
HAL Id: hal-00120426
https://hal.science/hal-00120426

Preprint submitted on 14 Dec 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamical properties and characterization of gradient
drift diffusions

Sébastien Darses, Ivan Nourdin

To cite this version:
Sébastien Darses, Ivan Nourdin. Dynamical properties and characterization of gradient drift diffusions.
2006. �hal-00120426�

https://hal.science/hal-00120426
https://hal.archives-ouvertes.fr


ha
l-

00
12

04
26

, v
er

si
on

 1
 -

 1
4 

D
ec

 2
00

6

Dynamical properties and characterization of

gradient drift diffusions
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Abstract

We study the dynamical properties of the Brownian diffusions having σ Id as dif-
fusion coefficient matrix and b = ∇U as drift vector. We characterize this class
through the equality D

2
+ = D

2
−, where D+ (resp. D−) denotes the forward (resp.

backward) stochastic derivative of Nelson’s type. Our proof is based on a remarkable
identity for D

2
+ −D

2
− and on the use of the martingale problem. We also give a new

formulation of a famous theorem of Kolmogorov concerning reversible diffusions. We
finally relate our characterization to some questions about the complex stochastic
embedding of the Newton equation which initially motivated of this work.
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1 Introduction

For a general process Z = (Zt)t∈[0,T ] defined on a probability space (Ω, F , P),
we have introduced in [3] the notion of stochastic derivative for Z at t with
respect to a differentiating sub-σ-field A t of F (resp. forward differentiating,
backward differentiating). More precisely, it means that A t is such that the
quantity

E
[
Zt+h − Zt

h
|A t

]

converges in probability (or for another topology) when h → 0 (resp. h ↓ 0,
h ↑ 0); the limit being called the stochastic derivatives of Z at t w.r.t. A t.
When we consider Brownian diffusions of the form

Xt = X0 +
∫ t

0
b(s, Xs)ds +

∫ t

0
σ(s, Xs)dWs, t ∈ [0, T ], (1)

then, under suitable conditions, the σ-field T X
t generated by Xt is both a for-

ward and backward differentiating σ-field for X at t. The associated derivatives
are called Nelson derivatives, due to the Markov property of the diffusion and
of its time reversal which allow to take the conditional expectation both with
respect to the past PX

t and the future F X
t of the diffusion. For simplicity, we

note them respectively D+ and D− in the sequel. Notice that these derivatives
are relevant and natural quantities for Brownian diffusions: they are indeed
respectively equals to the forward and the backward (up to sign) drift of X.
Moreover, they exist under rather mild conditions, see e.g. [9,12].

We shall see that Nelson derivatives turn out to have remarkable properties
when we work with diffusions of the type

Xt = X0 +
∫ t

0
b(s, Xs)ds + σ Wt, t ∈ [0, T ]. (2)

Here, σ ∈ R is assumed to be constant. For instance, we shall show that the
equalities D+Xt = −D−Xt, t ∈ (0, T ), characterizes the class of stationary
diffusions of the type (2) having moreover an homogeneous gradient drift (see
Proposition 5). This statement is in fact quite easy to obtain. A more difficult
one, which is the main result of this paper, states that a Brownian diffusion of
the type (2) is a gradient diffusion - that is, its drift coefficient writes b = ∇xU
for a certain U - if and only if D2

+Xt = D2
−Xt for any t ∈ (0, T ), see Theorem

6 for a precise statement. Let us notice that this result was conjectured at
the end of the note [1]. Our proof is based on the discovery of a remarkable
identity (Lemma 8): we can write the quantity pt(Xt)(D

2
+Xt − D2

−Xt) as the
divergence of a certain vector field, where pt denotes the density of the law of
Xt. Combined with the expression of the adjoint of the infinitesimal generator,
we can then conclude using probabilistic arguments, especially the martingale
problem. Let us moreover stress on the fact that we were able to solve our
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problem with probabilistic tools, whereas its analytic transcription with the
help of partial differential equations seemed more difficult to treat.

The paper is organized as follows. In section 2, we introduce some notations
and we give the useful expressions of the Nelson derivatives under the con-
ditions given by Millet, Nualart and Sanz in [9]. In section 3, we study the
above mentioned characterizations and we prove our main result. In section
4, we make some remarks on the questions related to the complex stochastic
embedding of the Newton equation, which have motivated this work.

2 Preliminaries on stochastic derivatives

2.1 Notations

Let T > 0 and d ∈ N∗. The space Rd is endowed with its canonical scalar
product 〈·, ·〉. Let | · | be the induced norm.

If f : [0,T ] × Rd → R is a smooth function, we set ∂jf = ∂f

∂xj
. We denote by

∇f = (∂if)i the gradient of f and by ∆f =
∑

j ∂2
j f its Laplacian. For a smooth

map Φ : [0,T ] × Rd → Rd, we denote by Φj its jth-component, by (∂xΦ) its
differential which we represent into the canonical basis of Rd: (∂xΦ) = (∂jΦ

i)i,j,
and by divΦ =

∑
j ∂jΦ

j its divergence. By convention, we denote by ∆Φ the
vector (∆Φj)j. The image of a vector u ∈ Rd under a linear map M is simply
denoted by Mu, for instance (∂xφ)u. The map a : [0,T ] × Rd → Rd ⊗ Rd is
viewed as d×d matrices whose columns are denoted by ak. Finally, we denote
by div a the vector (div ak)k.

Let (Ω, A , P) be a probability space on which is defined a d-dimensional Brow-
nian motion W . For a process Z defined on (Ω, A , P), we set PZ

t the σ-
field generated by Zs for 0 6 s 6 t and F Z

t the σ-field generated by Zs for
t 6 s 6 T . Consider the d-dimensional diffusion process X = (Xt)t∈[0,T ] solu-
tion of the stochastic differential equation (1) where X0 ∈ L2(Ω) is a random
vector independent of W , and the functions σ : [0,T ] × Rd → Rd ⊗ Rd and
b : [0,T ] × Rd → Rd are Lipschitz with linear growth. More precisely, we as-
sume that σ and b satisfy the two following conditions: there exists a constant
K > 0 such that, for all x, y ∈ Rd, we have

sup
t∈[0,T ]

[
|b(t, x) − b(t, y)| + |σ(t, x) − σ(t, y)|

]
6 K |x − y|

and

sup
t∈[0,T ]

[
|b(t, x)| + |σ(t, x)|

]
6 K(1 + |x|).
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We moreover assume that b is differentiable w.r.t. x and we set G = (∂xb) −
(∂xb)

∗, i.e. Gj
i = ∂ib

j − ∂jb
i. Finally, we set a = σσ∗, i.e. aj

i =
∑

k σk
i σ

k
j .

In the sequel, we will work under the following assumption:

(H) For any t ∈ (0, T ), the law of Xt admits a positive density pt : Rd → (0, +∞)
and we have, for any t0 ∈ (0, T ):

max
j=1,...,n

∫ T

t0

∫

Rd
|div(aj(t, x)pt(x))| dxdt < +∞. (3)

The functions
div(aj(t, ·)pt(·))

pt(·)
(4)

are Lipschitz.

The condition (3) will ensure us that the time reversed process X t = XT−t is
again a diffusion process (see [9], Theorem 2.3). Let us moreover notice that
our condition (4) is weaker than that which is imposed in Proposition 4.1 of
[15]. Finally, let us remark that the positivity assumption made on pt is quite
weak when X is of the type (2): it is for instance automatically verified when
we can apply Girsanov theorem in (2), that is when the Novikov condition is
verified.

2.2 Stochastic derivatives of Nelson’s type

In [3], we have introduced the notion of differentiating σ-field:

Definition 1 Set t ∈ (0, T ) and let Z be a process. We say that A t (resp. Bt)
is a forward differentiating σ-field (resp. backward differentiating σ-field) for
Z at t if E[Zt+h−Zt

h
|A t] (resp. E[Zt−Zt−h

h
|Bt]) converges in probability when

h ↓ 0. In these cases, we define the so-called forward and backward derivatives

DA t

+ Zt = lim
h↓0

E
[
Zt+h − Zt

h
|A t

]
, (5)

DBt

− Zt = lim
h↓0

E
[
Zt − Zt−h

h
|Bt

]
. (6)

For Brownian diffusions X of the form (1), the present turns out to be a for-
ward and backward differentiating σ-field. Precisely, the σ-field T X

t generated
by Xt is both forward and backward differentiating for X at t. Equivalently,
due to the Markov property of X (resp. of its time reversal X), PX

t (resp. F X
t )

is forward (resp. backward) differentiating for X at t. For this reason, we call

4



the derivatives defined by (5) and (6) stochastic derivatives of Nelson’s type.
Indeed, in [11] Nelson introduced the processes which have stochastic deriva-
tives in L2(Ω) with respect to a fixed filtration (Pt) and a fixed decreasing
filtration (Ft).

Henceforth, we work with the stochastic derivatives of Nelson’s type for Brow-

nian diffusions and so we simply write D±X instead of D
T X

t
± Xt. Now, we can

relate the stochastic derivatives of Nelson’s type to the time reversal theory:

Proposition 1 Let X be given by (1) and satisfying assumption (H). Then X
is a Markov diffusion w.r.t. the increasing filtration (PX

t ) and the decreasing
filtration (F X

t ). Moreover for almost all t ∈ (0, T ), T X
t is a forward and

backward differentiating σ-field for X at t and

D+Xt = b(t, Xt) (7)

D−Xt = b(t, Xt) −
div(a(t, Xt)pt(Xt))

pt(Xt)
. (8)

Proof. The proof essentially uses Theorem 2.3 of Millet-Nualart-Sanz [9], and
is divided in two steps:

1) X is a Markov diffusion w.r.t. the increasing filtration (PX
t ), so:

E
[
Xt+h − Xt

h

∣∣∣PX
t

]
= E

[
1

h

∫ t+h

t
b(s, Xs)ds

∣∣∣PX
t

]
,

and

E
∣∣∣∣E
[
Xt+h − Xt

h

∣∣∣∣P
X
t

]
− b(t, Xt)

∣∣∣∣6
1

h
E
∫ t+h

t
|b(s, Xs) − b(t, Xt)| ds

=
1

h

∫ t+h

t
E |b(s, Xs) − b(t, Xt)| ds.

Using the fact that b is Lipschitz and that t 7→ E|Xt| is locally integrable (see,
e.g., Theorem 2.9 in [7]), we can conclude by the differentiation Lebesgue
theorem that for almost all t ∈ (0, T ):

1

h

∫ t+h

t
E |b(s, Xs) − b(t, Xt)| ds → 0 a.s., as h → 0.

Therefore D+Xt exists and is equal to b(t, Xt).

2) Thanks to assumption (H), we can apply Theorem 2.3 in [9]. Hence Xt =
XT−t is a diffusion process w.r.t. the increasing filtration (FT−t) and whose
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generator reads

Ltf = b
i
∂if +

1

2
aij∂ijf

with aij(T − t, x) = aij(t, x) and

b
i
(T − t, x) = −bi(t, x) +

div(ai(t, x)pt(x))

pt(x)
.

We have :

E
[
Xt − Xt−h

h

∣∣∣∣F
X
t

]
=E

[
XT−t − XT−t+h

h

∣∣∣∣∣F
X
T−t

]

=−E

[
1

h

∫ T−t+h

T−t
b(s, Xs)ds

∣∣∣∣∣F
X
T−t

]
. (9)

Assumption (H) implies that

t 7→ E

∣∣∣∣∣
div(ai(t, Xt)pt(Xt))

pt(Xt)

∣∣∣∣∣

is locally integrable. Then, using the same calculations and arguments as
above, we obtain that D−Xt exists and is equal to −b(T − t, XT−t). 2

Corollary 2 If X given by (2) verifies assumption (H), we have for almost
all t ∈ (0, T ):

D+Xt = b(t, Xt) and D−Xt = b(t, Xt) − σ2∇pt

pt

(Xt).

Remark 3 The appearance of the density pt in the formula giving D−Xt

may seem surprising at first sight. As clear from the proof of Theorem 1, the
reason for such a formula stems from the Brownian theory of time reversal.
The same term was obtained by Föllmer [5] for Brownian semimartingales of
the form

∫ t
0 bsds + Wt with E

∫ T
0 b2

sds < ∞, by relating the backward Nelson
derivative and the time reversed drift. Based on the same strategy, Millet,
Nualart and Sanz [9] extended the result to diffusions satisfying (H) using
Malliavin calculus. Finally, this additional term can also be viewed as the
result of a ”grossissement de filtration” (see Pardoux [12]). Roughly speaking,
when we consider a diffusion Xt =

∫ t
0 b(s, Xs)ds +

∫ t
0 σ(s, Xs)dWs and Gt the

σ-field generated by Wu − Wr for T − t 6 u < r 6 T , then W t − W 0 is
a Gt-Brownian motion and the question sums up to writing the Doob-Meyer
decomposition of W t−W 0 in the enlarged filtration Ht = Gt∨X t. In particular,
knowing this answer gives the decomposition of X with respect to its natural
filtration.

Finally, we will also need the following composition formula, stated by Nelson
[11] and that we prove for the diffusions we consider.
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Proposition 4 Let f ∈ C1,2([0, T ] × Rd) with bounded second order deriva-
tives and let X be a diffusion of the form (2) satisfying (H). Then, for almost
all t ∈ (0, T ):

D±f(t, Xt) =

(
∂tf + (∂xf)D±Xt ±

σ2

2
∆f

)
(t, Xt). (10)

Proof. Let h > 0.
1) The forward case. The Taylor formula yields:

f(t + h, Xt+h) − f(t, Xt) = ∂tf(t, Xt)h + ∂xf(t, Xt)(Xt+h − Xt) (11)

+
1

2

n∑

i,j=1

(X i
t+h − X i

t)(X
j
t+h − Xj

t )∂
2
ijf(t, Xt) + R(t, h)

where the remainder R(t, h) is given by

R(t, h) =
1

2

n∑

i,j=1

(X i
t+h − X i

t)(X
j
t+h − Xj

t )
(
∂2

ijf(ut,h) − ∂2
ijf(t, Xt)

)

+h
n∑

j=1

(Xj
t+h − Xj

t )∂t∂jf(ut,h)

with ut,h = (t + θh, (1 − θ)Xt + θXt+h) and θ ∈ (0, 1) depending on t and h.

We first treat the third term of the r.h.s of (11). For instance for the term
1
h
E[(X i

t+h − X i
t)

2|Xt]:

(X i
t+h−X i

t )
2 =

(∫ t+h

t
b(s, Xs)ds

)2

+σ2(W i
t+h−W i

t )
2+2σ(W i

t+h−W i
t )
∫ t+h

t
b(s, Xs)ds.

(12)
We have by Schwarz inequality:

(∫ t+h

t
b(s, Xs)ds

)2

6 h
∫ t+h

t
b2(s, Xs)ds.

Thus
1

h
E

(∫ t+h

t
b(s, Xs)ds

)2

6

∫ t+h

t
E[b2(s, Xs)]ds −→ 0,

since t → E|Xt|2 is locally integrable (see, e.g., Theorem 2.9 in [7]). Again by

Schwarz inequality, we deduce that h−1
(
W i

t+h − W i
t

) ∫ t+h
t b(s, Xs)ds tends to

0 in L1(Ω). Moreover:

1

h
E[(W i

t+h − W i
t )

2|Xt] =
1

h
E[(W i

t+h − W i
t )

2] = 1.
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We now treat the remainder of (11). The fact that ∂2f is bounded allows to

show as above that h−1
(∫ t+h

t b(s, Xs)ds
)2

(∂2
ijf(ut,h) − ∂2

ijf(t, Xt)) and

W i
t+h − W i

t

h

∫ t+h

t
b(s, Xs)ds(∂2

ijf(ut,h) − ∂2
ijf(t, Xt))

converges to 0 in L1(Ω). Moreover

E
[

(W i
t+h

−W i
t )2

h
(∂2

ijf(ut,h) − ∂2
ijf(t, Xt))

]

≤
√

E|W i
t+h

−W i
t |

4

h

√
E|∂2

ijf(ut,h) − ∂2
ijf(t, Xt)|2

≤ C
√

E|∂2
ijf(ut,h) − ∂2

ijf(t, Xt)|2.

Since ∂2f is bounded and ut,h tends to (t, Xt) as h → 0, we can apply the
bounded convergence theorem and conclude.

2) The backward case. We calculate the Taylor expansion of −(f(t−h, Xt−h)−
f(t, Xt)) and we write (X i

t−h − X i
t)

2 = (X
i

T−t+h − X
i

T−t)
2. We then write the

decomposition (12) for X with its time reversed drift b and its time reversed
driving Brownian motion Ŵ . So the computations are identical to those of the
first point. 2

3 Dynamical study of gradient diffusions

3.1 First order derivatives

In this section, we only consider Brownian diffusions of type (2) with a homo-
geneous drift. More precisely, we work with X verifying

Xt = X0 +
∫ t

0
b(Xs)ds + σ Wt, t ∈ [0, T ]. (13)

We can then characterize the sub-class of stationary diffusions having a gra-
dient drift vector, by means of first order Nelson derivatives. Such diffusions
were already considered by many authors. A result of Kolmogorov [8] states
that b is a gradient if and only if the law of X given by (13) is reversible, i.e.
(Xt)t∈[0,T ] and (XT−t)t∈[0,T ] have the same law. In what follows, we show that
another characterization of this last fact can be made with the help of Nelson
derivatives. For instance, knowing that b is a gradient allows to easily con-
struct an invariant law for X. More precisely, when b = ∇U with U : Rd → R

regular enough and with sufficiently fast decrease at infinity, the probability
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law µ defined by

dµ = c−1e
2U(x)

σ2 dx with c =
∫

Rd
e

2U(x)

σ2 dx < ∞

is invariant for X.

We can easily prove the following:

Proposition 5 Let X be the Brownian diffusion defined by (13). We more-
over assume that X verifies assumption (H).

(1) If D+Xt = −D−Xt for any t ∈ (0, T ) then b = ∇U with U : Rd → R

given by U = σ2

2
log pt. In particular, X is a stationary diffusion with

initial law µ given by dµ = e
2U(x)

σ2 dx.

(2) Conversely, if b = ∇U with U : Rd → R such that c :=
∫
Rd e

2U(x)

σ2 dx < ∞
and if the law of X0 is dµ = c−1e

2U(x)

σ2 dx, then the probability law µ is
invariant for X and, for any t ∈ (0, T ), we have D+Xt = −D−Xt.

Proof. The first point is a direct consequence of the formulae contained in
Corollary 2. For the second point, the existence of the invariant law is given
by a general theorem (see e.g. [2], Theorem 8.6.3 p.163) while the equality
D+Xt = −D−Xt comes once again from the formulae contained in Corollary
2. 2

3.2 Second order derivatives and characterization of gradient diffusions

In [14] Theorem 5.4, the authors give a very nice generalization of Kolmogorov’s
result [8] based on an integration by part formula from Malliavin calculus. Pre-
cisely, the drift is this time not assumed to be time homogeneous and nor the
diffusion stationary. Their characterization requires that there exists one re-
versible law in the reciprocal class of the diffusion. In our case, we are also
able to characterize a larger class of Brownian diffusions. However this further
needs to use second order stochastic derivatives. The main result of our paper
is the following theorem:

Theorem 6 Let X be given by (13), verifying assumption (H), such that
b ∈ C2(Rd) with bounded derivatives, and such that for all t ∈ (0, T ) the
second order derivatives of ∇ log pt are bounded. We then have the following
equivalence:

D2
+Xt = D2

−Xt for almost all t ∈ (0, T ) ⇐⇒ b is a gradient. (14)

9



Remark 7 (1) Saying that b is a gradient means that we can write b = ∇U
for a certain potential U : Rd → R. It is equivalent, by Poincaré lemma,
to verify that G = ∂xb − (∂xb)

∗ is identically zero.
(2) When d = 1, that is when X is a one-dimensional Brownian diffusion,

the equality D2
−X − D2

+X = 0 is always verified, see Lemma 8.
(3) The proof we propose here is entirely based on probabilistic arguments.

A more ”classical” strategy for proving that G ≡ 0 when D2
−X = D2

+X
would use the fact that we then have div(ptGi) = 0 for any index i
and any time t ∈ (0, T ) (see Lemma 8). For instance, when d = 2, this
system of equalities reduces to (∂1b2 − ∂2b1)pt = c on R2, c denoting a
constant. It is then not difficult to deduce that ∂1b2 = ∂2b1. In particular,
b is a gradient. On the other hand this method seems hard to adapt in
higher dimensions. In particular, it seems already difficult to integrate
div(ptG) = 0 when d = 3.

First of all, we need the following technical lemma which gives a remarkable
identity for D2

+X − D2
−X:

Lemma 8 Let X be given by (2), verifying assumption (H), such that b ∈
C1,2([0, T ] × Rd) with bounded derivatives, and such that for all t ∈ (0, T )
the second order derivatives of ∇ log pt are bounded. Therefore for any i =
1, . . . , n:

(D2
−Xt − D2

+Xt)
i =

div(ptGi)

pt

. (15)

Recall that G = (∂xb) − (∂xb)
∗, i.e. Gj

i = ∂ib
j − ∂jb

i.

Let us stress that the expression we obtain in (15) is the key point of our proof
of Theorem 6, and that it is valid for diffusions of the type (2) and not only
of the type (13).

Proof. We have, by Proposition 4:

D2
+Xt = D+b(t, Xt) =

(
∂tb + (∂xb)b +

σ2

2
∆b

)
(t, Xt), (16)

and

D2
−Xt = D−

(
b − σ2∇pt

pt

)
(t, Xt)

=

[
∂tb + (∂xb)b −

σ2

2
∆b − σ2∂t

∇pt

pt

− σ2(∂xb)
∇pt

pt

−σ2

(
∂x

∇pt

pt

)
b + σ4

(
∂x

∇pt

pt

)
∇pt

pt

+
σ4

2
∆
∇pt

pt

]
(t, Xt).
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With the Fokker-Planck equation ∂tpt = −div(ptb) + σ2

2
∆pt in mind, we can

write:

∂t

∇pt

pt

= ∇∂tpt

pt

= ∇


−divb +
〈−b,∇pt〉 + σ2

2
∆pt

pt



 . (17)

Therefore:
D2

−Xt − D2
+Xt = (σ2A + σ4B)(t, Xt)

with

A =−∆b + ∇divb − (∂xb)
∇pt

pt

+ ∇〈b,∇pt〉
pt

−
(
∂x

∇pt

pt

)
b,

B =

(
∂x

∇pt

pt

)
∇pt

pt

+
1

2
∆
∇pt

pt

− 1

2
∇∆pt

pt

.

Let us simplify A. By the Leibniz rule we have:

∇〈b,∇pt〉
pt

= (∂xb)
∗∇pt

pt

+

(
∂x

∇pt

pt

)∗

b.

Since pt ∈ C2, the Schwarz lemma yields
(
∂x

∇pt

pt

)∗
=
(
∂x

∇pt

pt

)
. Thus

A = −∆b + ∇divb + G
∇pt

pt

,

from which we deduce

Ai =
div(ptGi)

pt

.

Let us simplify B. We have:

2

[(
∂x

∇pt

pt

)
∇pt

pt

]i

= 2
∑

j

∂i

(
∂jpt

pt

)
∂jpt

pt

= ∂i

∑

j

(
∂jpt

pt

)2

.

But, again par the Schwarz lemma:

[
∆
∇pt

pt

]i

=
∑

j

∂2
j

∂ipt

pt

= ∂i

∑

j

∂j

(
∂jpt

pt

)
.

We then deduce that B = 0, which concludes the proof. 2

Now, we go back to the proof of Theorem 6. In order to simplify the exposition,
in the sequel we assume without loss of generality that σ = 1. Let γ : Rd → Rd

be a bounded Lipschitz function and Xε, for ε > 0, be the unique solution of

dXε
t = (b + εγ)(Xε

t )dt + dWt, t ∈ [0, T ], Xε
0 = X0 ∈ L2(Ω). (18)

11



Before proving Theorem 6, we need the following lemma, stated and proved
in [6], Proposition 3.1:

Lemma 9 Let φ : C[0, T ] → R be a measurable function such that E[φ(X)2]
is finite. Then the following equality holds:

∂

∂ε
E[φ(Xε)]|ε=0

= E

[
φ(X)

∫ T

0
〈γ(Xs), dWs〉

]
. (19)

Proof. For the sake of completeness, let us briefly recall how the authors
obtain (19). We can write E[φ(Xε)] = EQε

[(Zε)−1, φ(Xε)] with dQε/dP = Zε,
where

Zε = exp
(
−ε

∫ T
0 〈γ(Xε

s ), dWs〉 − ε2

2

∫ T
0 |γ(Xε(s))|2ds

)

= exp
(
−ε

∫ T
0 〈γ(Xε

s ), dW ε
s 〉 + ε2

2

∫ T
0 |γ(Xε(s))|2ds

)
,

and W ε
t = Wt + ε

∫ t
0 γ(Xε

s )ds. Note that, under Qε, W ε is a Brownian motion
by Girsanov theorem. In particular the law of (Xε, W ε) under Qε is the same
as the law of (X, W ) under P. Consequently, E[φ(Xε)] = E[(Zε)−1φ(X)].
Equality (19) follows now easily by Lebesgue bounded convergence. 2

Now, we go back to the proof of Theorem 6:

Proof. If b is a gradient, then for any i ∈ {1, · · · , d}, Gi = 0. So Lemma 8
yields D2

−Xt − D2
+Xt = 0.

Conversely, assume that D2
−Xt − D2

+Xt = 0 for any t ∈ (0, T ). Let i ∈
{1, · · · , d}, ε > 0, and Xε be the diffusion process defined by (18) with
γ = Gi. We denote by Lε the infinitesimal generator of Xε, considered as
a (L2(Rd), 〈·, ·〉) operator. For simplicity, L = L0 will denote the generator of
X = X0. It is well-known that the adjoint L∗

ε of Lε writes

L∗
ε = −div[(b + εGi) · ] +

1

2
∆ . (20)

Let f ∈ C∞
0 (Rd). The Dynkin formula for X reads:

E[f(Xt)] − f(x) = E
[∫ t

0
Lf(Xs)ds

]
. (21)

But

12



E
[∫ t

0
Lf(Xs)ds

]
=
∫ t

0

∫

Rd
Lf(y)ps(y)dyds

=
∫ t

0

∫

Rd
f(y)L∗ps(y)dyds

=
∫ t

0
E

[
f(Xs)

L∗ps(Xs)

ps(Xs)

]
ds. (22)

Since for all s ∈ (0, T ), div(psGi)
ps

(Xs) = 0 a.s., we deduce from (22) and (20)
that:

E
[∫ t

0
Lf(Xs)ds

]
=
∫ t

0
E

[
f(Xs)

L∗
εps(Xs)

ps(Xs)

]
ds = E

[∫ t

0
Lεf(Xs)ds

]
.

Therefore:

E[f(Xt)] − f(x) = E
[∫ t

0
Lεf(Xs)ds

]
. (23)

So the process M defined by

Mt = f(Xt) − f(x) −
∫ t

0
Lεf(Xs)ds

is a (PW , P)-martingale (recall that we decided to note PW
t the σ-field gen-

erated by Ws for s ∈ [0, t], see section 2.1). Indeed, by the Markov property
applied to X, we can write

E(Mt − Ms|PW
s ) = EXs

(
f(Xt−s) − f(x) −

∫ t−s

0
Lεf(Xs)ds

)
= 0.

Thus the law of X solves the martingale problem associated with the Markov
diffusion Xε. But b has linear growth and since the second order derivatives of b
are bounded it is also the case for Gi and so for b+εGi. This allows to apply the
Stroock-Varadhan theorem (see e.g. [14, Th 24.1 p.170]) which establishes the
existence and uniqueness of solutions for the martingale problem. Therefore
X and Xε have the same law. As a consequence, for any measurable function
φ : C[0, T ] → R such that E[φ(X)2] < ∞, the function ε 7→ E[φ(Xε)] is
constant. We now apply Lemma 9 with γ = Gi. So, we have:

E

[
φ(X)

∫ T

0
〈Gi(Xs), dWs〉

]
= 0. (24)

Let Q be the equivalent probability to P given by Girsanov theorem applied
to X. In particular, X is a Brownian motion under Q and η = dQ/dP ∈ F X

T .

Thanks to (24), we have EQ
[
φ(X)η−1

∫ T
0 〈Gi(Xs), dWs〉

]
= 0. Thus, since φ

is arbitrary, Lemma 1.1.3. in [11] shows that
∫ T
0 〈Gi(Xs), dWs〉 = 0 Q-a.s. and

then also P-a.s. Then Gi(X) ≡ 0 by Itô isometry (under P) and, since L (Xt)
has a positive density for any t ∈ (0, T ), we finally have G ≡ 0. This concludes
the proof. 2
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4 A remark on the complex stochastic embedding of the Newton

equation

From D± one can construct a complex stochastic derivative

D =
D+ + D−

2
+ i

D+ − D−

2
(25)

which extends on stochastic processes the classical derivative operator d
dt

.
Moreover, and contrary to D+ and D−, the operator D has the following
natural but however remarkable property:

Proposition 10 For X given by (1) and verifying assumption (H), we have:

DXt = 0 for any t ∈ (0, T ) ⇐⇒ X is a constant process on [0, T ]. (26)

Proof. The condition DXt = 0 is equivalent to D+Xt = D−Xt = 0. Thus the
forward drift and the backward drift are zero. So X is a (PX

t ) and (F X
t )-

martingale. We can then use the arguments of Nelson in the proof of Theorem
11.11 in [10] which allow to conclude. 2

Using (25) and extending D by C-linearity to complex Brownian diffusions,
we can easily compute

D2 =
D+D− + D−D+

2
+ i

D2
+ − D2

−

2
. (27)

Let us remark that the real part of D2 coincides with the notion of mean
acceleration introduced by Nelson [10], equality (11.15), for which he had
conjectured that it is the more relevant quantity describing an acceleration on
Brownian diffusions.

Now, as an example, let us consider the analog of the Newton equation

d2x

dt2
= −∇U(x) (28)

using this new derivative D acting on Brownian diffusions. More precisely,
assume that the Brownian diffusion X given by (13) verifies, for any t ∈ [0, T ]:

D2Xt = −∇U(Xt). (29)

Equation (29) is called the stochastic embedded equation of the Newton equa-
tion with respect to the extension D (see [1]). This embedded equation contains
the deterministic ordinary differential equation, as an equation written in the

14



sense of distributions of the Schwartz theory is an extension of the initial
ordinary or partial differential equation.

As we said, (29) admits at least t 7→ xt verifying (28) as solution. But, what can
we say about uniqueness? If not, what can we say about the other solutions?

First, if X satisfies (29), we must have D2
+Xt = D2

−Xt for any t ∈ [0, T ], see
(27). Moreover, it is proved in [1] that, under some regularity conditions, if
one searches solutions of (29) in the class of gradient diffusions of the type
(13), the density pt of the solution Xt is characterized via the Schrödinger
equation. Our Theorem 6, which was conjectured at the end of the note [1],
shows that the solutions of (29) are forced to have a gradient function as drift
coefficient.
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