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Abstract. In a classification problem, hard margin SVMs tend to min-
imize the generalization error by maximizing the margin. Regularization
is obtained with soft margin SVMs which improve performances by relax-
ing the constraints on the margin maximization. This article shows that
comparable performances can be obtained in the linearly separable case
with the Ho–Kashyap learning rule associated to early stopping meth-
ods. These methods are applied on a non-destructive control application
for a 4-class problem of rail defect classification.

1 Introduction

In a classification problem, after the parametrization and variable selection steps,
the task is to choose the separating surface form (linear, polynomial . . . ) and
the classifier structure.

In this paper, we discuss linear classification. We compare two learning meth-
ods: Ho–Kashyap learning rule [1] and Linear Support Vector Machine (SVM)
[2], [3]. For SVM, regularization by soft margin is used to improve the generaliza-
tion performance. [4] introduced the SVM concepts for Ho–Kashyap classifiers.
Regularization is done by adding a parameter in the cost function to control the
trade-off between model complexity and the amount of tolerated errors on the
training set. We introduce early stopping as another regularization method to
avoid overfitting. The learning is stopped before all the training examples are
well classified.

We tested these methods in a 4-class linearly separable problem by creating
4 binary sub-classifiers. This application of rail defect classification provided a
set of 140 observations which is not enough to split it to a training set and a
validation set. Therefore, we used the Leave One Out cross-validation method
for the generalization error estimation.

We start in Sect. 2 with some formalism on linear classification, before intro-
ducing Ho–Kashyap learning rule (Sect. 2.1) and SVM (Sect. 2.2). Then, in Sect.
3, we apply these methods on the application data and compare the results.



2 Linear Binary Classification

In a binary classification linear problem, the task is to find a separating hyper-
plane that can separate 2 classes. Let (xi, yi)1≤i≤N be a set of training examples
with xi ∈ IRp belonging to a class labeled by yi ∈ {+1, −1}. The decision func-
tion of a linear classifier is:

f(x) = sign (〈w, x〉 + b) (1)

where 〈., .〉 stands for dot product and (w ∈ IRp, b ∈ IR) are the parameters of
the separating hyperplane. If all the training examples are correctly separated,
then:

yi (〈w, xi〉 + b) > 0 i = 1, . . . , N . (2)

2.1 Ho–Kashyap Learning Rule (HK)

Amongst other learning rules for linear classifiers design (perceptron, LMS, lin-
ear programming algorithms. . . [5]), Ho and Kashyap [1] proposed an iterative
gradient descent-based algorithm. Defining a set of N (p+1)-dimensional vectors
Xi:

Xt
i =

{

(+1, xt
i) , if yi = +1

(−1,−xt
i) , if yi = −1

(3)

and a (p + 1)-dimensional weight vector W = (b, wt)t allows to write (2):
〈W t, Xi〉 > 0, i = 1, . . . , N . Then defining a (p + 1 × N)-matrix X =
[X1 X2 . . . XN ] gives:

W tX > 0 . (4)

Let B be the ”margin” vector with bi as components. Equation (4) can be
rewritten as:

W tX = Bt

subject to bi > 0 i = 1, . . . , N .
(5)

Ho–Kashyap (HK) learning rule solves (5) by minimizing the least squares

criterion J(W,B) = ‖W tX − Bt‖
2
. The margin vector is first initialized to B0

with all bi set to small positive values. At each step k, the weight vector Wk is
deduced from Bk by:

W t
k = Bt

kX† (6)

where X† = Xt(XXt)−1 stands for the pseudo-inverse of X. Then a gradient
descent is used to compute a new estimate of the margin vector:

Bt
k+1 = Bt

k − µ
1

2
(∇BJ(W,B) − |∇BJ(W,B)|) (7)

with µ a positive learning rate.
In order to satisfy the constraints bi > 0, the positive components of

∇BJ(W,B) are set to 0, thus preventing bi to decrease and become negative.
This is why 1

2
(∇BJ(W,B) − |∇BJ(W,B)|) is used instead of ∇BJ(W,B) .

It can be shown [5] that this procedure converges in a finite number of steps
∀µ, 0 < µ < 1, to 0 in the separable case, to a non-zero value otherwise. This
makes the tuning of µ not critical.



2.2 Linear SVM

For Linear Support Vector Machine (SVM) binary classifiers, (2) becomes [2]:

yi (〈w, xi〉 + b) ≥ 1 i = 1, . . . , N . (8)

We consider now the points that ensure equality in (8). These points belong
to the so called canonical hyperplanes H1 : 〈w, xi〉 + b = 1 and H2 : 〈w, xi〉 +
b = −1. The distance ∆ which separates H1 and H2 is equal to 2/‖w‖ and is
called the margin. The main difference introduced by a SV classifier is that the
optimal separating hyperplane is the one that ensures a maximal margin [2][3],
i.e. minimizes ‖w‖. To build a so called hard margin SV classifier, the task is
therefore:

min W (w, b) = 1

2
‖w‖

2

subject to yi (〈w, xi〉 + b) ≥ 1
(9)

which is equivalent to the maximization problem of the dual Lagrangian:

max Ldual =
N
∑

i=1

αi −
1

2

N
∑

i,j=1

αiαjyiyj 〈xi, xj〉

subject to αi ≥ 0, i = 1, . . . , N and
N
∑

i=1

αiyi = 0

(10)

where αi are the Lagrange multipliers. The solution (α̂i) of (10) allows to deter-

mine the couple (ŵ, b̂):

ŵ =

N
∑

i=1

α̂iyixi , b̂ = −
1

2
〈ŵ, xr + xs〉 , α̂r, α̂s > 0 (11)

where xr and xs are two examples for which the corresponding class labels are
yr = −1 et ys = +1. The decision function (1) of a SVM classifier is thus given
by:

f(x) = sign

(

N
∑

i=1

α̂iyi 〈xi, x〉 + b̂

)

. (12)

From the Karush-Kuhn-Tucker (KKT) conditions [3], we have:

α̂i (yi [〈w, xi〉 + b] − 1) = 0, i = 1, . . . , N (13)

and therefore only for the points xi which satisfy yi [〈w, xi〉 + b] = 1, Lagrange
multipliers are non zero: α̂i > 0. These points are called Support Vectors (SV).

Most of the time, in practice, the training set contains noise and outliers
and a SV classifier calculated from this set can lead to poor generalization. To
tackle this problem, slack variables ξi which allow errors on the constraints can
be introduced. Now, we have the so called soft margin SVM problem to solve:

min W (w, b) = 1

2
‖w‖

2
+ C

N
∑

i=1

ξi

subject to yi (〈w, xi〉 + b) ≥ 1 − ξi

ξi ≥ 0

(14)



where C is the regularization parameter which controls the trade-off between
training error and model complexity and has to be determined beforehand. Solv-
ing the quadratic optimization problem (14) leads to the same dual Lagrangian
maximization (10) but subject to:

0 ≤ αi ≤ C, i = 1, . . . , N and
N
∑

i=1

αiyi = 0 . (15)

Two categories of SV can be distinguished: the well classified SV which have
0 < α̂i < C, and the misclassified SV which have α̂i = C.

2.3 Generalization and Hyperparameters Tuning

In classification the goal is to minimize the error on future examples which is
called the generalization error (GE). The most popular technique for the GE es-
timation is the cross-validation that is independent of the learning machine used.
The Leave One Out procedure (LOO) is a cross-validation procedure adapted
for a weak data number N and giving an almost unbiased estimation of GE
[6]. It consists in dividing the training set in two subsets: a learning subset of
N − 1 examples and a test subset containing only one example. The procedure
is repeated N times until all the examples are tested. The estimation of GE
is then given by the number of misclassified test examples over N . To lighten
calculations, an upper bound of GE can be calculated: k-fold cross-validation
which is similar to LOO except that the training set is divided in k subsets. One
subset is left for testing and k − 1 subsets are used for learning. The procedure
is thus only repeated k times (typically, k = 5 or 10). LOO can be seen as the
extreme case of the k-fold cross-validation, where k = N .

To avoid overfitting, a certain amount of misclassified training examples can
be accepted. In SVM, this is introduced by the soft margin and the regularization
parameter C. To tune C, a range of values is scanned and the optimal value is
the one corresponding to the minimum of the GE estimation.

For the Ho–Kashyap learning rule, early stopping can make the learning
process stop before all the training examples are well classified. Early stopping
can be achieved by looking at the GE estimation during the training process and
stopping as soon as it is rising. But this method does not yield always to the
best minimum of GE (see for instance [7]). In another approach, the training is
not stopped but GE is evaluated at all the iterations during the process. Then
the lowest GE gives the best classifier. This method can be included in the HK
learning to best tune the hyperparameter, here only n, the number of iterations.
Indeed, a change in µ yields to a change in n which is automatically tuned.

3 Application

3.1 Context

The application concerns the classification of rail defects signatures. Previous
works led to the realization of a suitable double-coils and double-frequencies



differential eddy current sensor [8] which can be embarked on a train. After
preprocessing, four complex channels (active and reactive parts) are available,
which are equivalent to eight real signals.

Tests have been made on a complete subway track. The defects were labeled
in 4 classes: switches (ω1), fishplated joints (ω2), welded joints (ω3) and shellings
(ω4). This provided a training set of 140 observations for a 4-class classifier. One
observation consists in a window of 500mm width (100 points considering sam-
pling step is 5mm) for each of the 8 signals. The Modified Fourier Descriptors
(MFD) [9] result from the 12 first coefficients Cj of the Discrete Fourier Trans-
form (DFT) of the signals of the window by: dj = CjC−j/ |C1C−1|, j = 1, . . . , 12.
The number of parameters is thus p = 96.

The class-rest approach to the 4-class problem is to split it into 4 binary
problems with 4 sub-classifiers dedicated to the separation of one class among
the others. Thus, a different subset of variables can be chosen for each. The
Orthogonal Forward Regression (OFR) procedure has been applied to rank the
parameters with respect to their contribution to each sub-classifier output. To-
gether with the decision criterion introduced in [10], this reduced the input
dimensions from p = 96 to respectively p = 15, 15, 8 and 9. In order to raise
ambiguity, the maximum of the 4 sub-classifiers outputs gives the class of the
example.

3.2 Results and Comparisons

Table 1 compares the generalization performances (LOO) evaluated with the
Leave One Out procedure for the Ho–Kashyap learning rule with (HK opt)
or without (HK inf ) early stopping, SVM with soft margin (SVM soft) and
SVM with hard margin (SVM hard) classifiers. The percentages of well classified
examples on the training set are given in (TR set). The results are presented for
each sub-classifier as well as for the global classifier before (Global 1 ) and after
(Global 2 ) raising ambiguity.

The tuning of the hyperparameters is done as described in Sect. 2.3. Since for
SVMs, LOO procedure is too much time consuming, 5-fold procedure was used
to estimate GE for the tuning of C. Here is an advantage of the HK learning
rule: its speed, thanks to which the tuning of n can be made with the LOO
estimation of GE which is closer to GE than the 5-fold estimation.

Performances of HK inf are similar to the ones of SVM hard though it does
not maximize the margin. When regularization is used, performances increase
in a comparable way for both SVM soft and HK opt. Different values of µ have
been tried for the Ho–Kashyap rule and it showed that it does not really affect
the results (by 1 misclassified example in the worst case) but only n in the early
stopping procedure.

4 Conclusion

We reviewed some formalism on linear classification and particularly on linear
SVM classifiers. In the particular case of linear classification and on our applica-



Table 1. Classification performances

HK inf SVM hard HK opt SVM soft

TR set LOO TR set LOO TR set LOO TR set LOO

Class ω1/others 100 94.29 100 90.71 99.29 96.43 99.29 96.43
Class ω2/others 100 96.43 100 96.43 100 99.29 100 99.29
Class ω3/others 100 95.71 100 95.00 99.29 97.14 99.29 96.43
Class ω4/others 100 97.86 100 97.86 100 97.86 100 97.86

Global 1 100 87.14 100 82.86 98.57 92.14 98.57 91.43

Global 2 100 95.71 100 93.57 99.29 97.14 99.29 96.43

tion, SVM classifiers give very good generalization performances, as expected, by
maximizing the margin with only one hyperparameter C to tune. But we showed
that a hyperplane trained with a simple learning rule such as Ho–Kashyap can
achieve comparable performances with the introduction of early stopping in the
learning process and one hyperparameter, the number of iterations n. We used
a procedure to tune the hyperparameter C using a simplified cross-validation
method, k-fold, to lighten calculation for SVM. Ho–Kashyap learning proved
faster and the almost unbiased LOO estimation of GE could be used for the
tuning of n.
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