
HAL Id: hal-00120270
https://hal.science/hal-00120270v1

Submitted on 13 Dec 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Framework for Awareness support in Groupware
Systems

Manuele Kirsch-Pinheiro, José Valdeni de Lima, Marcos R. S. Borges

To cite this version:
Manuele Kirsch-Pinheiro, José Valdeni de Lima, Marcos R. S. Borges. A Framework for Awareness
support in Groupware Systems. Computers in Industry, 2003, 3, pp.47-57. �hal-00120270�

https://hal.science/hal-00120270v1
https://hal.archives-ouvertes.fr

A Framework for Awareness Support in Groupware Systems

Manuele Kirsch-Pinheiroa*, José Valdeni de Limab, Marcos R. S. Borgesc

a Laboratoire LSR - IMAG, France
b Instituto de Informática - Universidade Federal do Rio Grande do Sul, Brazil

c NCE & IM - Universidade Federal do Rio de Janeiro, Brazil

Abstract

This paper introduces a framework for awareness support in groupware systems.

Awareness gathers the knowledge on group, its activities and its overall status. Awareness

support is an important feature for groupware systems. It provides a context for individuals

contributions, improving those contributions and avoiding contradictory interactions

among group’s members. Despite its importance, awareness support is not systematic and

developers must build it from scratch for each new application. The framework presented

here addresses this issue. This framework, called Big Watch (BW), intends to support

groupware implementers to easily past event awareness. It has been designed to develop

new groupware applications and to improve existing ones. This paper presents the features

and the structure of BW, and describes two applications that use it.

Keywords: awareness support, groupware systems, groupware design, framework,

cooperative work and collaborative design.

1. Introduction

To get most things done in an organization today requires a great collaborative effort.

Knowledge sharing is the key factor of collaborative environments, especially those which

* Corresponding author: BP 72 – LSR – IMAG, 38402 Saint Martin D’Hères CEDEX, France. Phone:

+33476827274. Fax: +33476827287. Email: Manuele.Kirsch-Pinheiro@imag.fr Author supported by a grant

from CAPES/Brazil.

1

support design tasks, due to its knowledge exchange nature. To be shared, knowledge has to

be externalized and made visible to potential recipients, either humans or software agents.

There are many articles dedicated to knowledge representation and ways to make it

explicit in design environments (Nunamaker et al., 2001; O´Leary, 1998). A member of a

design group makes his knowledge explicit when he/she traduces it into some

representation supported by the environment. However, it is not enough to make knowledge

explicit; it is also necessary to provide group members with mechanisms that inform them

the knowledge is there. Only when a group member perceives the new knowledge the

socialization process may occur (Nonaka and Takeushi , 1995).

The contextual information about group members’ work is usually provided by

awareness mechanisms (Dourish and Bellotti, 1992). According Paul Dourish (1992),

‘Awareness is an understanding of the activities of others, which provides a context for

your own activity. This context is used to ensure that individual contributions are relevant

to the group's activity as a whole, and to evaluate individual actions with respect to group

goals and progress’. Awareness mechanisms are therefore essential to group support

systems in order to transform irregular interactions of group members into a consistent and

perceptive performance over time (Preguiça et al.,2000).

On the other hand, depending on its quantity, awareness information can also be very

distracting and harmful to individual activities when the mechanism does not accommodate

individual needs and preferences. Information overload is a well-known phenomenon

resulting from this inadequacy. Thus, awareness support should be a major concern when

designing groupware systems.

2

However, systematic solutions for the awareness support are not common. Due to

their complexity, awareness mechanisms are either inexistent or provide limited support to

knowledge perception. Besides, the implementation of an awareness mechanism requires a

great effort from groupware developers when they build this support from scratch.

Groupware implementers often do not have any framework or toolkit to help them, and the

reuse of code from other applications is not an easy task.

We designed a framework, called BW, to help groupware developers to implement

awareness mechanisms in groupware systems. In its first version, it aims to supporting past

events awareness. It has been designed to be flexible enough to improve existing groupware

applications and also to help implementers to incorporate awareness mechanisms when

building new applications. In this paper, we describe the characteristics and the structure of

the BW framework.

Our goal with BW is two fold. First, we want to facilitate the work of groupware

implementers by providing them with a framework that incorporates most of the awareness

functionality. This should reduce the work required to implement a complex mechanism

and save time to dedicate other important issues in the application. Second, we want to

develop a framework that can be extended to incorporate new mechanism and filters,

whenever the groupware application requires them.

The paper is organized as follows: first, we discuss the importance of the awareness

support in groupware systems and present some related works. Then, the framework is

presented, first through its main characteristics, then through the presentation of its

structure. Once the framework is presented, we show how to use this framework and

describe some applications that already use it. Finally, some conclusions are presented.

3

2. Awareness in Groupware Systems

The work executed within a group produces better results when there is a harmonic

interaction among group members. This harmony depends on the level of understanding

among these members. To reach this understanding, the group needs four types of support:

(1) communication among the participants; (2) coordination of their activities; (3) a "group

memory", which records the group's common knowledge, such as the interaction between

the participants and the products developed by them; and (4) awareness support (Dias and

Borges, 1999).

Providing computer-based mechanisms for supporting awareness has been shown to

be of a vital importance in the design of collaboration support systems. Being aware of the

colleagues and their activities is very important to make the work more natural and fluid

(Gutwin and Greenberg, 1998, 1999). Moreover, keeping users informed about what is

happening to the resulting product will reduce the risk for double-work and integration

problems (Farschian, 2001). Besides, making awareness information available may increase

the group’s shared knowledge.

Thus, the need of awareness support in cooperative environments is obvious, and this

support should be one of the main concerns when designing a groupware system. Moreover,

the communication among group’s members can also be intermediated by this awareness

support. Actually, awareness is a design concept that holds promise for significantly

improving the usability of the groupware systems. Nevertheless, with a few exceptions, this

support usually involves particular solutions to specific domain problems and isolated

approaches that are difficult to generalize to other situations. As a consequence, designers

must re-invent awareness, for each new application, based on their experience of what it is,

4

how it works, and how it is used in the task (Gutwin and Greenberg, 2002). A similar

situation occurs in groupware maintenance when the groupware designers need to improve

the awareness support of their system. In both cases, new applications and existing ones,

awareness mechanisms are built from scratch.

To help groupware designers in this task, Kirsch-Pinheiro et al. (2001) identified

some important characteristics needed to provide such support. These characteristics are

organized into 6 questions (what, when, where, who, how, how much), each one identifying

crucial aspects of awareness support in cooperative systems: what information to present,

when this information is produced/presented, where it is produced/presented and how, who

is working and how much information about all this should be presented to the user (see

Figure 1). These aspects are analyzed within two environments: synchronous and

asynchronous. This division is important because systems in synchronous environments

have different needs than asynchronous ones. For example, people working simultaneously

in a shared workspace need to know what their colleagues are doing at this precise moment,

involving information like their mouse movements and workspace position, while people

working in an extended period of time do not need such precision.

5

Figure 1: Important characteristics for awareness support

However, among all the questions presented above, the «when» question is the most

relevant to this work. The “when” question tells when the cooperative activities executed by

the group are produced and when the awareness information produced by those activities

are presented to the end user. Depending on when each one of those activities happens, it

may be more or less important to the group. For example, when working asynchronously or

through many sections, a group will need to be aware of its past activities to keep in mind

the evolution of the work to reach the goal. That is what we call "past event awareness": the

awareness information about the activities performed in the past, whose results may have

changed or not be valid anymore.

The support to past event awareness is a very important feature in groupware systems,

especially in those systems that deal with asynchronous interactions or multi-section works.

It is important mainly because the overall information about the evolution of the

collaborative activities, such as the evolution of shared data and the users' actions, may

improve each user's contribution (Preguiça et al.,2000).

6

3. Related Work

Although important, just a few groupware applications have past event awareness

support. An example is the POLITeam Project (Sohlenkamp et al., 2000). This project

intents to develop a groupware system supporting distributed and asynchronous cooperative

work. It includes some features for past events awareness support, such as an event history

dialog window. However, the solutions proposed by POLITeam are very specialized to its

application (the Germany government), and they cannot be easily adapted to other

situations.

In addition, there are not many tools for helping groupware developers to build

awareness support. Among them, we can name the COPSE infrastructure, which also

includes a framework, for cooperative software design. It allows the development of new

groupware applications that can be integrated through the infrastructure (Dias and Borges,

1999). Although COPSE provides a group memory structure and some awareness support,

there is no specific support for past event awareness.

Similar to COPSE, there is Habanero, a collaborative framework and environment

that allows users to interact through a variety of applications that share state and events.

The Habanero framework is an API that allows developers to create collaborative Java

applications. It provides methods to build or convert existing applications into collaborative

applications (NSCA Habanero, 2002). However, Habanero has a rudimentary support to

past event awareness, limited mainly to session record/replay capabilities.

Moreover, there are in the literature toolkits for the development of synchronous

applications. However, in their majority, they do not provide past awareness support. An

example is GroupKit (Roseman and Greenberg, 1996, 1997), a toolkit for building

7

applications for real-time, distributed computer-based conferencing. It includes many

widgets for workspace awareness support, but no past event option is proposed .

The framework presented here does not supply a structure for complete groupware

applications. It is dedicated to past event awareness support. For example, it cannot inform

that an activity will be finished soon (future awareness). Actually, the framework BW was

designed to supply a systematic support to past event awareness. The next section presents

this framework with its main characteristics and structure.

4. The Framework BW

The framework BW has been designed to provide a flexible mechanism to support

past event awareness. This flexibility is its primary concern. Indeed, the framework BW

was designed to supply past awareness support for existent groupware systems that need

this support and also to build new groupware applications with this support.

In the next sub-sections, we show how the framework BW reaches this flexibility,

using an event-based mechanism and a layered structure.

4.1. Event-based awareness

Any groupware application has its own set of activities that should be accomplished

by the group. The awareness support should be adapted to those activities and to the group's

goals and structure. Thus, the awareness support is tightly coupled to the groupware and its

characteristics, such as members’ experience, atomicity of activities, work process

(workflow), etc.

To remain close to the groupware needs, and yet keeping its flexibility, the framework

BW adopts an event-based awareness mechanism based on a three-layer structure. It is

called an event-based awareness mechanism, because all awareness information is based on

8

events. Those events represent the group's activities, which were executed within the

groupware application.

In the framework BW, this event-based awareness is organized in three phases

(Figure 2): registering, monitoring and notifying. In the first phase, the groupware registers

in the framework what events are interesting for awareness purposes. It is done by passing

to the framework BW a sample instance of each expected event, an object to be used as an

example by the framework BW. This example object is used to identify similar objects

during the next phase. In the second phase, monitoring, the activities take place in the

groupware, and once one of these activities is executed, the groupware can pass to the

framework BW the event related to this activity.

Figure 2. Registering - monitoring - notifying cycle

At this point, we can see that the framework BW works as an external element to the

groupware. In fact, it acts like an encapsulated component: the groupware can safely use it

without knowing exactly how it works internally. The framework BW interacts with this

application only through the events, which are registered by the application and

recognizable by the framework. Thus, the framework BW can be kept independent of the

groupware application, keeping also its flexibility. As a consequence of this event-based

9

awareness, the groupware designer must identify what activities are important for the

awareness support and define the corresponding events.

For example, considering a cooperative editor that imposes to the author a specific

order for the text (abstract, introduction, chapters, conclusion and bibliography), the

developer of such editor could register in the BW framework a prototype instance of an

event «Conclusion done» to indicate that the conclusion part of the text has been done.

Then, every time a group member finishes the text conclusion, the editor can produce and

pass to the BW framework the event that describes that specific activity.

The last phase presented in Figure 2 is to notify the user (team member) about the

awareness information. It consists in informing the user what has occurred in the group

work. However, it can be easily seen that presenting the information about all activities may

produce a large set, which is difficult to deal with. Such high amount of information may

not be desirable. The user shall not spend much more time with awareness information than

working. Besides, the user may not be interested in awareness information about all group's

activities, but only a subset of these activities. Thus, it is important to adapt the awareness

information to the user's interest and to his/her role profile.

Indeed, roles and awareness information have a very close relationship. Users need

awareness information to better play their roles, and all roles do not need the same

information. The awareness information presented to a user should be adequate to the user's

role and preferences. For example, a user playing an author role in a cooperative authoring

environment needs information different from that required by the team coordinator in the

same environment. A coordinator should be informed about the overall work progress.

He/she needs a global view of the group activities, the defined tasks and deadlines, to take

10

his/her decisions and guide the team efforts (Kirsch-Pinheiro et al., 2001). If the coordinator

has an adequate awareness mechanism, which presents relevant information, the

coordination task will be easier (Borges and Pino, 1999).

In order to adapt the awareness information to the user and role's needs, and, at the

same time, to avoid an information overload, the framework BW executes a filtering of the

available awareness information, based on profiles. A profile specifies the user's or role's

preferences. It describes which activities, among the group activities, should be notified,

according to his/her preference. These profiles indicate which activities are significant and

the time interval during which they are significant. The framework BW defines three types

of profiles: those associated with a team member, a role, or both (a team member playing a

role). Based on the selection, the framework filters the available information, in such a way

that only events that are indicated by one of those profiles are presented to the user. Thus,

by setting their profiles, team members indicate about which activities he/she wants to

receive awareness information. A similar mechanism has been proposed by David &

Borges (David and Borges, 2001). To illustrate this aspect in our example of a cooperative

editor, a user who sets into his/her personal profile the event «Conclusion done», is notified

of all «Conclusion done» events performed inside his/her group. A coordinator receives the

same information whether his/her role profile indicates that all events related to ‘terminated

sections’ should be informed.

4.2. Framework Description

The processing of the phases Registering, Monitoring and Notifying is done by a

structure of three layers, namely storage, control and user interface. Each layer is in charge

of handling several aspects of this processing: the storage layer handles the storage of the

11

awareness information. The user interface layer manages the presentation of the awareness

information to the user. The control layer is the most important layer. It handles the

groupware requests, like the events registering and monitoring, and it also controls the

filtering process.

Those layers have been organized in four independent packages. Each package

assumes the responsibilities of the corresponding layer, and communicates with other

packages by well-defined protocols. These protocols are, in fact, facade classes, an

application of the design pattern Facade (Gamma et al., 1994). These facade classes

represent the package functions for outside classes. Thus, each package knows only the

facade classes from the other package, not their internal structure, keeping them

independent.

Besides the presence of facade classes, the packages have another aspect in common:

they manipulate the same information. All packages handle information about events, roles,

profiles and users. So, in order to keep their independence, the information has been

isolated in a fourth package, called Kernel. The Kernel package is of crucial importance to

the framework BW, because it describes the awareness information manipulated by this

framework. The next sub-sections will summarize each one of those packages, showing the

most important features of each one.

4.2.1. Kernel. The kernel package describes the information manipulated by the

framework BW. It constitutes the data model of the framework. Since this model is used by

all packages of the framework, the kernel package is the only open package. Its content is

12

known by the other packages, since they need this knowledge to carry out their tasks. Figure

3 shows the main structure of the framework BW.

Figure 3. Framework BW structure

The most important information classes defined in the kernel package are events,

users, roles, profiles and the group. All those classes are directly linked together, as shown

in Figure 4. The group, represented by the class «Group», aggregates users (the team

members), represented by the class «Members», and the roles (Role) that the users can play.

This way, the fact that a user can play many roles in the same group can be modeled, as

well as the dependency between roles and the group (the roles are defined for a group,

which aggregates a set of possible roles).

Figure 4. Some Kernel package internal classes

Besides this relationship between group, users and roles, there is also a relationship

between user/roles and profiles. As we mentioned before, the framework BW defines three

13

kinds of profiles: the users’ personal profiles (Personal Profile), the roles’ profiles (Role

Profile), and the combination of both, or the users’ personal preferences when playing a role

(Personal Role Profile). Each of these profiles is composed of a set of events, which

represents the activities subscribed by the user or the role in that profile. All the user’s

applicable profiles are aggregated under the «Awareness Profile» class that composes the

complete set of preferences applicable to the user.

Finally, there are the relationships between events, users and profiles. Events (Event)

represent the activities performed by the users in the group. Consequently, there is a link

between event and user objects. This link indicates which user was responsible for the event

execution.

Besides the classes presented above, the kernel package also defines other classes: the

register class, that keeps the set of registered events, a time interval class that is mainly used

by events and profiles, and a super class that defines the framework BW basic element,

which is specialized by the other classes in the kernel package.

4.2.2.Storage. The storage package is in charge of keeping the awareness information

in a permanent base. The storage package is the interface between the framework BW and

the database. It provides other packages with simple services, such as the saving and

recovering of objects defined in the kernel package. By using these services, the other

packages do not need to know anything about the database or the storage medium used.

They only know the storage facade, keeping their independence from the storage device

package.

14

To keep the flexibility of the framework BW, the storage package should not be

linked to a specific DBMS. For this reason, the storage package uses the Bridge design

pattern (Gamma et al., 1994) to implement the direct access to the database and media. This

pattern separates the object abstraction from its implementation. Thus, we separate the

abstraction of the database and media in a class (Strategist) from its implementation in a

second class (Implementor). As a result, the framework BW can be easily adapted to the

database and media used by the groupware application, by specializing «Implementor» class

(Figure 5).

Figure 5: Storage package details

4.2.3.Control. The control package is the «central processing unit» of the framework

BW. It receives and handles the groupware requests, and delivers the information and

services to the other packages. For example, the control package receives from groupware

the events produced by the group. It handles these events, verifies if they are registered

events, and then sends them to the storage package to be saved.

The control package also manages the information filtering, needed for the notifying

phase. It takes the user's applicable profiles (personal profile, personal role profile and role

profile) and processes it in order to get a unique set of interesting events. This set is used to

recover, through the storage package, the events produced by the group, which are passed to

the user interface package, where those events will be presented to the user.

15

This filtering process is done by one class (Awareness) in the control package. It

captures the profiles applicable to the user from his/her awareness profile and merges the

set of events present in each profile, creating a final set of events. This final set of events is

used to recover the available events from the Storage package. In addition, this class merges

the time intervals associated with each user’s profile. Each time interval is, indeed, an

Allen’s interval (Allen, 1983), so their merge returns a new interval, which is the union of

each individual interval. Thus, the final set of events presented to the user reflects the user's

preferences and role's needs. Furthermore, by isolating this processing in a single class, it is

very easy to create new variations of this filtering process by specializing this class.

4.2.4.Interface. The last package, called Interface, handles the presentation of the

awareness information to the user. The user interface is a delicate topic for a groupware. It

is through its interface that the user interacts and cooperates with other team members, and

it is also through the interface that users receive the awareness information. If the interface

is notwell-suited, the user may not assimilate the awareness information.

Therefore, the user interface should be adapted to the groupware and to the

information presented. It should also be integrated within the groupware interface. The user

should not perceive the awareness support as a different system, but just perceive

everything as the groupware.

The framework BW cannot define just one user interface encompassing all situations.

Consequently, the interface package has been defined using mostly abstract classes. We

defined one central class (Interface) that receives information to be presented from the

control package, and two abstract classes, that represent the user interface elements. These

16

classes are organized in a container/contents structure: the container (class GUIElement)

aggregates many contents objects (GUIEvent), each one handling the presentation of a

specific set of events. Thus, the groupware designers can define a user interface adapted to

the awareness information and groupware application, by specializing these

container/contents classes, according to the events represented and the groupware interface.

For example, he/she can define a hierarchy of colors for explicitly inform the importance if

the events presented. As a result, groupware designers can better integrate its interface

within the framework BW.

Moreover, it is also through the user interface that team members are able to

manipulate their own profiles. Once again, groupware designers should define an interface

adapted to the groupware and its activities.

5. Connecting the Framework BW

The first version of the framework BW was implemented in Java following the

description presented in the previously sections. The official distribution1 contains four Java

packages, which correspond to the four packages presented above.

However, these packages do not specify how to integrate the framework BW with a

groupware system. In fact, those packages present only a small set of “entry points”, e.g.

classes that must be specialized by the groupware developer when connecting the

framework to the groupware. Those classes are: (1) the user interface classes, which should

be adapted to the awareness information presented and to the groupware interface; (2) the

storage implementation, which should adapt the framework to the real storage medium and

database used by the groupware.

1 available at http://www.inf.ufrgs.br/~manuele/BW/.

17

In order to effectively connect the framework BW to the groupware system, we

introduced a new element, the mediator. This mediator centralizes every call coming from

the groupware, acting as a general interface for the framework BW. This mediator is,

actually, a combination of the design patterns Mediator and Singleton (Gamma et al., 1994),

whose respective goals are to reduce the number of interconnections among the objects, and

to propose an unique instance accessible for all “client instances” through a well-known

interface.

This mediator, then, is organized in two levels. At the first level, is found the

definition of general mediator’s functions, formed by class methods. In the second level,

lies the concrete mediator, which really implements those methods especially for the

groupware. By using this structure, we unify all references to the framework into a unique

class. As a result, we reduce the complexity of the references needed by the groupware,

since such references are limited to class methods in the mediator class.

Thus, to use the framework BW, groupware developers are constrained to implement

some classes. These classes include the user interface and storage implementation classes,

and the concrete mediator, which should be designed for that specific groupware. Once

these classes are written, the developers need only to introduce in the groupware the right

calls to the mediator.

6. Case Studies

The framework BW has been already used in some applications. The first application

that uses it is the framework COPSE and the class diagram editor CUTE. CUTE is a

cooperative class diagram tool developed with COPSE (Dias and Borges, 1999). Both,

18

COPSE framework and CUTE, do not provide a support for past event awareness, despite

their need for this support. Cooperative software engineering is typically a multi-section

work (the developers group need many sections to accomplish the software design and

development), and past event awareness support in such environments is very important in

order to keep track of the evolution of the software. Thus, we introduced this support by

using the framework BW.

To introduce the framework BW into COPSE/CUTE system, we followed the process

described in the above section. First, we implemented the DBMS access, by specializing the

storage implementation class. In the new class created, we use a JDBC PostgreSQL driver

to access a centralized PostgreSQL database, applying the same centralized architecture

used by COPSE/CUTE (one central server to which all clients are connected). Then we

created the user interface for this new awareness feature, by specializing the

container/contents classes defined in the Interface package. These new classes (Figure 6)

have been designed to be perfectly adapted to CUTE interface. As a consequence, users

perceive only the CUTE groupware interface, now with a new “past awareness” feature.

They do not perceive this new feature as a different system element.

In addition, we also built the concrete mediator for the COPSE/CUTE system. By

using this mediator, we minimize our interventions into COPSE framework. Besides, the

mediator also dynamically binds the new classes developed for this system to the

framework. As a result, the framework can use those classes without any internal

modification on the framework.

19

Figure 6. Screenshot from CUTE awareness support

During the use of the framework BW in the COPSE/CUTE system, we noticed two

critical points. First, the design of the concrete mediator becomes very important, since it is

the main connection between the system and the framework, and its complexity may

increase according to the complexity of groupware application.

The second critical point identified is related to the registering phase, and more

precisely, to the events definition. This definition necessitates to decide what activities

should be objects of the past awareness support, and what information about these activities

should compose the corresponding event objects. This process requires an analysis, by the

groupware developer, of the real needs of the users. For the COPSE/CUTE system, we

defined a small set of nine events, most of all are related to the edition of classes and

relations in the UML class diagram edited by the group. Figure 6 shows the possible events

on the profile window.

The framework BW has also been used by the CEMT Project (Kirsch-Pinheiro et al.,

2002). In this project, the framework BW was used to build an awareness server. This

server communicates with client applications (mainly Web editor applications, such as

20

Amaya (Vatton, 2001)), which send their awareness information through an XML based

protocol, in a cooperative environment for e-learning authoring. The server keeps this

information in a persistent database, which is also used by a workflow engine that guides

the authoring process. When a client application requires the awareness information, it

requests this information through the XML protocol. Once this information is received, the

client application can present it to its users. Besides, the awareness information kept by the

framework BW can also influence the workflow. In fact, by being aware of their colleagues’

activities, users may anticipate other tasks, and dynamically change the workflow.

In CEMT Project, we also implemented the mediator class, represented by the

awareness server itself. For the DBMS access, we reused the class implemented for

COPSE/CUTE, by using the same JDBC PostgreSQL driver and database structure.

However, for the user interface classes, we specializeed the Interface package. In the CEMT

Project environment, the awareness server does not interact directly with the users, but with

client applications through network connections. Thus, we adapted the Interface package to

this distributed environment, where it interacts with many users connected through client

applications.

The development of this awareness server in the CEMT Project shows a third critical

point in the framework BW application: the developers’ learning curve. In fact, groupware

developers need some time to learn about the framework BW, its structure, and how use it.

Only after this learning period, groupware developers feel comfortable with the design of

the new classes allowing the use of the framework BW in their system.

21

7. Conclusions

One of the main goals of the framework BW was to provide awareness information

with flexibility. This goal has been reached by the use of an event-based awareness

mechanism, designed using an object-oriented approach. The framework is divided into

four packages, which separate its services and its data model, keeping them independent.

Besides, the use of an object oriented design allows the groupware designers to easily

extend the framework BW through the specialization of the framework classes.

As a result, we reached a flexible and extensible framework, which has been used

successfully in two different environments, the environment proposed by the CEMT

Project, and the COPSE/CUTE application. These applications also showed us the overhead

experienced by the groupware developers when using the framework BW. This overhead is

related to (1) the conception of new classes that connect the framework to the application;

(2) the amount of time that developers need to learn about the framework; and (3) the

definition of the events, which is not an obvious task, since developers have to define the

users’ needs about past events awareness. If this definition fails, the system will not reach

its goal of assisting users in their cooperative activities. However, the analysis of which

activities are important for the awareness support is also required when developers are not

using this framework. Hence, we may consider that the framework BW can help groupware

implementers even in this point, since they will be able to dedicate more time to this

delicate definition task, and not to design definitions encapsulated by the framework.

Thus, in theory, the framework BW can be integrated into any application that uses an

OO approach for supplying users with past event awareness. The use of our framework

reduces the development effort and provides awareness information in a unified way.

22

Therefore, awareness information composes the group’s shared knowledge. The framework

presented here allows a representation this knowledge and externalization of it. The

framework BW constitutes, hence, a mechanism to make this knowledge available and to

inform group’s members about this availability.

The framework BW still has many possibilities to explore, due to its flexibility. It can

be used, for example, to implement the idea of "awareness of awareness" (that is, supply

information about who received an awareness information), or for "future awareness"

(awareness information about the incoming events for the group). Implementations in other

environments are under development.

References

Allen, J. F., 1983, Maintaining Knowledge about Temporal Intervals, Communications of

the ACM, 26(11), 832-843.

Borges, M.R.S., and Pino, J.A., 1999, Awareness Mechanisms for Coordination in

Asynchronous CSCW, Proceedings of 9th Workshop on Information Technologies and

Systems (Charlotte).

David, J.M.N., and Borges, M.R.S., 2001, Improving the selectivity of awareness

information in groupware applications, Proceedings of CSCWD’2001 (IEEE Computer

Society), 41-46.

Dias, M.S., and Borges, M.R.S., 1999, Development of groupware systems with the

COPSE infrastructure, Proceedings of International Workshop on Groupware (IEEE

Computer Society, Cancun), 278-285.

Dourish, P., and Bellotti, V., 1992, Awareness and Coordination in Shared Workspaces,

Proceedings of ACM Conference on Computer-Supported Cooperative Work (ACM

23

Press, Toronto), 107-114.

Farschian, B. A., 2001, Integrating geographically distributed development teams through

increased product awareness, Information System Journal 26(3), 123-141.

Gamma, E., Helm, R., Vlissides, J., Johnson, R., 1994, Design patterns: elements of

reusable object-oriented software (Addison-Wesley).

Gutwin, C. and Greenberg, S., 1998, Effects of awareness support on groupware usability,

Proceedings of CHI'98 - Conference on Human Factors in Computing Systems (ACM

Press, New York), 511-518.

Gutwin, C., and Greenberg, S., 1999,A framework of awareness for small groups in shared-

workspace groupware, Technical Report 99-1 (Department of Computer Science,

University of Saskatchewan, Saskatchewan). Available at:

http://www.cpcs.ucalgary.ca/papers/1999/99-AwarenessTheory/html/theory-tr991.html.

Access: September, 1999.

Gutwin, C., and Greenberg, S., 2002, A descriptive framework of workspace awareness for

real-time groupware, Computer Supported Cooperative Work (Kluwer Academic

Press). Available at: http://www.cpsc.ucalgary.ca/grouplab/papers/ Access: April,

2002.

Kirsch-Pinheiro, M., Lima, J.V., and Borges, M.R.S., 2001, Awareness em sistemas de

groupware", 4 Jornadas Iberoamericanas de Ingenieria de Requisitos y Ambientes de

Software (Centre de Información Tecnológica, San Domingos), 323-335.

Kirsch-Pinheiro, M., Telecken, T., Zeve, C., Lima, J.V., and Edelweiss, N., 2002, A

cooperative Environment for e-learning authoring, Documents numériques 5(3-4), 89-

114.

24

NCSA Habanero. Available at: http://www.isrl.uiuc.edu/isaac/Habanero/. Access: February,

2002.

Nonaka, I., Takeuchi, H., 1995. The Knowledge-Creating Company: How Japanese

Companies Create the Dynamics of Innovation (Oxford University Press, Oxford).

Nunamaker Jr., J.F., Romano Jr., N.C., Briggs, R.O., 2001, A Framework for Collaboration

and Knowledge Management. In: Proceedings of 34th Hawaii International Conference

on System Sciences - HICSS'01 (Hawaii, EUA).

O’Leary, D., 1998, Enterprise Knowledge Management, IEEE Computer 31(3), 54-61.

Preguiça, N., Martins, J. L., Domingues, H., and Duarte, S., 2000, Data management

support for asynchronous groupware, Proceedings of ACM Conference on Computer-

Supported Cooperative Work (ACM Press, Philadelphia), 69-78.

Roseman, M., and Greenberg, S., 1996, Building real time groupware with GroupKit, a

groupware toolkit, ACM Transactions on Computer Human Interactions 1(3), 66-106.

Available at: http://www.cpsc.ucalgary.ca/grouplab/papers. Access: January, 2000.

Roseman, M., and Greenberg, S., 1997, Building groupware with GroupKit, in: Harrison,

M., eds., Tcl/Tk Tool (O’Reilly Press), 535-564. Available at:

http://www.cpsc.ucalgary.ca/grouplab/papers. Access: January, 2000.

 Sohlenkamp, M., Mambrey, P., Prinz, W., Fuchs, L., Syri, A., Pankoke-Babatz, U.,

Klöckner, K., and Kolvenbach, S., 2000, Supporting the distributed German

government with POLITeam, Multimedia Tools and Applications 12(2), 39-58.

Vatton, I., 2001, Welcome to Amaya. Available in http://www.w3.org/Amaya/. Access:

Aug, 2001.

25

