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Ho-Kashyap with Early Stopping vs Soft Margin SVM for Linear Classifiers -An Application

In a classification problem, hard margin SVMs tend to minimize the generalization error by maximizing the margin. Regularization is obtained with soft margin SVMs which improve performances by relaxing the constraints on the margin maximization. This article shows that comparable performances can be obtained in the linearly separable case with the Ho-Kashyap learning rule associated to early stopping methods. These methods are applied on a non-destructive control application for a 4-class problem of rail defect classification.

Introduction

In a classification problem, after the parametrization and variable selection steps, the task is to choose the separating surface form (linear, polynomial . . . ) and the classifier structure.

In this paper, we discuss linear classification. We compare two learning methods: Ho-Kashyap learning rule [START_REF] Ho | An Algorithm for Linear Inequalities and its Applications[END_REF] and Linear Support Vector Machine (SVM) [START_REF] Burges | A Tutorial on Support Vector Machines for Pattern Recognition[END_REF], [START_REF] Cristianini | An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods[END_REF]. For SVM, regularization by soft margin is used to improve the generalization performance. [START_REF] Lȩski | Ho-Kashyap Classifier With Generalization Control[END_REF] introduced the SVM concepts for Ho-Kashyap classifiers. Regularization is done by adding a parameter in the cost function to control the trade-off between model complexity and the amount of tolerated errors on the training set. We introduce early stopping as another regularization method to avoid overfitting. The learning is stopped before all the training examples are well classified.

We tested these methods in a 4-class linearly separable problem by creating 4 binary sub-classifiers. This application of rail defect classification provided a set of 140 observations which is not enough to split it to a training set and a validation set. Therefore, we used the Leave One Out cross-validation method for the generalization error estimation.

We start in Sect. 2 with some formalism on linear classification, before introducing Ho-Kashyap learning rule (Sect. 2.1) and SVM (Sect. 2.2). Then, in Sect. 3, we apply these methods on the application data and compare the results.

Linear Binary Classification

In a binary classification linear problem, the task is to find a separating hyperplane that can separate 2 classes. Let (x i , y i ) 1≤i≤N be a set of training examples with x i ∈ IR p belonging to a class labeled by y i ∈ {+1, -1}. The decision function of a linear classifier is:

f (x) = sign ( w, x + b) (1) 
where ., . stands for dot product and (w ∈ IR p , b ∈ IR) are the parameters of the separating hyperplane. If all the training examples are correctly separated, then:

y i ( w, x i + b) > 0 i 1, . . . , N . (2) 

Ho-Kashyap Learning Rule (HK)

Amongst other learning rules for linear classifiers design (perceptron, LMS, linear programming algorithms. . . [START_REF] Duda | Pattern Classification[END_REF]), Ho and Kashyap [START_REF] Ho | An Algorithm for Linear Inequalities and its Applications[END_REF] proposed an iterative gradient descent-based algorithm. Defining a set of N (p+1)-dimensional vectors X i :

X t i = (+1, x t i ) , if y i = +1 (-1, -x t i ) , if y i = -1 (3) 
and a (p + 1)-dimensional weight vector W = (b, w t ) t allows to write (2):

W t , X i > 0, i = 1, . . . , N . Then defining a (p + 1 × N )-matrix X = [X 1 X 2 . . . X N ] gives: W t X > 0 . (4) 
Let B be the "margin" vector with b i as components. Equation ( 4) can be rewritten as:

W t X = B t subject to b i > 0 i = 1, . . . , N . (5) 
Ho-Kashyap (HK) learning rule solves (5) by minimizing the least squares criterion J(W, B) = W t X -B t 2 . The margin vector is first initialized to B 0 with all b i set to small positive values. At each step k, the weight vector W k is deduced from B k by:

W t k = B t k X † (6) 
where X † = X t (XX t ) -1 stands for the pseudo-inverse of X. Then a gradient descent is used to compute a new estimate of the margin vector:

B t k+1 = B t k -µ 1 2 (∇ B J(W, B) -|∇ B J(W, B)|) (7) 
with µ a positive learning rate.

In order to satisfy the constraints b i > 0, the positive components of ∇ B J(W, B) are set to 0, thus preventing b i to decrease and become negative. This is why

1 2 (∇ B J(W, B) -|∇ B J(W, B)|) is used instead of ∇ B J(W, B
) . It can be shown [START_REF] Duda | Pattern Classification[END_REF] that this procedure converges in a finite number of steps ∀ µ, 0 < µ < 1, to 0 in the separable case, to a non-zero value otherwise. This makes the tuning of µ not critical.

Linear SVM

For Linear Support Vector Machine (SVM) binary classifiers, (2) becomes [START_REF] Burges | A Tutorial on Support Vector Machines for Pattern Recognition[END_REF]:

y i ( w, x i + b) ≥ 1 i = 1, . . . , N . (8) 
We consider now the points that ensure equality in [START_REF] Oukhellou | Dedicated Sensor and Classifier of Rail Head Defects for Railway Systems[END_REF]. These points belong to the so called canonical hyperplanes H 1 : w, x i + b = 1 and H 2 : w, x i + b = -1. The distance ∆ which separates H 1 and H is equal to 2/ w and is called the margin. The main difference introduced by a SV classifier is that the optimal separating hyperplane is the one that ensures a maximal margin [START_REF] Burges | A Tutorial on Support Vector Machines for Pattern Recognition[END_REF][3], i.e. minimizes w . To build a so called hard margin SV classifier, the task is therefore:

min W (w, b) = 1 2 w 2 subject to y i ( w, x i + b) ≥ 1 (9)
which is equivalent to the maximization problem of the dual Lagrangian:

max L dual = N i=1 α i -1 2 N i,j=1 α i α j y i y j x i , x j subject to α i ≥ 0, i = 1, . . . , N and N i=1 α i y i = 0 ( 10 
)
where α i are the Lagrange multipliers. The solution (α i ) of ( 10) allows to determine the couple ( ŵ, b):

ŵ = N i=1 αi y i x i , b = - 1 2 ŵ, x r + x s , αr , αs > 0 (11)
where x r and x s are two examples for which the corresponding class labels are y r = -1 et y s = +1. The decision function (1) of a SVM classifier is thus given by:

f (x) = sign N i=1 αi y i x i , x + b . ( 12 
)
From the Karush-Kuhn-Tucker (KKT) conditions [START_REF] Cristianini | An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods[END_REF], we have:

αi (y i [ w, x i + b] -1) = 0, i = 1, . . . , N (13) 
and therefore only for the points x i which satisfy y i [ w, x i + b] = 1, Lagrange multipliers are non zero: αi > 0. These points are called Support Vectors (SV). Most of the time, in practice, the training set contains noise and outliers and a SV classifier calculated from this set can lead to poor generalization. To tackle this problem, slack variables ξ i which allow errors on the constraints can be introduced. Now, we have the so called soft margin SVM problem to solve:

min W (w, b) = 1 2 w 2 + C N i=1 ξ i subject to y i ( w, x i + b) ≥ 1 -ξ i ξ i ≥ 0 ( 14 
)
where C is the regularization parameter which controls the trade-off between training error and model complexity and has to be determined beforehand. Solving the quadratic optimization problem (14) leads to the same dual Lagrangian maximization [START_REF] Oukhellou | A New Decision Criterion for Feature Selection: Application to the Classification of Non Destructive Testing Signatures[END_REF] but subject to:

0 ≤ α i ≤ C, i = 1, . . . , N and N i=1 α i y i = 0 . ( 15 
)
Two categories of SV can be distinguished: the well classified SV which have 0 < αi < C, and the misclassified SV which have αi = C.

Generalization and Hyperparameters Tuning

In classification the goal is to minimize the error on future examples which is called the generalization error (GE). The most popular technique for the GE estimation is the cross-validation that is independent of the learning machine used. The Leave One Out procedure (LOO) is a cross-validation procedure adapted for a weak data number N and giving an almost unbiased estimation of GE [START_REF] Duan | Evaluation of Simple Performance Measures for Tuning SVM Hyperparameters[END_REF]. It consists in dividing the training set in two subsets: a learning subset of N -1 examples and a test subset containing only one example. The procedure is repeated N times until all the examples are tested. The estimation of GE is then given by the number of misclassified test examples over N . To lighten calculations, an upper bound of GE can be calculated: k-fold cross-validation which is similar to LOO except that the training set is divided in k subsets. One subset is left for testing and k -1 subsets are used for learning. The procedure is thus only repeated k times (typically, k = 5 or 10). LOO can be seen as the extreme case of the k-fold cross-validation, where k = N .

To avoid overfitting, a certain amount of misclassified training examples can be accepted. In SVM, this is introduced by the soft margin and the regularization parameter C. To tune C, a range of values is scanned and the optimal value is the one corresponding to the minimum of the GE estimation.

For the Ho-Kashyap learning rule, early stopping can make the learning process stop before all the training examples are well classified. Early stopping can be achieved by looking at the GE estimation during the training process and stopping as soon as it is rising. But this method does not yield always to the best minimum of GE (see for instance [START_REF] Prechelt | Early Stopping -But When ?[END_REF]). In another approach, the training is not stopped but GE is evaluated at all the iterations during the process. Then the lowest GE gives the best classifier. This method can be included in the HK learning to best tune the hyperparameter, here only n, the number of iterations. Indeed, a change in µ yields to a change in n which is automatically tuned.

Application

Context

The application concerns the classification of rail defects signatures. Previous works led to the realization of a suitable double-coils and double-frequencies differential eddy current sensor [START_REF] Oukhellou | Dedicated Sensor and Classifier of Rail Head Defects for Railway Systems[END_REF] which can be embarked on a train. After preprocessing, four complex channels (active and reactive parts) are available, which are equivalent to eight real signals.

Tests have been made on a complete subway track. The defects were labeled in 4 classes: switches (ω 1 ), fishplated joints (ω 2 ), welded joints (ω 3 ) and shellings (ω 4 ). This provided a training set of 140 observations for a 4-class classifier. One observation consists in a window of 500mm width (100 points considering sampling step is 5mm) for each of the 8 signals. The Modified Fourier Descriptors (MFD) [START_REF] Oukhellou | Modified Fourier Descriptors: a New Parametrization of Eddy Current Signature Applied to the Rail Defect Classification[END_REF] result from the 12 first coefficients C j of the Discrete Fourier Transform (DFT) of the signals of the window by:

d j = C j C -j / |C 1 C -1 |, j = 1, . . . , 12.
The number of parameters is thus p = 96.

The class-rest approach to the 4-class problem is to split it into 4 binary problems with 4 sub-classifiers dedicated to the separation of one class among the others. Thus, a different subset of variables can be chosen for each. The Orthogonal Forward Regression (OFR) procedure has been applied to rank the parameters with respect to their contribution to each sub-classifier output. Together with the decision criterion introduced in [START_REF] Oukhellou | A New Decision Criterion for Feature Selection: Application to the Classification of Non Destructive Testing Signatures[END_REF], this reduced the input dimensions from p = 96 to respectively p = 15, 15, 8 and 9. In order to raise ambiguity, the maximum of the 4 sub-classifiers outputs gives the class of the example.

Results and Comparisons

Table 1 compares the generalization performances (LOO) evaluated with the Leave One Out procedure for the Ho-Kashyap learning rule with (HK opt) or without (HK inf ) early stopping, SVM with soft margin (SVM soft) and SVM with hard margin (SVM hard ) classifiers. The percentages of well classified examples on the training set are given in (TR set). The results are presented for each sub-classifier as well as for the global classifier before (Global 1 ) and after (Global 2 ) raising ambiguity.

The tuning of the hyperparameters is done as described in Sect. 2.3. Since for SVMs, LOO procedure is too much time consuming, 5-fold procedure was used to estimate GE for the tuning of C. Here is an advantage of the HK learning rule: its speed, thanks to which the tuning of n can be made with the LOO estimation of GE which is closer to GE than the 5-fold estimation.

Performances of HK inf are similar to the ones of SVM hard though it does not maximize the margin. When regularization is used, performances increase in a comparable way for both SVM soft and HK opt. Different values of µ have been tried for the Ho-Kashyap rule and it showed that it does not really affect the results (by 1 misclassified example in the worst case) but only n in the early stopping procedure.

Conclusion

We reviewed some formalism on linear classification and particularly on linear SVM classifiers. In the particular case of linear classification and on our applica- tion, SVM classifiers give very good generalization performances, as expected, by maximizing the margin with only one hyperparameter C to tune. But we showed that a hyperplane trained with a simple learning rule such as Ho-Kashyap can achieve comparable performances with the introduction of early stopping in the learning process and one hyperparameter, the number of iterations n. We used a procedure to tune the hyperparameter C using a simplified cross-validation method, k-fold, to lighten calculation for SVM. Ho-Kashyap learning proved faster and the almost unbiased LOO estimation of GE could be used for the tuning of n.

Table 1 .

 1 Classification performances

		HK inf	SVM hard	HK opt	SVM soft
		TR set LOO TR set LOO TR set LOO TR set LOO
	Class ω1/others 100	94.29	100	90.71 99.29 96.43 99.29 96.43
	Class ω2/others 100	96.43	100	96.43	100	99.29	100 99.29
	Class ω3/others 100	95.71	100	95.00 99.29 97.14 99.29 96.43
	Class ω4/others 100	97.86	100	97.86	100	97.86	100 97.86
	Global 1	100	87.14	100	82.86 98.57 92.14 98.57 91.43
	Global 2	100	95.71	100	93.57 99.29 97.14 99.29 96.43