisfy 2J + 1 coupled Schrödinger equations. The wave-functions can now be labelled by their parity (and by their exchange symmetry in the case of H + 2 ). The effect of the parity Π and of the exchange operator P 12 on the vectors R and r and on the coordinates (R, ρ, ζ, ψ, θ, φ) is:

Π : R → -R P 12 : R → -R r → -r r → r ψ → ψ + π ψ → ψ + π θ → π -θ θ → π -θ φ → π -φ φ → -φ R → R R → R ρ → ρ ρ → ρ ζ → ζ ζ → -ζ (6) 
The symmetry properties of the D J * M,T functions with respect to Π and P 12 are:

Π D J * M,T (ψ, θ, φ) = (-1) J+T D J * M,-T (ψ, θ, φ), (7) 
P 12 D J * M,T (ψ, θ, φ) = (-1) J D J * M,-T (ψ, θ, φ). (8) 
We now succesively study the simplest cases, namely the J = 0 and J = 1 states and show how to solve the 2J + 1 coupled differential equations.

S states

The S states, corresponding to J = M = T = 0, are even states because the angular dependence reduces to a constant

1/ √ 8π 2 .
There is a single term in the expansion , Eq. ( 5). Thus, the energy levels are determined by a scalar radial Schrödinger equation with the effective Hamiltonian

H S = T S 1 + 1 2µ 12 T S 2 + 1 2µ 0 T S 3 + V where T S 1 , T S 2
and T S 3 are the terms of Eq. ( 3) that do not depend on the angular momentum. The three kinetic terms of the Hamiltonian as well as the potential energy are:

T S 1 = - 1 2 ∂ 2 ∂ρ 2 + 1 ρ ∂ ∂ρ + ∂ 2 ∂ζ 2 , T S 2 = - ∂ 2 ∂R 2 - 2 R ∂ ∂R - ζ 2 R 2 + 1 4 ∂ 2 ∂ρ 2 - ρ 2 R 2 + 1 4 ∂ 2 ∂ζ 2 - ζ 2 R 2 - ρ 2 R 2 + 1 4 1 ρ ∂ ∂ρ + 2 ζ R 2 ∂ ∂ζ + 2 ρζ R 2 ∂ 2 ∂ρ∂ζ , (9) 
T S 3 = - ∂ 2 ∂R∂ζ - ζ R ∂ 2 ∂ρ 2 + ρ R ∂ 2 ∂ρ∂ζ - ζ Rρ ∂ ∂ρ + 2 R ∂ ∂ζ , V = -1/ ζ + R 2 2 + ρ 2 -1/ ζ - R 2 2 + ρ 2 + 1 R .

The P states

The P states correspond to J = 1. For each M value, the expansion of the wave-function in Eq. ( 5) involves three unknown radial functions. Because of the symmetry of the Hamiltonian with respect to the parity Π, we can describe the even and odd states separately. Since the parity only affects the angular dependence of the wave-functions, it is useful to introduce one even and two odd angular functions on which the wave-functions may be expanded.

Even P states are very similar to S states, because there is a single even angular function (

D 1 * M,1 + D 1 * M,-1 )/ √ 2, so
that an even P wave-function simply writes:

Ψ 1M e = (D 1 * M,1 + D 1 * M,-1 ) √ 2 Rρ Φ 1M e (R, ρ, ζ). (10) 
After multiplying the Schrödinger equation by Rρ, the radial function Φ 1M e obeys the scalar generalized Schrödinger equation:

H P e Φ 1M e = E R 2 ρ 2 Φ 1M e , (11) 
involving the effective Hamiltonian H P e = T P e 1 + 1 2µ 12 T P e 2 + 1 2µ 0 T P e 3 + V P e where:

T P e 1 = R 2 ρ 2 T S 1 -R 2 ρ ∂ ∂ρ , T P e 2 = R 2 ρ 2 T S 2 + R ρ -2ρ ∂ ∂R -2R ζ 2 R 2 + 1 4 ∂ ∂ρ + 2ρζ R ∂ ∂ζ , (12) 
T P e 3 = R 2 ρ 2 T S 3 + R ρ 2ζ ∂ ∂ρ -2ρ ∂ ∂ζ , V P e = R 2 ρ 2 V.
The Rρ factor is introduced in Eq. ( 10) in order to regularize the terms of the Hamiltonian depending on the angular momentum.

For odd P states, the situation is slightly more complicated. Indeed, the expansion in Eq. ( 5) can be reduced to two terms associated with the two odd angular functions:

Ψ 1M o = D 1 * M,0 Φ 0 (R, ρ, ζ) + D 1 * M,-1 -D 1 * M,1 √ 2 Φ 1 (R, ρ, ζ). (13) 
In the angular basis

{D 1 * M,0 , (D 1 * M,-1 -D 1 * M,1 )/ √ 2}
, the angular operators involved in Eq. ( 3) are represented by the matrices:

J 2 =    2 0 0 2    , J + -J -=    0 -2 2 0    , J 2 z =    0 0 0 1    , (J + + J -)J z + J z (J + + J -) =    0 -2 -2 0    .
The two radial wave-functions Φ 0 and Φ 1 obey the two following coupled Schrödinger equations:

H P o    Φ 0 Φ 1    = E    Φ 0 Φ 1    , (14) 
where H P o is a 2x2 matrix of differential operators that can be easily deduced from Eq. (3). Again, in order to regularize the terms of the Hamiltonian depending on the angular momentum, we follow Wintgen and Delande [START_REF] Wintgen | [END_REF] who proposed to introduce the two radial functions F and G defined by:

   Φ 0 Φ 1    = M    F G    with M =    ζ + R 2 ζ -R 2 ρ ρ    . (15) 
F and G are the solutions of the two coupled Schrödinger equations:

H P o    F G    = E P o    F G    (16) 
with

H P o = M † H P o M and E P o = E M † M . The four contributions to H P o = T P o 1 + 1 2µ 12 T P o 2 + 1 2µ 0 T P o 3 + V P o can
be written as:

T P o 1 =       
In the previous equations, the operation is associated with the change ζ → -ζ, i.e., for a radial function f , we set f (R, ρ, ζ) = f (R, ρ, -ζ), and, for an operator T , we set

T (R, ρ, ζ, ∂ ∂R , ∂ ∂ρ , ∂ ∂ζ ) = T (R, ρ, -ζ, ∂ ∂R , ∂ ∂ρ , -∂ ∂ζ ).
The operators appearing in Eq. ( 17) are:

T dir 1 = ζ + R 2 2 + ρ 2 T S 1 -ρ ∂ ∂ρ -ζ + R 2 ∂ ∂ζ , T exch 1 = ζ 2 - R 2 4 + ρ 2 T S 1 -ρ ∂ ∂ρ -ζ + R 2 ∂ ∂ζ , T dir 2 = ζ + R 2 2 + ρ 2 T S 2 -ζ + R 2 ∂ ∂R + ζ R - 1 2 ρ ∂ ∂ρ - 1 2 ζ + R 2 + 2 ρ 2 R ∂ ∂ζ , T exch 2 = ζ 2 - R 2 4 + ρ 2 T S 2 + ζ + R 2 ∂ ∂R - ζ R + 1 2 ρ ∂ ∂ρ - 1 2 ζ + R 2 -2 ρ 2 R ∂ ∂ζ , T dir 3 = (ζ + R 2 ) 2 + ρ 2 T S -ζ + R 2 ∂ ∂R + ζ R - 1 2 ρ ∂ ∂ρ - 1 2 ζ + R 2 + 2 ρ 2 R ∂ ∂ζ , T exch 3 = ζ 2 - R 2 4 + ρ 2 T S 3 -ζ + R 2 ∂ ∂R + ζ R + 1 2 ρ ∂ ∂ρ + 1 2 ζ + R 2 -2 ρ 2 R ∂ ∂ζ ,
and

M † M =    ζ + R 2 2 + ρ 2 ζ 2 -R 2 4 + ρ 2 ζ 2 -R 2 4 + ρ 2 ζ -R 2 2 + ρ 2    .
The radial factorizations introduced in Eqs. (10), ( 13) and ( 15) can be understood from the following argument: the formalism used here was first developed to describe an Helium atom (particles 1 and 2 become electrons and particle 3 is the nucleus) [START_REF] Wintgen | [END_REF]. For an infinitely massive electron, and if the Coulomb interaction between the two electrons is neglected, the Hamiltonian becomes

H = p 1 2 2 + p 2 2 2 -2 r 1 -2 r 2 .
The exact solutions of this three body problem are products of hydrogenic wave functions in r 1 and r 2 . Studying the structure of those solutions [15,[START_REF] Morse | Methods of theoretical physics[END_REF] that correspond to either P e or P o states shows that it is always possible to factorize them as indicated.

So far, we have taken into account only the rotational and parity symmetries to derive the structure of the J = 0 and J = 1 wave-functions. The result stands for any potential energy V depending only on the inter-particle distances.

Exchange symmetry

In the case of H + 2 , we have an additional symmetry corresponding to the exchange of the two protons. The T 3 contribution to the Hamiltonian disappears since 1 µ 0 vanishes. The Hamiltonian then commutes with the exchange operator P 12 : the wave functions are either symmetric or antisymmetric with respect to P 12 . Like in the atomic case, we will note here spatially symmetric (respectively antisymmetric) states as singlets (resp. triplets). Alternatively, they can be labelled para (resp. ortho). For J = 0, we thus have singlet 1 S e and triplet 3 S e states. For J = 1, the total parity can be either even or odd, thus producing 1 P e and 3 P e (even) states as well as 1 P o and 3 P o (odd) states.

In fact radial wavefunctions of the singlet and triplet S e or P e states obey the same Schrödinger equation ( 9) or (12), the only difference being their behaviour, either symmetric or antisymmetric under the transformation ζ → -ζ.

For the P o states of H + 2 , the two coupled Schrödinger equations obeyed by F and G are equivalent as one is obtained from the other one by changing ζ into -ζ. From Eqs. ( 13) and (15), it can be seen that the singlet states are

obtained if G(R, ρ, ζ) = F (R, ρ, ζ) = F (R, ρ, -ζ), and the triplet ones if G(R, ρ, ζ) = -F (R, ρ, ζ).
The two equivalent equations can be seen as the following scalar Schrödinger equation:

(T dir + V dir )F ± (T exch + V exch ) F = E ζ + R 2 2 + ρ 2 F ± ζ 2 - R 2 4 + ρ 2 F . (18) 
The sign + or -stands for singlet or triplet states. This is no longer a usual partial derivative equation, but also a functional equation, since it connects F and F .

To summarize this discussion, we have considered all the symmetry properties of the Hamiltonian of H + 2 , and obtained, for the J = 0 and J = 1 states, the structure of the wave-functions and the scalar Schrödinger equation which they obey.

Connection with the molecular quantum numbers

As mentioned above, the only symmetries of the three-body problem are the rotational invariance, the parity Π and the exchange P 12 for a system with two identical particles, as H + 2 or D + 2 . Thus, there are only two exact quantum numbers J and M to describe the eigenstates, i.e., two invariants related to a continuous symmetry. When J and M are fixed, diagonalizing the exact Hamiltonian of H + 2 provides four series of eigenvalues, one series for each value of the discrete symmetries (Π ,P 12 ). The energy levels obtained in each series can just be labelled consecutively by a single integer. Although the system has six degrees of freedom in the center of mass frame, each eigenstate cannot be labelled by six quantum numbers, a direct consequence of the non separability of the problem.

The usual description of the molecular states of H + 2 uses a different set of quantum numbers, introduced i n the frame of the Born-Oppenheimer (B.O.) approximation. Because the two nuclei are much heavier than the electron, the coupling terms of the Hamiltonian between different values of T in Eq. ( 5) are small and can be neglected.

Consequently, we have an additional approximate symmetry, namely the rotation around the inter-nuclear axis, and Λ = |T | becomes a good quantum number. Moreover, the remaining electronic and vibrational problem is separable [START_REF] Judd | Angular Momentum Theory for Diatomic Molecules[END_REF] using the variables η, ξ and R, where ξ = (r 1 + r 2 )/R and η = (r 1 -r 2 )/R are the spheroïdal or elliptical coordinates.

The electronic problem provides us with two Schrödinger equations along the η and ξ coordinates, which depend on Λ and R, but not on J or M . The solutions are labelled by the two quantum numbers n η and n ξ , which count the number of zeros of the η or ξ wave-functions. The electronic energies thus depend on three quantum numbers n η , n ξ and Λ and are functions of the inter-nuclear distance R. Figure 1 shows the energy curves correlated to the two lowest dissociation limits. This is the effective potential for the Schrödinger equation along the inter-nuclear coordinate R.

For each set of (J, n η , n ξ , Λ), there is a series of vibrational levels (below the dissociation limit) and a continuum (above the dissociation limit). The B.O. wave-function with parity Π writes:

Ψ JM ;n η n ξ Λv Π = (D J * M Λ (Ψ, θ, Φ) + Π(-1) J+Λ D J * M -Λ (Ψ, θ, Φ)) N Λ,n η (η) Ξ Λ,n ξ (ξ) F J,n η ,n ξ ,Λ,v (R). ( 19 
)
When Λ = 0, only one parity, namely Π = (-1) J , is allowed. It is only for Λ = 0 states that both parities are allowed.

They are degenerate, at least in the B.O. approximation. Finally, in the usual spectroscopic notation for homonuclear molecules, the electronic parity π e , or u/g symmetry, is used instead of P 12 . They are related by

Π = π e P 12 . (20) 
With respect to π e , the angular and radial parts of the B.O. wave-function have respectively (-1) Λ and (-1) n η signatures, and consequently, that of the B.O. wave function is (-1) Λ+n η .

The B.O. wave-function is labelled by six quantum numbers, as expected for a separable system with six degrees of freedom. Two of them, J and M , are exact good quantum numbers, related to exact symmetries; the four other ones, namely n η , n ξ , Λ and v, are approximate quantum numbers, related to symmetries that hold in the frame of the B.O. approximation, but are broken in the exact treatment of the three-body problem.

Consequently, for a given value of J, the different vibrational series and continua obtained at the B.O. approximation with the same parity Π and the same exchange symmetry P 12 are all mixed together in the exact treatment, and give a series of discrete levels below the first dissociation limit, and one or several continua above, with some discrete levels embedded in these continua. Of course, because the B.O. approximation is a good one, especially for the low lying part of the spectrum, the structure of the levels is not deeply affected. We will use here the usual molecular orbital notation, where the different orbitals with the same Λ and π e are distinguished by their quantum numbers in the united atom limit, i.e. by the atomic orbital corresponding to the limit R → 0 of the molecular orbital.

Table 1 gives the correspondence between the exact quantum numbers (for J ≤ 1) and the molecular quantum numbers, for the electronic states correlated to the two lowest dissociation limits, which support bound vibrational levels.

Numerical Implementation

The Schrödinger equations we have obtained in Sect. 2 have to be solved numerically. The method consists in diagonalizing the matrix representing the Hamiltonian in a convenient basis. The choice of the basis has to obey several constraints if we want to obtain highly accurate well converged energy levels:

-The matrix elements have to be computed using exact simple formulae in closed form.

-For maximum simplicity, we require to use "independent" coordinates, i.e., coordinates in which the Hilbert space appears as a tensor product of Hilbert spaces along each coordinate. This makes it possible to use basis states which are tensor products of simple states along each coordinate.

-We have to choose a basis in which the Hamiltonian has strong coupling rules -i.e. most of the matrix elements vanish -to get a sparse band matrix, in order to use very efficient diagonalization algorithms. A sufficient condition (see below) is that the Hamiltonian can be expressed as a combination of polynomial functions of the coordinates and the conjugate momenta.

-The long range behavior of the basis functions must be an exponential decrease in the inter-particle distances, as expected for highly excited states of the three body Coulomb problem.

We now show how those four characteristics can be obtained thanks to the use of the perimetric coordinates.

Perimetric coordinates

In the Hamiltonian, the potential diverges if one of the inter-particle distances r 1 , r 2 or R vanishes. This divergence can be regularized through multiplication of the Schrödinger equation by 8r 1 r 2 R. Of course, there is a price to pay:

even for S and P e states, the scalar energy E is turned into a positive non diagonal operator E B. The Schrödinger equation becomes a generalized eigenvalue problem, which is written as:

A|Ψ = E B |Ψ , (21) 
where A = A S = 8r 1 r 2 RH S and B = B S = 8 r 1 r 2 R in the case of S states. For P states, the Schrödinger equation is multiplied by 4 for convenience, so that A = A P e = 32 r 1 r 2 R H P e and B = B P e = 32 r 1 r 2 R 3 ρ 2 for P e states and 

A = A P o = 32
-r 2 | ≤ R ≤ r 1 + r 2 ,
and the Hilbert space is not a tensor product of Hilbert spaces along the r 1 , r 2 and R coordinates. The set of spheroïdal coordinates, inherited from the Born Oppenheimer approximation, is a good candidate to represent the first energy levels of a given symmetry, as it directly incorporates some useful physical properties of the system. On the other hand, it lacks any simplicity in the matrix elements, and becomes inappropriate for the heavy numerical calculations required for highly excited states.

The perimetric coordinates satisfy all the required criteria. They are defined by:

x = r 1 + r 2 -R, y = r 1 -r 2 + R, z = -r 1 + r 2 + R. (22) 
The ranges of x, y and z are independent. They are 0 ≤ x < ∞, 0 ≤ y < ∞ and 0 ≤ z < ∞. The effect of the parity and exchange operators on the perimetric coordinates are:

Π : x → x P 12 : x → x y → y y → z z → z z → y, (23) 
They are connected to R, ρ and ζ by:

R = y + z 2 , ρ 2 = xyz x + y + z (y + z) 2 , (24) 
ζ = (y -z)(2x + y + z) 4 (y + z) .
The expressions of the operators A and B in perimetric coordinates for the S, P e or P o states can be deduced from the operators in (R, ρ, ζ) by a tedious but straightforward calculation. They are polynomials in x, y, z , ∂ ∂x , ∂ ∂y , ∂ ∂z .

For example, the operators for S states of H + 2 have been published by Saavedra & al [START_REF] Arias De Saavedra | [END_REF]. In the Appendix, we give the integral expressions of the scalar product of two wave functions of a given symmetry, as well as compact expressions of the S and P e Hamiltonians.

Choice of the basis

The structure of the partial differential equations we have to solve is now very simple. Each term of the potential or of the energy operator B is a polynomial in the perimetric coordinates. Each contribution to the kinetic terms is the product of a polynomial in x, y and z by a first or second order partial derivative with respect to x, y or z. The long range behavior of the basis functions has to match that of the wave-functions (an exponential decrease in the case of the Coulomb interaction) in order to obtain a good description of the excited levels with a basis as small as possible.

Therefore, we have to use a basis built with orthonormal functions in each coordinate x, y and z defined in [0, ∞[, and having an exponential decrease at infinity. A solution is to use Laguerre polynomials.

More precisely, a vector of the basis is defined by:

|n (α) x , n (β) y , n (β) z = |n (α) x ⊗ |n (β) y ⊗ |n (β) z , (25) 
where |n (α) is the basis state whose wave-function is

u|n (α) = χ (α)
n (u). α and β are two positive real parameters, whose choice is discussed below. The χ (α) n (u) functions are chosen to be orthonormal with respect to the scalar product in perimetric coordinates, which depends on the class of states under study (see Appendix A.1). For the S and P o states, the scalar product in perimetric coordinates involves the weight dx dy dz. Thus we introduce:

χ (α) n (u) = (-1) n √ α L (0) n (αu) e -αu/2 , (26) 
where

L (p)
n are the generalized Laguerre polynomials [START_REF] Abramovitz | Handbook of mathematical functions[END_REF]. These states form a complete orthogonal basis for this scalar product.

For the P e states, the scalar product involves the weight xdx ydy zdz and we define:

χ (α) n (u) = (-1) n √ α √ n + 1 L (1) n (αu) e -αu/2 . ( 27 
)
In equation ( 25), α -1 and β -1 are two length scales. The long range behavior of the basis functions is, in terms of the radial distances:

e -αr 1 /2 e -αr 2 /2 e (-β+α/2)R .

For homonuclear molecular ions, r 1 and r 2 play symmetric roles, and it is thus natural to choose the same parameter β along the y and z coordinates. For most of the energy levels computed here, the optimum values of α and β verify β >> α, and we can consider that α -1 gives the electronic length scale while β -1 mainly determines the inter-nuclear length scale. This is no longer true for weakly bound levels, close to a dissociation limit, for which we have α ≈ β.

Because of their structure, all the terms in the Hamiltonian have strong coupling rules (see Appendix A. giving respectively 57, 123 and 215 coupling rules. The analytical calculation of the matrix elements of the various contributions to the Hamiltonian is very tedious and has been performed using the symbolic calculation language Maple V. The results are directly output in FORTRAN code. An example of such a matrix element is given in Appendix A.2.

For the S and P e states of H + 2 and D + 2 , the singlet and triplet wave functions obey the same Schrödinger equation, the only difference being the symmetric or antisymmetric character with respect to the exchange of y and z. We thus use a symmetrized or antisymmetrized basis (the length scales α and β are omitted):

|n x , n y , n z ± = |n x , n y , n z ± |n x , n z , n y √ 2 . ( 29 
)
The vector indices are restricted to n y ≤ n z or n y < n z . This symmetrization requires the length scales in the y and z directions to be equal, in order to preserve the coupling rules.

For P o states, the radial F function has no longer any symmetry with respect to the exchange of y and z, so the basis vectors are simply |n x , n y , n z . In the case of S states of HD + , the basis vectors are also |n x , n y , n z .

Numerical diagonalization

To perform the numerical calculations, the basis is truncated at

n x + n y + n z ≤ N and n x ≤ N x , with N x ≤ N . If
the basis is symmetrized (resp. antisymmetrized), we add the condition n y ≤ n z (resp. n y < n z ). The total number of basis states N tot scales as N 2 N x .

The various basis vectors are ordered using an algorithm which builds a sparse band matrix with a width as small as possible. The width (defined as the maximum distance in the ordered basis between two coupled vectors) scales as

N N x and it is typically a few percent of the size of the basis. Of course, it increases with the number of coupling rules.

The diagonalization of the generalized eigenvalue problem ( 21) is performed with the Lanczos algorithm [START_REF] Ericsson | [END_REF]. The amount of required memory and the efficiency of this algorithm depend on the width of the matrix.

The truncation of the basis turns the length scales α -1 and β -1 into variational parameters. They have to be optimized, in order to minimize the eigenenergies of the Hamiltonian. Since the dependence on the variational parameters decreases if the size of the basis increases, and because we wish to determine as many levels as possible, we have basis sets as large as possible, limited by the amount of memory of the computers (up to 1 GB is used on our local workstations, and up to 32 GB on a Cray T3E supercomputer). Both α and β parameters are scanned on a range large enough to observe the minimum of each eigenvalue. In practice, we obtain, for most of the eigenenergies, a well defined region in the parameter space, where the energy does not depend on the variational parameters. Then, each eigenenergy is determined with an accuracy limited only by the numerical noise due to round off errors. A typical accuracy of the order of 10 -14 is reached, as expected in double precision FORTRAN code. The convergence properties are illustrated in Fig. 2 and Fig. 3. Note that the 10 -14 accuracy is obtained for J = 0 states only. For J = 1 states, there is a small numerical unstability of the algorithm -probably related to the condition number of the matrices A and B -that prevented us from calculating more than eleven or twelve significant digits.

Numerical results

The energies of all the J = 0 and J = 1 bound levels of the H + 2 or D + 2 molecular ions below the first dissociation limit have been computed. As shown in Table 1, the rovibrational levels of the 1sσ g electronic ground state have 1 S e or 3 P o symmetries, while the 2pσ u excited states are either 3 S e or 1 P o states. There is no P e state below the first dissociation limit (see Table 1). The numerical results we have obtained in that case will be presented elsewhere. The convergence control procedure is detailed only for the 1 S e states, but the same procedure has been used for all the levels reported here. All the numerical values shown in this paper have been checked to be well converged at the level of the last printed digit.

The 1986 fundamental constants [21] are used. The proton to electron mass ratio and the deuteron to electron mass ratio are 1836.152701 and 3670.483014. The atomic unit of energy is 219474.63067 cm -1 .

4.1 1 S e states of H + 2

Convergence region

The convergence of the results is illustrated in Figs. 2 to 4. For these computations, the truncation bounds have been limited to N = 96 and N x = 20. The basis contains 40846 functions, the (half-)width of the matrix is 1846 and the required memory is about 500 MBytes. Fig. 2 shows the convergence region in the the (α, β) space for (a) the 5 th and (b) the 18 th level. This is a logarithmic contour plot of the difference between the energy obtained for parameters α and β and the best value obtained with a larger basis (see Table 2). The contour levels are shown in the figure . For the 5 th level, one observes a wide region in which the convergence at the 10 -13 level is achieved. The dashed lines correspond to the 10 -14 contour. Its irregular shape arises from the numerical noise. For the 18 th level, the energy is converged only at the 10 -13 level in a small region because the basis is not large enough. Of course, convergence at the 10 -14 level is obtained with a larger basis (Table 2). Figure 3 shows the convergence regions at the 10 -12 level for the v = 0 to v = 17 states. When v increases, the region becomes narrower in the β direction, and is shifted down to smaller values of β. Indeed, the wave functions have larger and larger extensions in R, and thus need smaller and smaller β values to be well represented by our basis functions. On the other hand, they have faster and faster oscillations, which cannot be represented if the basis is too small. This is why the two highest levels are not obtained with the small basis chosen here, but require a larger basis size.

Convergence of the eigenvectors

When the best parameter region is found (around α = 1.7 and β = 8 from Fig. 3), the quality of the results is checked by analyzing the eigenvector expansion on the basis. Each eigenvector |Ψ is numerically known as:

|Ψ = 0 ≤ n x ≤ N x 0 ≤ n y ≤ n z ≤ N n x + n y + n z ≤ N C n x n y n z |n x , n y , n z ± . (30) 
The eigenvectors |Ψ are normalized for the scalar product defined in Appendix A.1. They verify the normalization condition Ψ | B S |Ψ /32 = 1. We introduce the projection operator P n x onto the subspace with fixed n x value. We have:

P n x |Ψ = 0 ≤ n y ≤ n z ≤ N n y + n z ≤ N -n x C n x n y n z |n x , n y , n z ± . ( 31 
)
We then determine the weight of P n x |Ψ in |Ψ by computing the overlap:

P x (n x ) = Ψ | B S P n x |Ψ /32. (32) 
The similar quantity P z (n z ) is also computed. Fig. 4 shows P x and P z as functions of n x and n z in a logarithmic scale. The dependence of P x on n x is an exponential decrease. That of P z on n z exhibits first a flat behavior, and then an exponential decrease indicating that calculation gets converged. This figure shows that the basis truncation can be more drastic in the x direction than in the y and z directions. This is connected to the fact that the vibrational excitation of H + 2 can increase a lot before the electronic part of the wave-function significantly changes. The coefficient distributions for the levels v = 0 to v = 17 indicate that the convergence is obtained, but the distribution for v = 18 and v = 19 is nearly flat without any decay, showing that the basis is not large enough to give the energies of those levels.

Again, increasing the boundary along the z coordinates (i.e., increasing the basis size) makes it possible to have these levels converged too.

Results

Our results for the 1 S e states of H + 2 are listed in Table 2. Note that we have obtained all the vibrational states of the 1sσ g electronic ground state. Except for the last one, the energies are known with an accuracy of 10 -14 . Most of them can be obtained using the truncation bounds N = 120 and N x = 20. The last vibrational level requires a very large basis, with N = 220 and N x = 30, containing 332696 functions. The values of the variational parameters α and β for which the results can be obtained are given in the tables. They were chosen close to the center of the convergence region. The size of the region is shown in Figs. 2 and3.

Comparison with previously published results

Several authors have published accurate energy levels of some J = 0 1sσ g states of H + 2 corresponding to the 1 S e symmetry. But, up to now, only R.E. Moss has computed all of them. He achieved fully non adiabatic calculations using a basis built from Laguerre and Legendre polynomials of the spheroïdal electronic coordinates, and gave all the dissociation energies with an accuracy of 10 -11 [22]. Our results are in full agreement with those of Moss, but with an improved accuracy.

Much more work have been devoted to the two first 1 S e states of H + 2 , allowing a more detailed comparison, as summarized in Table 3. In 1998, we have demonstrated the efficiency of our method [10], and given the first two vibrational levels of H + 2 with a 10 -12 relative accuracy. At that time, we used only one variational parameter α, and β had to be set to 2α. Saavedra et al. [START_REF] Arias De Saavedra | [END_REF] have published the ground state energy of several three body Coulomb systems, obtained with exactly the same method. They reached the same accuracy than in [10], but with a much smaller basis, thanks to the introduction of the second variational parameter β.

T.K. Rebane and A. V. Filinsky [23] have also computed the ground state energy of many three body molecular ions using perimetric coordinates and variational computations, i.e. a method probably very close to our method, but still unpublished. The ground state energy of H + 2 that they obtained coincides with our values at the 10 -14 level.

More recently, two high precision calculations of the energy levels of H + 2 have been published [24,25]. Both used a variational method, which differs from the one described here by the fact that the electronic wave function is expressed in terms of the prolate spheroïdal coordinates ξ and η. J. M. Taylor et al. [24] have published the first rovibrational energies of H + 2 for (v, J) = (0, 0), (0, 1) and (1, 0) with an accuracy of 5 10 -13 . R. E. Moss [25] gives the same results, with a improved accuracy of 10 -13 . Finally, in the same paper [25], R. E. Moss also uses a scattering method, together with a transformed Hamiltonian, and obtains results in agreement with the previous ones at the level of 10 -13 .

In summary, our results are the most accurate ones on the whole sequence of vibrational levels, and agree perfectly well with the (less accurate) previously published results. This makes us confident on the reliability of our numerical code.

4.2 J = 1 1sσ g states of H + 2
To obtain the rovibrational states of the ground electronic state of H + 2 with J = 1, the 3 P o Hamiltonian has to be diagonalized. In that case, the Schrödinger equation is more complicated than in the S state case, since it couples the radial wave function F (x, y, z) to F (x, y, z) = F (x, z, y) through the exchange terms of the Hamiltonian. The non-zero matrix elements of the Hamiltonian not only come from the 215 coupling rules of the direct terms, but also from 205 pseudo-rules due to the exchange terms. Indeed, a coupling rule (∆n x , ∆n y , ∆n z ) of an exchange term connects the vector |n x , n y , n z to the vector |n x , n y , n z = |n x + ∆n x , n z + ∆n y , n y + ∆n z , and induces a pseudo-rule δn x = ∆n x , δn y = n y -n z and δn z = n z -n y . We denote them pseudo-rules because they depend on the values of n y and n z . Consequently, the width of the P o matrices is much larger than in the S e case. In addition, for P o states, the basis is not symmetrized. Thus, for the same bounds on N or N x , the basis is nearly twice as large. Available computer memory leads to smaller bounds for P o states than for S states. As a consequence, the accuracy of the eigenenergies is smaller, and it is difficult to obtain convergence for the highly excited vibrational levels. The energies are given in Table 4. The accuracy is only at the level of 10 -11 . This is due to round off errors. Because of the increased sizes of the matrices, they accumulate more rapidly than for 1 S e states; this could also be due to ill-conditioned matrices in the case of 3 P o states, which have eigenvalues separated by several orders of magnitude. In Table 5, we compare our values to the high accuracy values previously published. Although they are slightly less accurate because of round off errors, our results agree with the published ones and cover the full sequence of vibrational levels.

4.3 J = 0 and J = 1 2pσ u states of H + 2

The 2pσ u electronic curve of H + 2 has a long range minimum, which supports one bound state for J = 0 or 1. Those states have either the 3 S e or the 1 P o symmetries (see Table 1). The computation of the 3 S e and 1 P o states are similar to that for the 1 S e and 3 P o states. The only difference are in Eqs. ( 18) and ( 29), where the choice of the + orsigns has to be inverted. For 3 S e states, the indices of the basis vectors have to obey n y < n z . The accuracy for the 3 S e states is better than for the 1 P o states, because, for a given amount of memory on the computer, the basis can be chosen much larger for 3 S e states. Since the 1 P o state is closer to the dissociation limit, the extension of the wave function is wider. This explains why the variational parameters are smaller. Similar calculations have been done for all the S e and P o energy levels of D + 2 below the first dissociation limit. We obtain 28 bound levels corresponding to the 1sσ g electronic level of 1 S e and 3 P o symmetries, listed in Table 7. The first rovibrational levels are compared with the results already published in Table 8. Finally, Table 9 gives the two J = 0 and the J = 1 bound states corresponding to the 2pσ u first electronic excited state ( 3 S e and 1 P o symmetries), and compares them with the published values. The conclusions are essentially similar to the ones obtained for H + 2 :

with our method, we are able to compute all the vibrational sequence with an improved accuracy. No disagreement is found with previously published results.

Mass effect

Highly accurate energy levels of H + 2 could be used for measuring the proton to electron mass ratio M/m. A high accuracy frequency measurement of an optical transition between two rovibrational states of H + 2 can be done using a Doppler free two-photon transition. It should be emphasized that such an experiment will give an information that can be interpreted either as a M/m measurement, or a study of the relativistic and QED corrections in H + 2 . We discuss here these two aspects. 10. The order of magnitude of the slope is a few 10 -6 in atomic units.

The third column of Table 10 gives the relative sensitivity of the v → v + 1 transition frequencies on the M/m ratio defined as:

T v = M/m ω v ∂ ω v ∂ M/m , (33) 
where ω v denotes the v → v + 1 transition frequency. The order of magnitude of T v for the first transitions is close to -0.5, which is the value expected if the nuclear vibration was harmonic. The dependence of T v on v shows that the sensitivity of the v → v + 1 transition frequency on M/m decreases with v. M/m is presently known with a relative accuracy of 2.1 10 -9 [26,27]. Thus, the relative uncertainty on the predicted transition frequencies due to the accuracy of the M/m ratio is of the order of 10 -9 for the first transitions. To be compared with some spectroscopic data upon H + 2 , the energies computed here have to be corrected of relativistic and QED effects. Moss [22,28,29] has determined these relativistic and QED corrections for the rovibrational levels of the 1sσ g electronic states. The corrections are

given with an accuracy of 10 -4 cm -1 . Then, their contribution to the relative uncertainty on the lowest v → v + 1 transition frequencies is about 5 10 -8 . The accuracy of the relativistic and QED corrections has to be improved by at least two orders of magnitude to allow a M/m measurement through the H + 2 spectroscopy. We have briefly discussed elsewhere the possibility to compute these corrections more accurately [10]. It should be noted that, in any case, this calculation requires a good knowledge of the exact three body wave functions, which is provided by the method described in this paper.

In a forthcoming paper, we will present the calculation of the two-photon transition matrix elements between two rovibrational states of H + 2 or D + 2 , and we will discuss the feasibility of a Doppler free two-photon spectroscopy experiment between two S e states. In such an experiment, the width of the transition is expected to be very small because the levels are very long lived. Such an experiment could thus measure a transition frequency with a relative accuracy of 10 -10 or better. So far, it would provide a measurement of the difference of the corrections between the two states involved in the transition, with an accuracy limited by the uncertainty on M/m. Yet any significant progress on the calculation of the corrections would turn the experiment into a M/m measurement.

5 S e states of HD +

In this section, we give the energies of the 1sσ states of the HD + molecular ion below the first dissociation limit (S e symmetry). Here the quantity 1 µ 12 is computed from the proton to electron mass ratio 1836.152701 and from the deuteron to proton mass ratio 1.999007496 also taken from [21]. The basis is not symmetrized, and consequently, for the same truncation bounds as for H + 2 , the basis is nearly twice as large. We were able to obtain convergence at the 10 -14 level for most of the energy levels on usual workstations, with less than 1 GB of memory. The last vibrationally excited states required extremely large basis sets, and the last level corresponding to v = 22 is converged only at the 10 -10 level. The results are given in Table 11. All of them, but the last one, agree with the dissociation energies given by Moss [30]. Once more, our results are the most accurate ones for the full sequence of vibrational levels.

Summary and conclusion

In this paper, we have described a new method to treat a three body Coulomb system. This method takes advantage of all the symmetries of the system, including dynamical symmetries. Perimetric coordinates are used to describe the relative positions of the three particles, and generalized Hylleraas type basis functions are introduced, which correctly describe the asymptotic behavior of the wave-functions. Two length scales are used as variational parameters. Some comments can be done on this method:

a -Obviously, it allows to compute very accurate values of the energy levels of the system. It also provides high quality wave-functions, as shown by the exponential decrease of the weights in Fig. 4.

b -Because the basis functions have been chosen with the convenient asymptotic behavior, this method is suitable to accurately describe the highly excited vibrational levels. The electronically excited states can also be described, if the complex rotation method is used [11,12]. c -Our method is deeply J dependent. We used it here to study the J = 0 and J = 1 states. Obviously, for higher J values, this method is less and less convenient. It is suitable only for very low J values.

The method is here applied to the H + 2 molecular ion and its isotopomers D + 2 and HD + . The energies of all the J = 0 and 1 states below the first dissociation limit have been computed. Our results are given with a accuracy up to 10 -14 atomic unit. Their dependences on the proton to electron mass ratio M/m are also given. Finally, the interest of a high precision two-photon spectroscopy experiment in H + 2 is discussed. Presently, such an experiment would give information on the relativistic and radiative corrections. Only if the theoretical predictions of those corrections would be known with two additional figures, a measurement of M/m with some metrological interest could be extracted from such an experiment.

Laboratoire Kastler Brossel de l'Université Pierre et Marie Curie et de l'Ecole Normale Supérieure is UMR 8552 du CNRS. We are grateful to IDRIS, which has provided us with many hours of computation on large memory computer facilities. We are also grateful to Philippe Thomen, who has worked on the derivation of the HD + Hamiltonian in perimetric coordinates. The authors thank P. Indelicato for a careful reading of the manuscript.

A APPENDIX

A.1 Scalar product expressions

We recall here the structure of the wave-functions, and give the radial part of the scalar products for the S, P e and P o states. The angular part of the scalar product is normalized using the standard spherical harmonics. The volume element is : R 2 dR ρdρ dζ = (x + y)(x + z)(y + z)/32 dx dy dz.

In each case, the scalar product involves the positive B operator (representing the energy operator).

For S e states:

Ψ = 1 √ 8π 2 ϕ(x, y, z), Ψ 1 |Ψ 2 S = ϕ 1 B S 32 ϕ 2 = (x + y)(y + z)(z + x) 32 ϕ * 1 (
x, y, z)ϕ 2 (x, y, z) dx dy dz.

For P e states:

Ψ = (D 1 * M,1 (ψ, θ, φ) + D 1 * M,-1 (ψ, θ, φ)) √ 2 Rρ ϕ(x, y, z) , Ψ 1 |Ψ 2 P e = ϕ 1 B P e 128 ϕ 2 = (x + y + z)(x + y)(y + z)(z + x) 128 ϕ * 1 (
x, y, z)ϕ 2 (x, y, z) xdx ydy zdz.

For P o states:

Ψ = D 1 * M,0 (ψ, θ, φ) Φ 0 (x, y, z) + (D 1 * M,-1 (ψ, θ, φ) -D 1 * M,1 (ψ, θ, φ)) √ 2 Φ 1 (x, y, z) with    Φ 0 Φ 1    = M    F G    , Ψ 1 |Ψ 2 P o =    F 1 G 1    B P o 128    F 2 G 2    , (34) 
Ψ 1 |Ψ 2 P o = (x + y)(y + z)(z + x) 128    F 1 G 1    †    (x + y) 2 x(x + y + z) -yz x(x + y + z) -yz (x + z) 2       F 2 G 2    dx dy dz.
A.2 Derivation of the matrix elements of S and P o states

As mentioned in Sect. 3.2, when using the perimetric coordinates x, y, z, each term of the kinetic part of the Hamiltonian appears as a product of a polynomial in x, y, z by a first or second order partial derivative with respect to

x, y and z. In order to obtain the matrix elements of the Hamiltonian, we have to efficiently take into account the recurrence and differential properties of the Laguerre polynomials family [START_REF] Abramovitz | Handbook of mathematical functions[END_REF]. At a deeper level, we can construct a Lie algebra of operators that have simple connections with the various operators of interest (i.e., perimetric coordinates and associated momenta) such that the Hilbert space appears as a representation (preferably irreducible) of the associated Lie group.

In the specific case of S and P o states of H + 2 or HD + , we introduce the following hermitean operators, written for a variable u, and a length scale α -1 :

S 1 = 1 α u ∂ 2 ∂u 2 + ∂ ∂u + α u 4 , S 2 = i u ∂ ∂u + 1 2 , (35) 
S 3 = - 1 α u ∂ 2 ∂u 2 + ∂ ∂u + α u 4 .
The commutation relations of those operators are closed: For the S state Hamiltonian, the expressions are simpler if the following hermitean operators U = S 1 + S 3 ,

[S 1 , S 2 ] = -iS 3 , [S 2 , S 3 ] = iS 1 , [S 3 , S 1 ] = iS 2 , (36) 
P = S 1 -S 3 , Q = S 2 1 -S 2
3 and S = (S 1 + S 3 ) S 2 + S 2 (S 1 + S 3 ) are introduced. For example, we give the expressions of the operators A and B of Eq. ( 21):

A S = α -1 A S 1 + 1 2µ 12 A S 2 + 1 2µ 0 A S 3 + α -2 V S , A S 1 = -4 γ 2 (U y + U z ) 2 P x -4 γ (U y + U z ) Q x -4 γ U 2 z P y + U 2 y P z + U z Q y + U y Q z -iS y iS 2z -iS z iS 2y , A S 2 = -4 γ 2 (U 2 y + U 2 z ) P x -4 γ (U y + U z ) Q x - 8 γ U 2 x + γ 2 2 U 2 z + γU x U z P y -8 (U x + γ 2 U z ) Q y - 8 γ U 2 x + γ 2 2 U 2 y + γU x U y P z -8 (U x + γ 2 U y ) Q z +4 iS x (iS 2y + iS 2z ) + 4 iS 2x (iS y + iS z ), A S 3 = 4 γ Q x (U y -U z ) -4 iS x (iS 2y -iS 2z ) + 4 γ iS 2x (iS z -iS y ) +8 U x (U y P z -U z P y ) + 4 γ 2 P x (U 2 y -U 2 z ) + 4 γ (U 2 y P z -U 2 z P y ) -4 γ (Q y U z -Q z U y ), V S = -16γ U x + γ 2 (U y + U z ) (U y + U z ) + 8 (U x + γU y )(U x + γU z ), B S = 8 α -3 γ (U x + γU y )(U x + γU z )(U y + U z ),
where γ = α/β.

As all the operators involved in the generalized eigenvalue problem, Eq. ( 21), can be expressed in terms of the generators S 1 , S 2 and S 3 , it is natural to use a basis where the generators have simple matrix elements. We choose the standard basis for the D + 1/2 representation of the SO(2, 1) group [START_REF] Barut | Theory of Group Representations and Applications[END_REF], i.e., eigenstates of the S 3 operator that are labelled with a non-negative integer n. All matrix elements of the generators are known and simple. They have strong coupling rules (n changes by at most one unit) and are given by:

S 1 |n > = n + 1 2 |n + 1 > + n 2 |n -1 >, iS 2 |n > = n + 1 2 |n + 1 > - n 2 |n -1 >, (37) 
S 3 |n > = n + 1 2 |n > .
The wave-functions in the standard basis are also known. They are:

u|n (α) = (-1) n √ α L (0) n (αu) e -αu/2 . (38) 
A vector of the basis used for the full problem (defined in Eq. ( 25)) is a tensor product over the three perimetric coordinates |n (α)

x , n

y , n

, where different length scales are used in the x and y, z coordinates. 

+ 2 γ 2 a 2 b + 2 γ 2 a b +2 γ 2 a 2 c + 2 γ 2 a c + 2 γ b 2 + 4 γ a + 6 γ c +2 γ c 2 + 6 γ 2 b + 2 γ 2 a + 2 γ 2 + 4 γ 3 a +3 γ 3 b 2 + 2 γ 3 + 12 a 2 + 12 a b + 12 a 2 b + 12 a c +4 c + 12 a 2 c + 4 γ a b 2 + 4 γ a c 2 + 12 γ a b + 12 γ a c +16 γ 2 b c + 4 γ 2 b 2 + 4 γ 2 c 2 +6 γ 2 c + 2 γ 2 a 2 + 3 γ 3 c + 3 γ 3 c 2 +8 γ 2 b 2 c + 8 γ 2 b c 2 + 3 γ 3 b)/γ.
The terms of the operator A P o can be expressed using the same elementary operators. The expressions are too long to be reported here.

A.3 Derivation of the matrix elements of P e states

In the case of P e states, because the scalar product involves the weight xdx ydy zdz, the previous generators are no longer hermitean. We thus have to define a new set of hermitean operators:

S 1 = 1 α u ∂ 2 ∂u 2 + 2 ∂ ∂u + α u 4 , S 2 = i u ∂ ∂u + 1 , (39) 
S 3 = - 1 α u ∂ 2 ∂u 2 + 2 ∂ ∂u + α u 4 .
The commutation relations are still [S 1 , S 2 ] = -iS 3 , [S 2 , S 3 ] = iS 1 and [S 3 , S 1 ] = iS 2 , and the interpretation in terms of group theory is similar. The Casimir operator is now computed as S 2 1 + S 2 2 -S 2 3 = 0. Thus, the Hilbert space spans a D + 1 representation of the SO(2, 1) group. The standard basis is again composed of eigenstates of S 3 and the matrix elements of the generators are:

S 1 |n > = (n + 1)(n + 2) 2 |n + 1 > + n(n + 1) 2 |n -1 >, iS 2 |n > = (n + 1)(n + 2) 2 |n + 1 > - n(n + 1) 2 |n -1 >, S 3 |n > = (n + 1)|n > .
Finally, the wave-functions of the basis states are:

u|n (α) = (-1) n √ α √ n + 1 L (1) n (αu) e -αu/2 . ( 40 
)
The expression of the P e Hamiltonian involves the hermitean operators

U = S 1 + S 3 , M = S 1 -S 3 , Q = S 2 1 -S 2 3 , N = (S 1 + S 3 ) S 2 + S 2 (S 1 + S 3 ), F = U M U and G = U S 2 U .
We have: -.499 727 839 716 47 diss. limit Table 2. J = 0 1sσ g energy levels of the H + 2 molecular ion below the dissociation limit, corresponding to the 1 S e symmetry.

A P e = α -2 A P e 1 + 1 2µ 12 A P e 2 + 1 2µ 0 A P e 3 + α -3 V P e , (41) 
B P e = 16 α -4 γ (U z + U y ) (γ U y + U x ) (U x + γ U z ) (U x + γ U y + γ U z ).
The proton to electron mass ratio is 1836.152701. In the last column, we give numerical details, namely the size of the basis used, and the optimal values of the two variational parameters α and β. Three sets of computations have been done, using (i) 

N

Since we have |∆n x | ≤ 4 ,

 4 |∆n y | ≤ 3, |∆n z | ≤ 3 and |∆n x | + |∆n y | + |∆n z | ≤ 5 for the exchange coupling rules, we obtain 205 pseudo-rules. Finally, we have up to 420 non-zero matrix element per row of the Hamiltonian matrix.

First, we have determined the dependence of the 1 S

 1 e energies of H + 2 on M/m by computing them for 21 values of M/m around the 1986 codata values, separated by a 10 -5 a.u. step. The slope ∂E ∂(M/m) is determined by a least square linear fit. The results are given in Table
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 23 the coupling rule |∆ n| ≤ 1 of the elementary operators S 1 , iS 2 , S 3 , one can deduce those of U and P (|∆ n| ≤ 1) and of Q and iS (|∆ n| ≤ 2). The detailed expression of the S e Hamiltonian shows that the coupling rules connecting the basis vectors |n x , n y , n z and |n x + ∆n x , n y + ∆n y , n z + ∆n z are given by |∆n x | ≤ 2, |∆n y | ≤ 2, |∆n z | ≤ 2 and |∆n x | + |∆n y | + |∆n z | ≤ 3 as announced in Sect. 3.2. The matrix elements of the Hamiltonian can be easily deduced from those of S 1 , iS 2 , S 3 , using a symbolic calculation language like Maple V. Here, we only give as an example the diagonal matrix element of the term depending on m/M : a, b, c|A S 2 |a, b, c = -(4 + 8 γ b c + 2 γ + 12 a + 4 b + 6 a b + 6 γ 3 a c 2 + 6 γ 3 a c +16 γ a b c + 6 γ b

Fig. 1 .

 1 Fig.1. Born Oppenheimer potential energy curves, correlated to the first and the second dissociation limits. Full lines correspond to binding curves and dashed lines to dissociative curves. The curves are indexed by the molecular quantum numbers n η , n ξ and Λ (see Table1).
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 2 Fig. 2. Convergence region, in a logarithmic scale, for (a) v = 4 and (b) v = 17 J = 0 1sσ g states corresponding to the 1 S e symmetry. The labels indicate the level of convergence. The size of the basis is here N = 96 and N x = 20, with 40846 functions. The width of the matrix is 1846.
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Fig. 3 .

 3 Fig. 3. Convergence contours at the 10 -12 level for all the energies converged with N = 96 and N x = 20, from v = 0 to v = 17.

Fig. 4 .

 4 Fig. 4. (a) Eigenvectors coefficient distribution P x (n x ) versus n x . (b) P z (n z ) versus n z . The size of the basis is N = 96, N x = 20 with 40846 functions and the variational parameters are α = 1.7 and β = 8.

  = 120, N x = 20, N tot = 66046. The matrix width is 2397. α = 1.1, β = 7.4. (ii) N = 160, N x = 26, N tot = 121486, width = 3444, α = 1.1, β = 2.75. and (iii) N = 220, N x = 30, N tot = 332696, width = 6946, α = 1.1, β = 2.5. All the digits shown in this

Table 5 .Table 6 .

 56 P o symmetry. The parameters are: (i) N = 58, N x = 24, N tot = 28850, width = 3054, α = 1.5, β = 10.5. (ii) N = 120, N x = 26, N tot = 159741, width = 10776, α = 1.1, β = 5. (iii) N = 140, N x = 26, N tot = 223731, width = 13294, α = 1.1, β = 2.5. All the digits shown in this table are converged. L. Hilico et al.: Ab initio calculation of the J = 0 and J = 1 states of the H + 2 Comparison of the most accurate energies for the J=1 v=0, 1 1sσ g states of the H + 2 molecular ion ( 3 P o symmetry). The uncertainty on the last figure is indicated. For (a) and (b), see the caption of Table 3. J = 0 and J = 1 2pσ u energy levels of the H + 2 molecular ion corresponding to the 3 S e and 1 P o symmetry. The size of the basis and the variational parameters are : (i) N = 96, N x = 26, N tot = 48034, α = 1, β = 1.5 and (ii) N = 50, N x = 30, N tot = 21886, α = 0.6, β = 1.2.

Table 6

 6 

	4.4 Results for D + 2

compares our results to the published values. Again, our values are more accurate, and agree with the previous results.

  and characterize the SO(2, 1) group (Lorentz group in two spatial dimensions). Thus S 1 , S 2 and S 3 appear as the generators of a SO(2, 1) group and Eqs. (35) define a representation of SO(2, 1) for which the Casimir operator can be ∂ ∂u and u ∂ 2 ∂u 2 can be expressed as linear combinations of S 1 , S 2 and S 3 , and consequently, each term of the Hamiltonian can be expressed as a combination of the generators of three different SO(2, 1) groups.

	computed as S 2 1 + S 2 2 -S 2 3 = 1 4 . It follows that the Hilbert space is a single irreducible representation of the SO(2, 1)
	group of type D + 1/2 [31].
	u, u

Table 1 .

 1 Correspondence between exact and molecular quantum numbers of the H + 2 molecular ion. L. Hilico et al.: Ab initio calculation of the J = 0 and J = 1 states of the H + 2 , D + 2 and HD + molecular ions

						1	-1	-1	3 P o
						. . .			
		2pσ u	1	0	0	0	1	-1	3 S e
						1	-1	1	1 P o
						. . .			
	2	3dσ g	2	0	0	0	1	1	1 S e
						1	-1	-1	3 P o
						. . .			
		2pπ u	0	0	1	1	1	-1	3 P e
							-1	1	1 P o
						. . .			
		4fσ u	3	0	0	0	1	-1	3 S e
						1	-1	1	1 P o
						. . .			

Table 4 .

 4 J = 1 1sσ g energy levels of H + 2 corresponding to the3 

	table are

and HD + molecular ions

and HD + molecular ions

A P e 1 = 8 γ 3 (- 10. Slope of the J = 0 1sσ g energy levels as a function of M/m. The results are given in atomic units. All the digits shown are converged, and the precision given is large enough to extrapolate the energy levels with a relative accuracy of 10 -14

if the mass variation is less than 10 -4 u.a. around 1836.152701 for H + 2 and 3670.483014 for D + 2 . T is the relative sensitivity of the transition frequencies to the proton to electron mass ratio defined in Eq. (33).