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A perturbation method for the numerical solution of the Bernoulli problem

We consider the numerical solution of the free boundary Bernoulli problem by employing level set formulations. Using a perturbation technique, we derive a second order method that leads to a fast iteration solver. The iteration procedure is adapted in order to work in the case of topology changes. Various numerical experiments confirm the efficiency of the derived numerical method.

Introduction

The Bernoulli problem stands for a prototype of a large class of stationary free boundary problems involved in fluid dynamics and electromagnetic shaping (see [START_REF] Crouzeix | Variational approach of a magnetic shaping problem[END_REF][START_REF] Descloux | Stability of the solutions of the bidimensional magnetic shaping problem in absence of surface tension[END_REF][START_REF] Friedman | Free boundary problem in fluid dynamics[END_REF] and the references therein). This problem roughly consists in a Laplace equation with an additional boundary condition that enables determining the solution of the equation as well as the unknown domain.

In order to obtain a reliable numerical approximation for this problem, a wide variety of works have been produced. For instance, in Flucher and Rumpf [START_REF] Flucher | Bernoulli's free-boundary problem, Qualitative theory and numerical approximation[END_REF], some numerical schemes based on a local parameterization are developed. The authors prove in this work convergence results and present some numerical examples. Nevertheless, due to the local parameterization, the constructed methods cannot handle topological changes. In [START_REF] Bouchon | Numerical solution of the free boundary Bernoulli problem using a level set formulation[END_REF], we propose an extension of the Flucher-Rumpf technique introducing a level set formulation to characterize the free boundary. This approach enjoys the property of allowing topology changes as level sets generally do. However, the scheme developed in [START_REF] Bouchon | Numerical solution of the free boundary Bernoulli problem using a level set formulation[END_REF] has the drawback to slowly converge and produces some local oscillation of the computed boundary when the numerical solution approaches the steady state. This drawback is removed in [START_REF] Kuster | Fast numerical methods for Bernoulli free boundary problems[END_REF] where the authors consider an integral formulation of the Bernoulli problem and where the level set equation is solved via a fast marching strategy. The integral representation is however specific to partial differential equations for which this is available.

In order to improve the solver performances, we propose in this paper a second order scheme that can be viewed as a Newton-like method. The method is based on a perturbation of the parametrization of the initial guess of the free boundary. It has, as will be shown, the advantage of accelerating the convergence to the steady state solution, but as high order methods require additional regularity properties, the presented method fails to converge when a topology change occurs during the iteration process. We then resort to switching to the first order method while a domain splits up or two subdomains collapse. Numerical experiments show that convergence properties are dramatically improved when compared to the algorithm developed in [START_REF] Bouchon | Numerical solution of the free boundary Bernoulli problem using a level set formulation[END_REF]. The outline of the paper is as follows: In Section 2, we present a perturbation method to derive a second order formulation. Section 3 is devoted to the derivation of a numerical scheme based on level sets and inspired by this perturbation technique. Finally, Section 4 presents some numerical results for both a radial case for which the analytical solution is known and a case with changing topology. Finally, a conclusion is drawn. Let us mention that only the interior Bernoulli problem (see [START_REF] Bouchon | Numerical solution of the free boundary Bernoulli problem using a level set formulation[END_REF] for instance) is considered in the present study. An analog analysis of the exterior problem can be deduced straightforwardly.

The perturbed problem

Let Ω be a bounded domain of R 2 with a C 2 -boundary ∂Ω. We seek a domain (non necessarily connected) A with Ā ⊂ Ω and a function u defined on Ω \ A such that:

∆u = 0 in Ω \ Ā, (2.1) u = 0 on ∂Ω, (2.2) u = 1 on ∂A, (2.3) ∂u ∂n = λ on ∂A, (2.4) 
where λ is a positive real number and n is the unit normal to the boundary

∂(Ω \ Ā) of Ω \ Ā pointing inward A.
The perturbed problem approach of Flucher and Rumpf [START_REF] Flucher | Bernoulli's free-boundary problem, Qualitative theory and numerical approximation[END_REF] can be summarized in the following result.

Proposition 2.1. Let ∂ Ã = ∂A + ρn be a set close to A (in the sense that ρ 1). Then, the function u -extended to Ω \ Ã if necessary -is solution to the following problem:

∆u = 0 in Ω \ Ā, (2.5) u = 0 on ∂Ω, (2.6) ∂u ∂ ñ -κu = λ -κ + O(ρ 2 ) on ∂ Ã, (2.7)
where κ is the curvature of ∂ Ã.

To prove this results, we first need considering some preliminary results.

Some technical results

Let γ : [0, L] → R 2 denote a parametric representation of the curve ∂A. We choose the parameterization such that the unit normal vector n to ∂A points inward A. The tangent vector t is chosen according to Figure 1. We recall that if κ = κ(s) is the curvature of ∂A at 

A Ω \ A t n
dγ ds = t, dt ds = κ n, dn ds = -κ t.
To describe the perturbed boundary ∂ Ã by the parametric function γ(s) on [0, L], we assume that there exists a smooth function ρ defined on [0, L] such that γ(s) = γ(s) + ρ(s) n(s) 0 ≤ s < L.

(2.8)

We assume furthermore that

dρ ds = O(ρ), (2.9) 
κ = κ + O(ρ), (2.10) 
which means that highly oscillating boundary perturbations are excluded. Let us prove a useful technical result.

Lemma 2.1. We have the following identities:

t = 1 D (1 -ρκ) t + dρ ds n , ñ = 1 D (1 -ρκ) n - dρ ds t , with D = (1 -ρ κ) 2 + dρ ds 2 1 2 .
Proof. The first identity is obtained by differentiation of (2.8) and normalization. The second identity is easily deduced from the first one.

Lemma 2.2. Let u be a smooth function defined on A and satisfying equations (2.1)-(2.4), then we have

n T H(u) n = κ ∂u ∂n ,
where H(u) is the hessian matrix of u.

Proof. From equation (2.3), we have u(γ(s)) = 1. By differentiating, we obtain

∇u(γ(s)) • t(s) = 0.
A second differentiation implies

t T H(u(γ(s))) t + κ(s) ∇u(γ(s)) • n(s) = 0.
From the identity ∆u = t T H(u) t + n T H(u) n = 0, we get

-n T H(u) n + κ(s)∇u(γ(s)) • n(s) = 0.

Proof of Proposition 2.1

For the sake of simplicity, we omit to mention the variable s. Proof. Using Lemma 2.1, we write

∂u ∂ ñ (γ) = 1 D ∇u(γ + ρ n) • (1 -ρ κ) n - dρ ds t .
(2.12) Differentiating (2.3) in the tangential direction, we get ∇u(γ) • t = 0, which gives thanks to the Taylor expansion, ∇u(γ

+ ρ n) • t = O(ρ). (2.13) 
Assumption (2.9) implies

D = (1 -ρ κ) 2 + ( dρ ds ) 2 1 2 = 1 -2ρ κ + O(ρ 2 ) 1 2 = 1 -ρ κ + O(ρ 2 ), (2.14) 
Furthermore, we have by using Lemma (2.2)

∂u ∂n (γ + ρ n) = ∂u ∂n (γ) + ρ n T H(u(γ)) n + O(ρ 2 ) = (1 + ρκ) ∂u ∂n (γ) + O(ρ 2 ). (2.15)
Combining (2.13)-(2.15), and Assumption (2.9) again, (2.12) yields

∂u ∂ ñ (γ) = (1 -ρ κ) D ∂u ∂n (γ + ρ n) + O(ρ 2 ).
We then obtain from Lemma 2.2, and Assumption (2.9)

∂u ∂ ñ (γ) = 1 -ρκ 1 -ρ κ + O(ρ 2 ) ∂u ∂n (γ)(1 + ρ κ) + O(ρ 2 ) = (1 + ρ κ) ∂u ∂n (γ) + O(ρ 2 ).
We conclude by using (2.4).

From Lemma 2.3 and Hypothesis (2.10), we deduce

∂u ∂ ñ (γ) = (1 + ρκ) λ + O(ρ 2 ).
The Taylor expansion

u(γ) = u(γ) + ρ ∂u ∂n (γ) + O(ρ 2 ) = 1 + ρ λ + O(ρ 2 ) (2.16) yields then ∂u ∂ ñ (γ) = λ + (u(γ) -1) κ + O(ρ 2 ). Whence ∂u ∂ ñ (γ) -κ u(γ) = λ -κ + O(ρ 2
). This completes the proof of Proposition 2.1.

Let us now use this material to derive an iterative process to solve problem (2.1)-(2.4): If A k is a known approximation of the set A, we compute u k solution of

∆u k = 0 in Ω \ Āk , (2.17) u k = 0 on ∂Ω, (2.18) ∂u k ∂n k -κ k u k = λ -κ k on ∂A k , (2.19) 
where n k , κ k are respectively the inward unit normal to ∂A k and the curvature of ∂A k . We aim at computing an approximation of ρ such that 

∂A = ∂A k + ρn k . Let us set u = u k -u. Combining (2.
∆u = 0 in Ω \ Āk , (2.20) u = 0 on ∂Ω, (2.21) ∂u ∂n k -κ k u = O(ρ 2 ) on ∂A k , (2.22) 
which shows, at least in the case where κ k ≥ 0, that u = O(ρ 2 ) on Ω \ Āk , and then on ∂A k . Hence u k = u + O(ρ 2 ). From (2.16), we have

ρ = u(γ) -1 λ + O(ρ 2 ) = u k (γ) -1 λ + O(ρ 2 ).
We deduce that the setting

A k+1 := A k -ρ k n k , (2.23) 
with

ρ k = u k (γ) -1 λ (2.24)
gives a "good" approximation to A.

In the following section, we present the numerical algorithm in the context of level set methods.

Numerical scheme

Let (A, u) be a smooth solution of the Bernoulli problem (A is C 3 and u is C 2 , say). Our aim is to build a sequence (A k , u k ) k of solutions of an approximate Bernoulli problem which converges towards (A, u).

We first present the level set method, and then we derive from the previous analysis an iterative scheme which converges provided that the initial guess is not too far from the solution. Finally, we introduce what we will refer to as a mixed scheme.

The level set formulation

As we emphasized in the previous section, the scheme we have constructed is based on a local description of A k given by the function ρ k . If a topology change occurs, such a formulation breaks down and this motivates the introduction of the level set formulation to characterize the free boundary. To obtain a level set formulation, we use the principle that the level set description and the local description with ρ k must coincide whenever this last one has a sense.

The level set definition

The level set formulation consists in characterizing the boundary of the domain A k as the zero level set of a function φ k . More precisely, we seek a function φ k such that

γ k ={x ∈ Ω; φ k (x) = 0}, A k ={x ∈ Ω; φ k (x) > 0}, Ω \ Āk ={x ∈ Ω; φ k (x) < 0}.
Since we state that φ k is positive inside A k and negative outside, we get that the inward normal vector on ∂A k is given by

n k = ∇φ k |∇φ k | .

The level set equation

Let φ k and φ k+1 be two level set functions associated to the domains A k and A k+1 respectively and assume that we have a local description of the boundary for both A k and A k+1 . By definition, the level set functions satisfy

φ k+1 (γ k+1 ) = φ k (γ k ) = 0, (3.1) 
and the function γ k+1 is given by relation (2.22),

γ k+1 = γ k -ρ k n k+1 .
The Taylor expansion gives

φ k+1 (γ k+1 ) = φ k+1 (γ k -ρ k n k+1 ) = φ k+1 (γ k ) -ρ k ∇φ k+1 (γ k ) • n k+1 + O(ρ 2 k ).
We can write using identity (3.1),

φ k+1 (γ k ) = ρ k ∇φ k+1 (γ k ) • n k+1 + O(ρ 2 k ).
Using the expression of the inward normal

φ k+1 (γ k ) = ρ k ∇φ k+1 (γ k ) • ∇φ k+1 (γ k+1 ) |∇φ k+1 (γ k+1 )| + O(ρ 2 k ).
Another Taylor expansion shows that

∇φ k+1 (γ k+1 ) |∇φ k+1 (γ k+1 )| = ∇φ k+1 (γ k ) |∇φ k+1 (γ k )| + O(ρ k ).
We finally obtain

φ k+1 (γ k ) = ρ k |∇φ k+1 (γ k )| + O(ρ 2 k
). Since the domain A k moves to the domain A k+1 thanks to the relation (2.24)

ρ k = u k -1 λ on ∂A k ,
and recalling that φ k (γ k ) = 0, we obtain the level set equation for the function φ k+1

φ k+1 (γ k ) = φ k (γ k ) + u k -1 λ |∇φ k+1 (γ k )| + O(ρ 2 k ). (3.2)
The function (1 -u k )/λ behaves like a speed of propagation to move the boundary but equation (3.2) is only defined on the domain boundary ∂A k . To complete the scheme we need an extension of the normal velocity to obtain a level set equation on the whole domain Ω.

Extension of the normal velocity

Following [START_REF] Adalsteinsson | The Fast Construction of Extension Velocities in Level Set Methods[END_REF], we construct a velocity v k by the Fast Marching method such that v k • n k coincides with the normal velocity (1 -u k )/λ on ∂A k . To this end, for a given level set function φ k such that |∇φ k | = 1, we solve the equation

∇v k • ∇φ k = 0, with the condition v k = 1 -u k κ k on ∂A k .
We define φ k+1 by

φ k+1 = φ k -v k |∇φ k+1 | = φ k -v k |∇φ k + O(ρ k )| = φ k -v k + O(ρ 2 k ),
where we have used the property v k = O(ρ k ). Now, we have by differentiation

∇φ k+1 = ∇φ k -∇v k + O(|∇ρ 2 k |).
Since we have assumed

|∇ρ k | = O(ρ k ), then |∇φ k+1 | 2 = ∇φ k • ∇φ k+1 -∇v k • ∇φ k+1 + O(ρ 2 k ) = ∇φ k • (∇φ k -∇v k ) -∇v k • (∇φ k -∇v k + O(ρ 2 k )) + O(ρ 2 k ) = 1 + O(ρ 2 k ).
The function φ k+1 is then updated in order to satisfy |∇φ k+1 | = 1 by using a Fast Marching Method. Note that this correction does not modify the position of the free boundary. To initialize the iterative process, we choose φ 0 as the signed distance function associated to the initial guess A 0 . We now draw two numerical schemes based on the level set formulation.

The "perturbation-method scheme"

Let us decribe now the algorithm deduced from the analysis of the previous section. Assume that we know the domain A k and a level set function φ k associated to A k satisfying |∇φ k | = 1.

(1) We compute u k on Ω \ Āk solving the elliptic problem with mixed condition on the boundary

∆u k = 0 in Ω \ Āk , u k = 0 on ∂Ω, ∂u k ∂n k -κ k u k = λ -κ k on ∂A k ,
where

κ k (x) = ∇ • ∇φ k (x) |∇φ k (x)| .
(2) We compute the extended normal velocity v k on Ω by

∇v k • ∇φ k = 0 in Ω, v k = 1 -u k λ on ∂A k ,
using the fast method described in [START_REF] Adalsteinsson | The Fast Construction of Extension Velocities in Level Set Methods[END_REF].

(3) We obtain the new level set function φ k+1 by setting

φ * k+1 (x) = φ k (x) -v k (x), which defines ∂A k+1 = {x ∈ Ω; φ * k+1 (x) > 0}. (4)
We perform a correction step to compute φ k+1 :

|∇φ k+1 | = 1 in Ω, φ k+1 = 0 on ∂A k , φ k+1 φ * k+1 ≥ 0 in Ω. (3.3)
Note that the last equation imposes that the sign of φ k+1 remains the same as the sign of φ * k+1 . This step is performed using again a fast marching method ([1]).

The Neumann scheme

Since the previous scheme convergences locally (if the initial guess is close enough to the solution A), our aim is to improve it in order to extend its domain of convergence. For this end, we use a scheme close to the Neumann scheme described in [START_REF] Bouchon | Numerical solution of the free boundary Bernoulli problem using a level set formulation[END_REF]: Let A k be given and φ k be a level set function associated to A k . We consider the following algorithm.

(1) We compute u k on Ω \ Āk by solving the elliptic problem

∆u k = 0 in Ω \ Āk , u k = 0 on ∂Ω, ∂u k ∂n k = λ on ∂A k .
(2) We compute the extended normal velocity v k on Ω by

∇v k • ∇φ k = 0 in Ω, v k = 1 -u k λ on ∂A k ,
using the fast method described in [START_REF] Adalsteinsson | The Fast Construction of Extension Velocities in Level Set Methods[END_REF].

(3) We obtain the new level set function φ k+1 by setting

φ * k+1 (x) = φ k (x) -v k (x), which defines ∂A k+1 = {x ∈ Ω; φ * k+1 (x) > 0}. The correction step (3.3) enables computing φ k+1 .
The main advantage of this scheme is that we do not have to introduce the curvature. Its drawback resides in its limitation to the context of elliptic solutions (see [START_REF] Flucher | Bernoulli's free-boundary problem, Qualitative theory and numerical approximation[END_REF] and [START_REF] Bouchon | Numerical solution of the free boundary Bernoulli problem using a level set formulation[END_REF] for further details).

The mixed scheme

As many "Newton-like" schemes, the perturbation-method scheme experiences a high rate of convergence provided the initial guess is close enough to the solution. If the starting point is too far (for example, if a topology change is necessary to reach the solution), then the Neumann scheme shall be used. Since the curvature of the set exhibits some singularity when facing a topology changing, we have chosen as criterion the maximum value of the curvature to determine which scheme to use. Namely, at each iteration k, if the maximum value of the curvature κ k is too large, then we choose the second scheme ("Neumann Scheme") and if it is small enough, then we choose the "perturbation-method scheme". In practice, the chosen criterion is given by

1 κ ≤ Ch
where h is the grid size and C is a given constant that ensures convergence of the numerical scheme (see [START_REF] Bouchon | A Second Order Immersed Interface Technique for an Elliptic Neumann Problem[END_REF]).

Numerical Results

In order to solve the numerical problem, we resort to a classical five-point finite difference scheme for the Laplace equation. We have implemented the obtained discrete problem in four configurations. The first one aims to evaluate the convergence rate of the scheme. The second one aims at showing that the scheme can converge in the both cases of elliptic and hyperbolic solutions (depending on the initial guess). The notion of hyperbolic solution is the one defined in [START_REF] Flucher | Bernoulli's free-boundary problem, Qualitative theory and numerical approximation[END_REF].

In the two last configurations, we observe topology changes.

Exterior circle case

In this section, we have adapted the described scheme to the exterior Bernoulli problem.

We have chosen Ω = {x ∈ R 2 ; |x -c| < ρ 0 }, ρ 0 = 0.2, c = (0.5, 0.5).

In this case, the only solution is the circle centered in c of radius ρ such that

λ = 1 ρ (log ρ -log ρ 0 )
.

We have chosen λ = 7, then the solution is the circle of radius ρ 1 ≈ 0.3148.... Table 1 shows the Hausdorff distance to this solution (denoted by A ∞ ) when we take as initial guess the circle centered in c of radius 0.30. The stop criterion has been defined using the Hausdorff distance between two consecutive sets A k , A k+1 . Since we expect a second order scheme, we stop after iteration k f such that

D(A k f -1 , A k f ) < h 3 .
Note that an erratic convergence behavior is observed for a coarse grid.

Grid We observe the convergence history for two particular grid sizes: 60 × 60 (solid line) and 80 × 80 (dotted line). The condition linking the curvature and the grid size is satisfied in this the test for the grid 80 × 80, the algorithm converges then faster. For the 60 × 60 grid, the mesh size h = 1/60 is too coarse and the first algorithm is used, this is the reason why we need more iterations to reach convergence. Table 1 shows a second-order convergence rate behavior. 

D(A k , A ∞ )

Interior circle case

In this section, we have chosen Ω = {x ∈ R 2 ; |x -c| < ρ 0 }, ρ 0 = 0.42, c = (0.5, 0.5). In this case, any circle centered in c of radius ρ such that

λ = 1 ρ (log ρ -log ρ 0 )
is solution of the problem. We have chosen λ = 7, the circle of radius ρ 1 ≈ 0.218285... is the elliptic solution, and the circle of radius ρ 2 ≈ 0.098528... is the hyperbolic solution. Table 2 shows the Hausdorff distance to the solution when we take as initial guess the circle centered in c of radius 0.32. Note that, in this case, the algorithm converges to the elliptic solution (which has been taken as reference solution A ∞ ). Here also, a second-order convergence rate is observed. Table 3 shows the Hausdorff distance to the solution when we take as initial guess the circle centered in c of radius 0.1. Note that, in this case, the algorithm converges to the hyperbolic solution (which has been taken as reference solution A ∞ ). No convergence rate can however be deduced from numerical experiments. For the coarse grids, the criterion on the curvature is not satisfied. Then, the first (Neumann) scheme is used, and since it works only in the elliptic context, then we have no convergence of our algorithm (namely, the set A k is empty for some k).

Grid

Topology change for the exterior case.

In this test, Ω is the union of four disks of radius 0.11 centered at P 1 = (0.3125, 0.3125), P 2 = (0.6875, 0.3125), P 3 = (0.3125, 0.6875) and P 4 = (0.6875, 0.6875) respectively. The value of λ has been taken equal to 25, and the initial guess is a disk centered at (0.5, 0.5) of radius 0.42 (containing Ω). The exact solution is given by the union of four disjointed disks centered at P 1 , P 2 , P 3 and P 4 .

We have run this test on a 240 × 240 grid, with an initial guess consisting in a disk containing Ω. convergence has been reached after 32 iterations (1272 sec.). In this test, Ω is a set similar to the set used by Flucher and Rumpf. λ has been taken equal to -18, and the initial guess is the union of two disks centered at (0.25, 0.5) and (0.75, 0.5) of radius 0.12 (included in Ω).

We have run this test on a 240 × 240 grid, convergence has been reached after 55 iterations (1374.1 sec). 

Conclusion

In this paper we have presented various extensions of the Flucher and Rumpf numerical method to allow topological change. The method is based on a level set formulation coupled with an elliptic equation derived by asymptotic analysis. Two schemes have been proposed: The first one is devoted to the computation of an accurate solution but requires regularity
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 1 Figure 1: Geometry of the domain
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 23 Let u denote a solution of problem (2.1)-(2.4), admitting a harmonic extension in a neighborhood of ∂A. Then we have ∂u ∂ ñ = λ + ρ κ λ + O(ρ 2 ) on ∂ Ã. (2.11)
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 2 Figure 2: Convergence history for the 60 × 60 grid (solid line) and 80 × 80 grid (dotted line)
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 33 Figure 3: Domains A 0 to A 30
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 44 Figures 4 show the evolution of the boundary A 0 , A 10 , A 20 , A 30 , A 40 , A 46 , A 47 , A 50 and A 55 .

Table 1 :

 1 Rate Nb. Iter. Time (sec.) Convergence test for the elliptic solution.

	40 × 40	4.17 × 10 -4		12	30.6
	60 × 60	1.73 × 10 -4	2.2	13	52.4
	80 × 80	1.63 × 10 -4	0.2	4	23.7
	120 × 120 6.10 × 10 -5	2.4	5	49.2
	160 × 160 3.50 × 10 -5	1.9	5	80.0
	240 × 240 1.82 × 10 -5	1.6	5	190.8
	320 × 320 9.47 × 10 -6	2.3	6	510.5
	480 × 480 4.39 × 10 -6	1.9	6	2711.9
	640 × 640 2.43 × 10 -6	2.0	6	5743.4

Table 2 :

 2 D(A k , A ∞ ) Rate Nb. Iter. Time (sec.) Convergence test for the elliptic solution.

	40 × 40	1.63 × 10 -3		17	45
	60 × 60	1.01 × 10 -3	1.2	19	73
	80 × 80	7.63 × 10 -4	1.0	23	127
	120 × 120 1.61 × 10 -4	3.8	7	82
	160 × 160 1.04 × 10 -4	1.5	7	160
	240 × 240 5.77 × 10 -5	1.4	7	581
	320 × 320 3.36 × 10 -5	1.9	7	2253
	480 × 480 1.33 × 10 -5	2.3	8	17167
	640 × 640 7.73 × 10 -6	1.9	8	51783
	Grid	D(A k , A ∞ ) Rate Nb. Iter. Time (sec.)
	40 × 40		(no convergence)	
	60 × 60		(no convergence)	
	80 × 80		(no convergence)	
	120 × 120		(no convergence)	
	160 × 160		(no convergence)	
	240 × 240 1.02 × 10 -4		6	626
	320 × 320 4.99 × 10 -5	2.5	6	2262
	480 × 480 4.01 × 10 -5	0.5	5	19397
	640 × 640 1.38 × 10 -5	3.7	5	59394

Table 3 :

 3 Convergence test for the hyperbolic solution.

and does not allow topological changes. The second one is designed to overcome this difficulty but is less accurate. A hybrid technique based on both schemes yields a good convergence speed and a robust solver for the Bernoulli problem.