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La biomasse d'un individu ou d'un peuplement est difficilement mesurable. Les méthodes de mesures actuelles, basées sur l'abattage d'un échantillon représentatif du peuplement, permettent d'évaluer les biomasses pour différents compartiments (feuille,tronc,. . .). Cependant, cet abattage rend impossible un suivi longitudinal des individus: les arbres abattus à l'âge t + 1 sont ils bien représentatifs des arbres abattus à l'âge t? Dans ce contexte, nous proposons une méthode, permettant d'estimer les biomasses par compartiment d'un individu lorsque celles-ci sont classées de façon discrètes ordinales. Fondée sur les Modèles Probit redéfinis en terme de variables latentes gaussiennes, une généralisation du cas univarié au cas multivarié à un temps donné est naturelle. Par suite, ces modèles sont étendus au cas longitudinal en développant un Modèle Probit Multivarié Ordinal Dynamique. Pour finir, les performances des algorithmes MCMC d'estimation sont illustrées sur des simulations construites à partir de modèles de biomasse. On discutera de la qualité des estimations et de l'impact de certains paramètres sur ces dernières.

Introduction

La biomasse d'un individu, masse sur pied d'un organisme à un temps donné, est difficilement mesurable. Celle d'un peuplement n'est pas directement quantifiable. Cependant, des méthodes d'estimation, basées sur un abattage et un découpage en differents compartiments des individus, permettent d'évaluer ces biomasses. Saint André et al. (2005) ont établi des relations entre la taille des arbres et leurs biomasses par compartiments et mis en évidence un effet de l'âge sur ces dernières.

La méthodologie employée, bien que pratique et unanimement utilisée, présente certaines limites: les méthodes de mesures actuelles (abattage) ne permettent pas un suivi longitudinal des individus. En particulier, les arbres abattus à l'âge t + 1 sont ils bien représentatifs des arbres abattus à l'âge t?

Pour résoudre ce problème et ainsi permettre un suivi longitudinal des individus, il est envisagé de noter les biomasses par compartiment de manière discrètes ordinales. Cette caractérisation de la biomasse évitera d'abattre les arbres et permettra d'avoir un suivi annuel ou pluriannuel des mêmes individus. L'objectif de ce travail est d'estimer et de prédire l'évolution temporelle de la biomasse d'une plantation forestière d'eucalyptus lorsque les biomasses par compartiment sont discrètes ordinales.

La modélisation de données quantitatives longitudinales tient une part importante dans de nombreux domaines tels que la biologie, l'économie ou la finance. Dans le cas de variables discrètes univariées, [START_REF] Zhang | Generalized linear mixed models with varying coefficients for longitudinal data[END_REF] propose d'utiliser des modèles de régression aléatoires dynamiques pour prendre en compte les dépendences temporelles. Ces modèles, introduits dans les analyses de séries temporelles, appartiennent à la classe des modèles linéaires généralisés mixtes (GL2M). Ils sont classiquement construits de manière hiérarchique.

La généralisation du cas discret univarié au cas multivarié reste difficile: comment définir une structure de corrélation appropriée entre J variables discrètes? Il n'existe pas, généralement, de structure explicite pour modéliser la corrélation entre les variables discrètes. Dans le cas univarié, le modèle probit est maintenant bien connu et fréquemment utilisé pour modéliser une variable ordinale. Redéfinis en termes de variables latentes gaussiennes, ces modèles peuvent se généraliser aisément au cas multivarié comme l'avait proposé initialement Ashford en 1970.

Dans ce travail, nous proposons de tenir compte simultanément des corrélations entre les variables discrètes ordinales et des autocorrélations, en développant un modèle probit multivarié ordinal dynamique (MPMOD). Celui-ci appartient à la classe des modèles linéaires généralisés mixtes multivariés (GL3M).

Enfin, nous utilisons une approche MCMC (Chib et Greenberg (1998), Robert et Casella ( 2004)) pour estimer les paramètres du modèle. En effet, une approche par maximum de vraisemblance reste difficile dès lors que le nombre de variables discrètes ordinales est supérieur à 4 ou que la structure de corrélation est complexe.

Ce document se décompose en trois parties. Dans un premier temps, nous présentons le modèle MPMOD. Les méthodes d'estimation des paramètres de ce modèle constituent la deuxième partie. Dans la dernière partie, nous discutons, à partir de simulations construites selon les équations de biomasse établies par Saint André et al. ( 2005), de la qualité des estimations et de l'impact de certains paramètres sur ces dernières.

Modèle

Nous nous intéressons à la modélisation de données longitudinales observées discrètes ordinales corrélées entre elles. Soit Y t i = (Y t i1 , . . . , Y t iJ ), i = 1, . . . , n t un vecteur gaussien de longueur J (J variables discrètes ordinales) observé sur t = 1, . . . , T temps tel que

Y t i ∼ N µ t + X t i β t , R , i = 1, . . . , n t , t = 1, . . . , T (1) 
où X it = diag(X t i1 , . . . , X t iJ ) est une matrice de dimension J × P J des P covariables associées à l'individu i au temps t = 1 . . . , T , diag une matrice bloc diagonale, µ t un intercept inconnu variant dans le temps, (β t ) t=1,...,T ∈ R P J un vecteur inconnu des paramètres de régression et R une matrice de correlation (pour des raisons d'identifiabilité) inconnue supposée identique pour tous les individus. Supposons que Y t j ne soit pas directement observé mais mesuré via une variable discrète ordinale Z t j définie comme suit:

Z t ij = z j ⇔ α t j,z j -1 ≤ Y t ij < α t j,z j ; j = 1, . . . , J; i = 1, . . . , n t et t = 1, . . . , T.
où c j , j = 1, . . . , J, est le nombre de modalités, α t j,z j sont des seuils inconnus tels que -∞ = α t j,0 < . . . < α t j,z j < . . . < α t j,c j = +∞ supposés différents à chaque temps de mesure. Nous supposons par la suite que le nombre de modalités est constant dans le temps. Pour un temps donné t, le Modèle Probit Multivarié Ordinal(MPMO) s'écrit:

P Z t i = z | µ t , β t , R, α t = P Y t i ∈ A t (z) | µ t , β t , R, α t (2) avec A t (z) ⊆ R J défini par A t (z) = α t 1,z 1 -1 , α t 1,z 1 × . . . × α t J,z J -1 , α t J,z J .
Ce modèle permet de traiter le cas de variables réponses discrètes ordinales corrélées et de traduire de manière naturelle la dépendance entre les variables discrètes à travers la structure de dépendance gaussienne des variables latentes.

Cependant, notre objectif est également de prendre en compte les autocorrélations. Nous supposons maintenant que l'intercept, les paramètres de regression et les seuils sont des processus aléatoires dépendant du temps [START_REF] Zhang | Generalized linear mixed models with varying coefficients for longitudinal data[END_REF]). La structure de dépendance temporelle des paramètres de regression est modélisée par un modèle autorégressif multivarié d'ordre 1. Ce dernier est une généralisation de l'approche d'espace-état dans la littérature des séries temporelles. Deux approches peuvent être envisagées pour modéliser l'intercept et les seuils. La première consiste à fixer l'intercept à 0 tandis que la seconde consiste à fixer le premier seuil pour chaque variable à 0. Nous avons choisi d'utiliser la seconde approche où la relation entre les seuils et l'intercept se définit de la façon suivante:

α t j,k = -µ t j + α j,k ; k = 2, . . . , c j-1
Ainsi, le Modéle Probit Multivarié Ordinal Dynamique(MPMOD) est donné par la definition 1: Définition 1. Le Modèle Probit Multivarié Ordinal Dynamique (MPMOD) est défini par l'équation latente (1):

Y t i ∼ N µ t + X t i β t , R , i = 1, .
. . , n t , t = 1, . . . , T ; par l'équation de mesure (2) :

P Z t i = z | µ t , β t , R, α t = P Y t i ∈ A t (z) | µ t , β t , R, α t
et par les équations de transition données par

η ′t = µ t , β t ′ = F η η ′t-1 + ε; ε ∼ N (0, Σ η ), Σ η = diag(σ 2 η jp ), j = 1, . . . , J, p = 1, . . . , P + 1 α t j,k = -µ t j + α j,k ; k = 2, . . . , c j-1 α j,2 , . . . , α j,c j ∼ c j-1 !U [-O, O] ⊗c j-1 ; j = 1, . . . , J où c j-1 !U [-O, O] ⊗c j-1 représente la distribution des statistiques d'ordre.

Méthode d'estimation

L'approche envisagée repose sur les méthodes MCMC dont l'algorithme de Metropolis Hastings, l'échantillonnage de Gibbs et l'augmentation de données. L'indépendance conditionnelle des variables discrètes ordinales et l'introduction d'une variable latente gaussienne associée à chaque variable discrète ordinale simplifient grandement le calcul de la distribution a posteriori. Notons par θ = (Y, η = (µ, β), F, Σ β , α, R) l'ensemble des paramètres inconnus. La distribution a posteriori de θ sachant les observations discrètes ordinales Y est donnée par l'équation (3): 

π(θ|Z) ∝ P [Z|Y, α] f (Y |η, R) π (η|Σ η , F η ) π (Σ η ) π (F η ) π (α) π (R) (3) où P Z t i |Y t i , α t f Y t i |η t , R = φ J y|η t , R 1l Y t i ∈A t i , i = 1, . . . ,
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  n t est la distribution multivariée gaussienne tronquée. Des simulations ont été réalisées à partir des equations de biomasse obtenues par Saint André et al.(2005) pour un nombre de temps t = 7, 14, 21 et un nombre d'observations n = 50, 100, 200. Les résulats obtenus ont permis de mettre en évidence un effet significatif du nombre d'observations et du nombre de mesures dans le temps sur l'estimation des autocorrélations et des variances du modèle autoregressif des paramètres de regression. Pour au moins 14 mesures dans le temps et 100 observations, les estimations obtenues semblent satisfaisantes. Il semble cependant plus correct d'utiliser 200 observations pour modéliser ces biomasses. Pour conclure, d'un point de vue pratique , et sachant que l'âge de coupe d'un eucalyptus est de 7 ans, mesurer la hauteur et le diamètre de 200 individus sans les abattre, tous les 6 mois, semble consevable.
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