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On the controllability of the hydrostatic Stokes

equations

S. Guerrero∗and F. Guillén-González†

Abstract

This paper is devoted to present some results on the controllability of
the hydrostatic Stokes equations. The first main result of this paper states
that the approximate null controllability of this system holds. This is
proved whatever the boundary conditions are. Then, we extend this result
to an exact null controllability result when the boundary conditions are
∂zu = 0 (the vertical derivative of the horizontal velocity) at the bottom.

1 Introduction and main results

The main purpose of this article is to study some controllability problems, either
approximate controllability or exact controllability, for the three-dimensional
hydrostatic Stokes equations, which is the linear problem associated to the hy-
drostatic Navier-Stokes equations (also called Primitive Equations).

The Primitive Equations stand for one of the most fundamental governing
equations in the field of geophysical fluids, for atmospheric and oceanic flows.
This system is formally derived from the 3D incompressible Navier-Stokes equa-
tions for the case of large time and horizontal spatial scales ([1, 13]). In fact, the
Primitive Equations of large scale oceanic flow results as the asymptotic limit
of the Navier-Stokes model as the aspect ratio of the vertical to the horizontal
length scale goes to zero ([4, 5]). In particular, this model can describe the
general circulation of the water in lakes and oceans [12].

Control problems of fluids have extensively been studied in the last years (see,
for instance, [3], [7] and [9], where the model used is the Navier-Stokes system).
As an extension of this, one can also consider control problems associated to
geophysical fluids. As far as we know, the controllability results we will present
below are the first ones concerning geophysical fluids.

For simplicity, we take constant density, cartesian coordinates (x = (x1, x2)
in the horizontal direction and z perpendicular to the surface z = 0) and we
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assume that the effects due to temperature and salinity can be decoupled from
the flow dynamics.

The most distinguished feature of the Primitive Equations is that the hy-
drostatic balance ∂zp = −ρg (being p the 3D pressure, ρ the density and g the
gravity acceleration) replaces the momentum equation for the vertical velocity
v. Since we have assumed constant density, this balance implies p(x, z, t) =
pS(x, t) − ρgz, where pS is a 2D function defined in the horizontal plane (the
surface pressure).

Let T > 0, let S be an open connected regular set of R
2 (the surface) and

let D : S → R+ be a regular function (the bottom function). We will specify
the regularity of S and D below. Then, we introduce the oceanic domain

Ω = {(x, z) = (x1, x2, z) ∈ R
3 : x ∈ S, z ∈ (−D(x), 0)}.

We design by ΓS the surface boundary

ΓS = {(x, z) ∈ R
3 : x ∈ S, z = 0} = S × {0},

by Γl the lateral boundary

Γl = {(x, z) ∈ R
3 : x ∈ ∂S, z ∈ (−D(x), 0)}

and by Γb the bottom boundary

Γb = {(x, z) ∈ R
3 : x ∈ S, z = −D(x)}.

We will denote ΣS := ΓS × (0, T ), Σl := Γl × (0, T ) and Σb := Γb × (0, T ).

We also consider an open subset ω ⊂ Ω (the control domain) which can be
assumed to be as small as desired. Let us set

Q := Ω × (0, T ).

Let us denote by u = (u1, u2) : Q → R
2 the horizontal velocity, v : Q → R

the vertical velocity and pS the surface pressure. We will work with the following
system:





ut − ∆u − ∂2
zzu + α(x2)u

⊥ + ∇pS = h1ω in Q,

∇ · u + ∂zv = 0 in Q,

u = 0 on Σl,

∂zu = 0, v = 0 on ΣS ,

B(u) = 0, (u, v) · nb = 0 on Σb,

u(·, 0) = u0 in Ω.

(1)

Here, the term α(x2)u
⊥ = α(x2)(−u2, u1) is the Coriolis force which represents

the influence of the rotation of the earth (for more details on the obtention
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of this term from the Navier-Stokes equations when the aspect ratio tends to
zero, see [4]) and h stands for the control function. Observe also that the dif-
ferential operators are taken with respect to the x-variables (the differentiation
with respect to z will always be specified). Moreover, the operator B pretends
to express various boundary conditions which will be consider in this paper.
Precisely, we are interested in homogeneous





Dirichlet (w = 0),

Neumann (∂nw = 0),

vertical (∂zw = 0)

(2)

boundary conditions. Finally, nb stands for the outward unit normal to Γb.
We remark that the boundary conditions considered in (1) are the natural

ones (see, for instance, [13] and [12]).

Observe that the vertical integral of the horizontal velocity is divergence-

free (i.e. ∇ ·
∫ 0

−D(x)
u dz = 0), due to the incompressibility of the flow and the

boundary conditions on the vertical velocity at the surface and bottom. Then, it
is shown in [12] that the surface pressure is the Lagrange multiplier of this new
constraint and the dissipativity of this system holds; both things drive to the
existence of a weak solution. The study of the regularity of system (1) is much
more complicated, due to the singularity of the domain under consideration.
Existence and uniqueness of a strong solution of the linear stationary problem
associated to (1) is proved in [16] as log as D(x) > 0 in S. This result can be
readily extended to the evolution problem (1).

In this paper the following regularity for the elements which define the
oceanic domain are imposed:

S ∈ W 3,∞, D ∈ W 2,∞(S) and D(x) > 0 in S. (3)

We remark here that the regularity condition on S could be weakened to be
W 1,∞, but we have chosen to do direct proofs which in particular require
H4−regularity for a Stokes-like problem posed in S (see (53) below). On the
other hand, the last assumption in (3) means that our domain has sidewalls.

Furthermore, we will use that

α ∈ L∞(R). (4)

In fact, α(x2) = 2f sin(ℓ(x2)), where f is the module of the Coriolis force and ℓ
is the latitude.

The first main result of this paper concerns the approximate null controlla-
bility of system (1). It is given in the following theorem:

Theorem 1 Let (3) and (4) hold and let B denote one of the three conditions
given in (2). Then, for each ε > 0, there exists a control v ∈ L2(ω × (0, T ))
such that the solution (u, v) of (1) satisfies

‖(u, v)(·, T )‖L2(Ω) ≤ ε. (5)
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In order to prove this theorem, we use the classical approach as long as a linear
control system is concerned. Namely, we consider the associated adjoint system:





−ψt − ∆ψ − ∂2
zzψ − α(x2)ψ

⊥ + ∇βS = 0 in Q,

∇ · ψ + ∂zγ = 0 in Q,

ψ = 0 on Σl,

∂zψ = 0, γ = 0 on ΣS ,

B∗(ψ) = 0, (ψ, γ) · nb = 0 on Σb,

ψ(·, T ) = ψ0 in Ω.

(6)

Here, (ψ, γ) is the velocity vector field, βS is the surface pressure, B∗ is the
(formal) adjoint operator of B and ψ0 is the initial horizontal velocity. Observe
that this system is backwards in time.

Then, property (5) is equivalent to: for any ψ0 ∈ L2(Ω), we have

ψ = 0 in ω × (0, T ) ⇒ (ψ, γ) = 0 in Ω × (0, T ). (7)

This fact is classical and can be found, for instance, in [11].

Remark 1 In the proof of this theorem, we will see that a stronger result holds,
namely (7) is deduced for any (ψ, γ) satisfying the equations

−ψt − ∆ψ − ∂2
zzψ − α(x2)ψ

⊥ + ∇βS = 0 in Q,

∇ · ψ + ∂zγ = 0 in Q,

and the boundary conditions
ψ = 0 on Σl,

γ = 0 on ΣS

and
(ψ, γ) · nb = 0 on Σb.

That is, the boundary condition ∂zψ = 0 on ΣS and B∗(ψ) = 0 on Σb are not
necessary.

The second main result of this paper concerns the exact null controllability
of system (1):

Theorem 2 Let (3) hold and let Bu = ∂zu. Then, there exists a control v ∈
L2(ω × (0, T )) such that the solution (u, v) of (1) satisfies

(u, v)(·, T ) = 0 in Ω.

4



We also follow a classical approach to prove Theorem 2. Let (ψ, γ, βS) be
the solution of (6) with B∗(ψ) = −∂zψ. Then, it is well-known that the null
controllability of (1) with L2-controls is equivalent to an observability estimate
for (ψ, γ, βS). More precisely, we will prove the existence of a constant C > 0
such that

‖(ψ, γ)(·, 0)‖2
H1(Ω)×L2(Ω) ≤ C

∫∫

ω×(0,T )

|ψ|2 dx dz dt, (8)

for any ψ0 ∈ L2(Ω). The proof of this inequality follows the ideas first intro-
duced in [7], [8] and then used in [9] and [3].

Remark 2 To our best knowledge, the previous theorems are the first control-
lability results for the hydrostatic Stokes system. On the other hand, there are
two exact controllability problems which we consider particularly interesting:

• The case where another boundary conditions are considered at the bottom.
Observe that in Theorem 2 we have imposed that ∂zu = 0 at the bottom but
both Dirichlet and Neumann boundary conditions could also be considered.
In the proof of Theorem 2, it will be seen that the fact that the function ∂zu
fulfills a complete problem (as seen in (38)) is essential in our argument.
This is not the case when Dirichlet and Neumann boundary conditions are
imposed at the bottom.

• The local exact controllability of the hydrostatic Navier-Stokes system.
This relies on the study of the exact null controllability of a linearized
problem, which turns to be much more involved than ours.

This paper is organized as follows: in the second section, we will present
some technical results which will be used all along the paper. In Section 3
and Section 4, we prove Theorem 1 and Theorem 2, respectively while the last
section is an appendix devoted to prove a Carleman inequality which will be
used in the proofs of both theorems.

2 Technical results

2.1 Regularity result for a Stokes type problem

Let U ∈ R
N be a W 3,∞ open set and a, A and m be three functions satisfying

a, A ∈ L∞(U × (0, T )) and m ∈ W 2,∞(U). (9)

Let us also denote Q0 := U × (0, T ) and Σ0 = ∂U × (0, T ) We consider the
following Stokes-type problem:





wt − ∆w + a(x, t)w⊥ + A(x, t) · ∇w + m(x)∇p = f in Q0,

∇ · w = 0 in Q0,

w = 0 on Σ0,

w(·, 0) = w0 in U.

(10)
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Here, w⊥ stands for (−w2, w1) when N = 2 and for w when N > 2. For
our purposes, we will just need to apply this result with N = 2 and a and A
functions independent of the t variable.

Lemma 1 Assume that the coefficients a, A and m satisfy (9). Let w0 ∈
H1

0 (U), f ∈ L2(Q0) and let us suppose that there exists two positive constants
m1, m2 such that m1 ≤ m(x) ≤ m2 in U . Then, there exists a unique solution
(w, p) of (10) which belongs to the space

(L2(0, T ; H2(U))∩H1(0, T ;L2(U)))×L2(0, T ; H1(U)) := X ×L2(0, T ; H1(U)).
(11)

Moreover, there exists a positive constant C such that

‖(w, p)‖X×L2(0,T ;H1(U)) ≤ C(‖w0‖H1(U) + ‖f‖L2(Q0)). (12)

Proof: Even if the idea we will follow here is classical in this kind of sys-
tems, there is the novelty of the presence of a given function m(x) multiplying
the pressure term. We will first deduce the existence of a (unique) energy solu-
tion w ∈ L2(0, T ;H1(U)) ∩ L∞(0, T ; L2(U)), then we will prove that the time
derivative of this function belongs to L2(Q0) and finally we will regard (10) as
a stationary Stokes-type system with right hand side in L2(Q0).

Let us define the new variable q = 1
m(x)w, which satisfies





m(x)qt −∇ · (m(x)∇q) + (am)(x, t)q⊥

+(Am)(x, t) · ∇q + m(x)∇p = g in Q0,

∇ · (m(x)q) = 0 in Q0,

q = 0 on Σ0,

q(·, 0) = w0/m(·) in U,

(13)

where
g = f + ∇ · (q∇m(x)) − (A · ∇m)(x, t)q.

• In order to get energy estimates for the solution of (13), we multiply the
differential equation by q and we integrate in U . We obtain

1

2

d

dt

∫

U

m|q|2 dx +

∫

U

m|∇q|2 dx ≤ C

(∫

U

|f |2 dx dt +

∫

U

m|q|2 dx dt

)
,

for a positive constant C. Here, we have used Young’s inequality, combined with
the facts that m ∈ W 1,∞(U) and 0 < m1 < m(x) < m2 in U . As a consequence,
we have that

q ∈ Y := L2(0, T ;H1
0 (U)) ∩ L∞(0, T ; L2(U))

and there exists a positive constant C > 0 such that

‖q‖Y ≤ C(‖w0‖L2(U) + ‖f‖L2(Q0)). (14)
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• Now, we multiply the equation in (13) by qt. Direct computations give
again

∫

U

m|qt|
2 dx +

1

2

d

dt

∫

U

m|∇q|2 dx ≤ C

(∫

U

|f |2 dx +

∫

U

m|∇q|2 dx dt

)
,

for some C > 0. Then, we have shown that

q ∈ X0 := H1(0, T ; L2(U)) ∩ L∞(0, T ; H1
0 (U))

and there exists C > 0 such that

‖q‖X0
≤ C(‖w0‖H1(U) + ‖f‖L2(Q0)). (15)

• Finally, we consider the equation of w like a stationary one. In fact, we
divide the equation in (13) by m(x) and we consider the pair (q, p) which can
be regarded as the solution of a stationary Stokes problem





−∆q + a(x, t)q⊥ + A(x, t) · ∇q + ∇p = g̃ in Q0,

∇ · q = −(∇m) · q in Q0,

q = 0 on Σ0,

(16)

with
g̃ = f/m − qt + 2(∇m/m) · ∇q + (∆m/m)q − (A · ∇m/m)q.

Observe that t is watched as a parameter in (16). From (15), we have that
g̃ ∈ L2(Q0) and

‖g̃‖L2(Q0) ≤ C(‖w0‖H1(U) + ‖f‖L2(Q0)). (17)

Thus, we have a stationary Stokes system for q with right hand side in L2(Q0)
and divergence data in L2(0, T ; H1(U)) (see (14)), so we know (see, for instance,
[15]) that (q, p) ∈ L2(0, T ;H2(U) × H1(U)) and

‖(q, p)‖L2(0,T ;H2(U)×H1(U)) ≤ C(‖g̃‖L2(Q0) + ‖q‖L2(0,T ;H1(U))). (18)

Using (18), (17), (15) and (14), we finally obtain that (q, p) ∈ X×L2(0, T ;H1(U))
and

‖(q, p)‖X×L2(0,T ;H1(U)) ≤ C(‖w0‖H1(U) + ‖f‖L2(Q0)),

for some C > 0. From the properties of m and taking into account that w =
m(x, t)q, we readily deduce (11) and (12) for (w, p).

2.2 Carleman estimate

Let us introduce the system




−ϕt − ∆ϕ + a(x, t)ϕ⊥ + A(x, t) · ∇ϕ + m(x)∇π0 = f0 in Q0,

∇ · ϕ = 0 in Q0,

ϕ = 0 on Σ0,

ϕ(·, T ) = ϕ0 in U,

(19)
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where ϕ0 ∈ L2(U) and f0 ∈ L2(Q0). Recall that ϕ⊥ stands for (−ϕ2, ϕ1) if
N = 2 and for ϕ if N > 2.

In order to state the Carleman inequality, we define several weight functions
which will be useful in the sequel. Let O be a nonempty open subset of U . The
basic weight will be a function η0 ∈ C2(U) satisfying

η0 > 0 in U, η0 = 0 on ∂U, |∇η0| > 0 in U \ O1, (20)

where O1 ⊂⊂ O is a nonempty open set. The existence of such a function η0 is
proved in [6] and requires ∂U ∈ C2. Then, we introduce

α(x, t) =
e5/4λk‖η0‖∞ − eλ(k‖η0‖∞+η0(x))

t4(T − t)4
,

ξ(x, t) =
eλ(k‖η0‖∞+η0(x))

t4(T − t)4
,

α̂(t) = min
x∈U

α(x, t) =
e5/4λk‖η0‖∞ − eλ(k+1) ‖η0‖∞

t4(T − t)4
,

α∗(t) = max
x∈U

α(x, t) =
e5/4λk‖η0‖∞ − eλk‖η0‖∞

t4(T − t)4
,

ξ̂(t) = max
x∈U

ξ(x, t) =
eλ(k+1)‖η0‖∞

t4(T − t)4
, ξ∗(t) = min

x∈U
ξ(x, t) =

eλk‖η0‖∞

t4(T − t)4
,

(21)

where k > 4 is a fixed real number and s, λ > 0 are real numbers.
Along the proof, we will also use the notation

I(ϕ) = s−1

∫∫

Q0

e−2sαξ−1(|ϕt|
2 + |∆ϕ|2) dx dt

+sλ2

∫∫

Q0

e−2sαξ|∇ϕ|2 dx dt + s3λ4

∫∫

Q0

e−2sαξ3|ϕ|2 dx dt.

We present the Carleman inequality in the following proposition:

Proposition 1 Let us suppose that a, A ∈ W 1,∞(0, T ;L∞(U)) and m ∈ W 1,∞(U).
Then, there exists a positive constant C depending on U , O and T , such that
the solution of (19) satisfies

I(ϕ) +

∫∫

Q0

e−2sα|∇π0|
2 dx dt + s2λ2

∫∫

Q0

e−2sαξ2|π0|
2 dx dt

≤ Cs7λ4

(∫∫

Q0

e−4sα̂+2sα∗

(ξ̂)15/2|f0|
2 dx dt

+

∫∫

O×(0,T )

e−4sα̂+2sα∗

(ξ̂)15/2|ϕ|2 dx dt

)
,

(22)

for any s, λ ≥ C.
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The proof estimate (22) will be given in the Appendix, at the end of the paper.

Now, we state some technical results which will be necessary in the sequel of
this paper. The first one deals with Carleman inequalities for the heat system:

Lemma 2 Assume that ∂U ∈ C2, u0 ∈ L2(U) and g ∈ L2(Q0). Let u be the
solution to the following backwards heat system:





−ut − ∆u = g in Q0,

u = 0 on Σ0,

u(·, T ) = u0 in U.

(23)

Then there exists a positive constant C, depending on U and O, such that

I(u) ≤ C

(
s3λ4

∫∫

O1×(0,T )

e−2sαξ3|u|2 dx dt +

∫∫

Q0

e−2sα|g|2 dx dt

)
,

for any s ≥ C and any λ ≥ C.

The proof of this Carleman inequality can be found in [6]. The fact that s
and λ can be taken independently (which is essential for the arguments in this
paper), can be found in [2].

Remark 3 Observe that the previous lemma also holds when considering expo-
nentials weights of the form exp{−r0sα} (r0 > 0) instead of exp{−2sα}. Of
course, this weight function would appear in both sides of the Carleman inequal-
ity.

In order to state the next result, we need to introduce a new weight function,
namely

θ(x) = eλη0(x). (24)

We have:

Lemma 3 Let g ∈ L2(U) be given and let φ ∈ H1(U) fulfill the elliptic equation

−∆φ = ∇ · g in U.

Then there exists C > 0, depending on U and O, such that
∫

U

e2τθ|∇φ|2 dx + τ2λ2

∫

U

e2τθθ2|φ|2 dx

≤ C

(
τ2λ2

∫

O2

e2τθθ2|φ|2 dx + τ

∫

U

e2τθθ|g|2 dx + τ1/2e2τ‖φ‖2
H1/2(∂U)

)

for any τ, λ ≥ C. Here, O1 ⊂⊂ O2 ⊂⊂ O.

The proof of this lemma can be found in [10]. In fact, the inequality stated
in that work also has a local integral of |∇φ|2 (in O1) in the right hand side,
but a simple localization argument readily leads to the previous inequality.
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3 Approximate Controllability

In this section we prove Theorem 1. As explained in the introduction, we have
to prove that for the solutions (ψ, γ, βS) of the adjoint system





−ψt − ∆ψ − ∂2
zzψ − α(x2)ψ

⊥ + ∇βS = 0 in Q,

∇ · ψ + ∂zγ = 0 in Q,

ψ = 0 on Σl,

∂zψ = 0, γ = 0 on ΣS ,

B∗(ψ) = 0, (ψ, γ) · nb = 0 on Σb,

ψ(·, T ) = ψ0 in Ω

(25)

with ψ0 ∈ L2(Ω), the following property is satisfied:

ψ = 0 in ω × (0, T ) ⇒ (ψ, γ) = 0 in Ω × (0, T ). (26)

First, we decompose ψ = ψ + ψ̃, where ψ is the mean value of ψ in the
z-variable, that is to say:

ψ(x, t) =
1

D(x)

∫ 0

−D(x)

ψ(x, z, t) dz.

Then, one can check that the variable ψ satisfies the problem





−ψt − ∆ψ − α(x2)ψ
⊥

+ ∇βS = ℓ0 in S × (0, T ),

∇ · ψ = (∇D/D) · ψ in S × (0, T ),

ψ = 0 on ∂S × (0, T ),

ψ(·, T ) = ψ
0

in S,

(27)

where

ψ
0

:=
1

D(x)

∫ 0

−D(x)

ψ0(x, z) dz

and

ℓ0 = −
1

D(x)
∂zψ̃(x,−D(x)) − (∆D/D)ψ(x,−D(x)) − 2∇D · ∇ψ(x,−D(x)).

Notice that the last hypothesis in (3) has been used in order to obtain ψ = 0
on ∂S × (0, T ).

Let us denote ζ = ∂zψ. Since ∂zψ = ∂zψ̃ and
∫ 0

−D(x)
ψ̃ = 0, then, ψ̃ is given

by

ψ̃(x, z, t) = −

∫ 0

z

ζ(x, s, t) ds +
1

D(x)

∫ 0

−D(x)

∫ 0

z

ζ(x, s, t)ds dz. (28)
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Now, differentiating (25) with respect to z, we have that ζ satisfies the heat
equation

−ζt − ∆ζ − ∂2
zzζ − α(x2)ζ

⊥ = 0 in Q.

Furthermore, our hypothesis implies that ζ = 0 in ω × (0, T ). From the unique
continuation property for the heat equation (which was first proved in [14]), we

deduce that ζ = 0 in Q and so (28) implies that ψ̃ = 0 in Q.
Then, the system fulfilled by ψ is





−ψt − ∆ψ − α(x2)ψ
⊥

+ ∇βS = −(∆D/D)ψ − 2∇D · ∇ψ in S × (0, T ),

∇ · ψ = −(∇D/D) · ψ in S × (0, T ),

ψ = 0 on ∂S × (0, T ),

ψ(·, T ) = ψ
0

in S.
(29)

Finally, in order to prove that ψ = 0 in S × (0, T ) we will use the Carleman

inequality proved in Proposition 1. For this, we define ψ̂ = D(x)ψ, which
satisfies





−ψ̂t − ∆ψ̂ − α(x2)ψ̂
⊥ + D(x)∇βS = ℓ1 in S × (0, T ),

∇ · ψ̂ = 0 in S × (0, T ),

ψ̂ = 0 on ∂S × (0, T ),

ψ(·, T ) = ψ̂0 in S,

(30)

with ψ̂0 := D(x)ψ
0

and

ℓ1 =

(
−∆D + 2

|∇D|2

D

)
ψ̂ − 2∇D · ∇ψ̂.

Now, we are ready to apply Proposition 1 to ψ̂ with N = 2, U = S, O = PS(ω)
(the projection of ω on S), f0 = 0, m(x) = D(x) and

a(x) = ∆D + 2
|∇D|2

D
, B(x) = 2∇D.

As a consequence, we have that there exists a positive constant C depending on
S, ω and T , such that such that the solution of ψ̂ satisfies in particular that

I(ψ̂) ≤ Cs7λ4

∫∫

PS(ω)×(0,T )

e−4sα̂+2sα∗

(ξ̂)15/2|ψ̂|2 dx dt, (31)

for any s, λ ≥ C. Since ∂zψ = ζ ≡ 0 and, by hypothesis, ψ = 0 in ω × (0, T ),
we get that

ψ = 0 in ω̃ × (0, T ) := PS(ω) × (−D(x), 0) × (0, T )

and so ψ̂ = 0 in PS(ω) × (0, T ). Then, from (31) we readily deduce that ψ̂ = 0
(hence ψ = 0) in S × (0, T ). This ends the proof of Theorem 1.
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4 Exact Controllability

In this section we prove Theorem 2.
With the same notations as in the previous section, we introduce the adjoint

system 



−ψt − ∆ψ − ∂2
zzψ − α(x2)ψ

⊥ + ∇βS = 0 in Q,

∇ · ψ + ∂zγ = 0 in Q,

ψ = 0 on Σl,

∂zψ = 0, γ = 0 on ΣS ,

∂zψ = 0, (ψ, γ) · nb = 0 on Σb,

ψ(·, T ) = ψ0 in Ω.

(32)

As we observed in the previous section, we have ψ = ψ + ψ̃, where ψ = ψ̂/D

and ψ̂ satisfies




−ψ̂t − ∆ψ̂ − α(x2)ψ̂
⊥ + D(x)∇βS = ℓ2 in S × (0, T ),

∇ · ψ̂ = 0 in S × (0, T ),

ψ̂ = 0 on ∂S × (0, T ),

ψ(·, T ) = ψ̂0 in S,

(33)

with

ℓ2 =

(
−∆D + 2

|∇D|2

D

)
ψ̂ − 2∇D · ∇ψ̂

− D(∆D)ψ̃(x,−D(x)) − 2D(∇D · ∇ψ̃(x,−D(x))).

Recall that ψ̃ just depends on ζ = ∂zψ and was defined in (28).

First, we apply the Carleman estimate presented in Proposition 1 to ψ̂ as
solution of (33) for U = S, O = PS(ω), the coefficients m(x) = D,

a(x) = ∆D + 2
|∇D|2

D
, A(x) = 2∇D

and
f0 = −D(∆D)ψ̃(x,−D(x)) − 2D(∇D · ∇ψ̃(x,−D(x))).

This provides

I(ψ̂) +

∫∫

Q0

e−2sα|∇βS |
2 dx dt + s2λ2

∫∫

Q0

e−2sαξ2|βS |
2 dx dt

≤ Cs7λ4

(∫∫

Q0

e−4sα̂+2sα∗

(ξ̂)15/2(|ψ̃|2 + |∇ψ̃|2)(x,−D(x)) dx dt

+

∫∫

PS(ω)×(0,T )

e−4sα̂+2sα∗

(ξ̂)15/2|ψ̂|2 dx dt

)
,

(34)
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for any s, λ ≥ C. Looking at the definition of ψ̃ given in (28), we have that

|ψ̃(x,−D(x))|2 + |∇ψ̃(x,−D(x))|2 ≤ C

∫ 0

−D(x)

(|ζ|2 + |∇ζ|2)(x, z, t) dz.

Taking into account that the weight functions α, ξ, . . . are independent of z, we
see that ∫∫

Q0

e−4sα̂+2sα∗

(ξ̂)15/2(|ψ̃|2 + |∇ψ̃|2) dx dt

≤ C

∫∫

Q

e−4sα̂+2sα∗

(ξ̂)15/2(|ζ|2 + |∇ζ|2) dx dz dt.

(35)

With this, we deduce in particular the following from (34):

s3λ4

∫∫

S×(0,T )

e−2sαξ3|ψ̂|2 dx dt + sλ2

∫∫

S×(0,T )

e−2sαξ|∇ψ̂|2 dx dt

≤ Cs7λ4

(∫∫

Q

e−4sα̂+2sα∗

(ξ̂)15/2(|ζ|2 + |∇ζ|2) dx dt

+

∫∫

PS(ω)×(0,T )

e−4sα̂+2sα∗

(ξ̂)15/2|ψ̂|2 dx dt

)
,

(36)

for any s, λ ≥ C.
Using the definition of ψ̂ and the relation

ψ(x, z̃) =

∫ z̃

z

∂zψ(x, s) dx + ψ(x, z), (x, z̃) ∈ S × ω̃

where (x, z) is the projection point of (x, z̃) on ω, we have

∫

PS(ω)

|ψ̂|2 dx ≤ C

∫

ω̃

|ψ|2 dx dz ≤ C

(∫

ω̃

|ζ|2 dx dz +

∫

ω

|ψ|2 dx

)
.

Then, multiplying the last inequality by e−4sα̂+2sα∗

(ξ̂)15/2 and integrating
in (0, T ), we deduce from (36)

s3λ4

∫∫

S×(0,T )

e−2sαξ3|ψ̂|2 dx dt + sλ2

∫∫

S×(0,T )

e−2sαξ|∇ψ̂|2 dx dt

≤ Cs7λ4

∫∫

Q0

e−4sα̂+2sα∗

(ξ̂)15/2(|ζ|2 + |∇ζ|2 + |ψ|2) dx dt.

(37)

In order to estimate the terms on ζ, we pretend to use Lemma 2 but this cannot
be readily done because of the lack of regularity of our domain Ω ∈ W 1,∞.
Then, let us denote

D = max{D(x) : x ∈ S}.

13



We extend our domain Ω over the surface and below the bottom and we call Ω̃
this new domain. In particular, we take Ω̃ containing the cylinder

Ω̃0 := {(x, z) : x ∈ S, z ∈ (−2D, 1)}

and satisfying Ω̃ ∈ W 3,∞ (this suffices for our purposes). Moreover, we extend
the solution ζ of the heat system satisfied by ζ by zero over the surface and
below the bottom of Ω. We denote ζ̃ this extension, which obviously satisfies
system





−ζ̃t − ∆ζ̃ − ∂2
zz ζ̃ − α(x2)ζ̃

⊥ = 0 in Q̃ := Ω̃ × (0, T ),

ζ̃ = 0 on Σ̃ := ∂Ω̃ × (0, T ),

ζ̃(·, T ) = ∂̃zψ0 in Ω̃.

(38)

We call the bi-dimensional weight function η introduced in (20) associated to
the open sets S and PS(ω) (which defines α, ξ, · · ·). Now, we consider η2 (which

defines α2, ξ2, · · ·) a function satisfying (20) for the open sets Ω̃ and ω0 ⊂⊂ ω
such that

s6λ2e−4sα̂+2sα∗

(ξ̂)15/2 ≤ ξ2e
−2sα2 .

In order to do this, it suffices to take a function η2 such that ‖η2‖∞ << ‖η‖∞
(that is, ‖η2‖∞ is much smaller than ‖η‖∞).

We apply Lemma 2 to ζ̃ and for this weight function and we obtain

sλ2

∫∫

Q̃

e−2sα2ξ2(s
2λ2ξ2

2 |ζ̃|
2 + |∇ζ̃|2 + |∂z ζ̃|

2) dx dz dt

≤ Cs3λ4

∫∫

ω0×(0,T )

e−2sα2ξ3
2 |ζ|

2 dx dz dt,

(39)

for any s, λ ≥ C. Let us now define a positive cut-off function ρ0 ∈ C2
c (ω) such

that ρ0 ≡ 1 in ω0. Then,

∫∫

ω0×(0,T )

e−2sα2ξ3
2 |ζ|

2 dx dz dt ≤

∫∫

ω×(0,T )

ρ0e
−2sα2ξ3

2 |ζ|
2 dx dz dt

=

∫∫

ω×(0,T )

(
1

2
∂2

zz(e
−2sα2ξ3

2ρ0)|ψ|
2 − e−2sα2ξ3

2ρ0 ψ ∂2
zzψ) dx dz dt

≤ εs−2λ−2

∫∫

Q

e−2sα2ξ2|∂zζ|
2 dx dz dt + Cs2λ2

∫∫

ω×(0,T )

e−2sα2ξ5
2 |ψ|

2 dx dz dt,

for s, λ ≥ C. Putting this together with (39) and (37) and taking into account
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that ζ = ζ̃ in Ω, we find that

s3λ4

∫∫

S×(0,T )

e−2sαξ3|ψ̂|2 dx dt + sλ2

∫∫

S×(0,T )

e−2sαξ|∇ψ̂|2 dx dt

+sλ2

∫∫

Q

e−2sα2ξ2(s
2λ2(ξ2)

2|ζ|2 + |∇ζ|2 + |∂zζ|
2) dx dz dt

≤ Cs5λ6

∫∫

ω×(0,T )

e−2sα2ξ5
2 |ψ|

2 dx dz dt.

(40)

The last step to obtain the desired inequality (8) relies on the expression

ψ = ψ̂/D + ψ̃. First, using the dissipation in time of the system fulfilled by

(ψ̂, ζ) (see Lemma 1), we deduce that
∫

Ω

|ψ(x, z, 0)|2 dx dz ≤ C

(∫

S

|ψ̂(x, 0)|2 dx +

∫

Ω

|ψ̃(x, z, 0)|2 dx dz

)

≤ C

(∫

S

|ψ̂(x, 0)|2 dx +

∫

Ω

|ζ(x, z, 0)|2 dx dz

)

≤ C

(∫∫

S×(T/4,3T/4)

|ψ̂(x, t)|2 dx dt +

∫∫

Ω×(T/4,3T/4)

|ζ(x, z, t)|2 dx dz dt

)

≤ C

(
s3λ4

∫∫

S×(0,T )

e−2sαξ3|ψ̂|2 dx dt + s3λ4

∫∫

Q

e−2sα2(ξ2)
3|ζ|2 dx dz dt

)

(41)
which is bounded by the left hand side of (40).

In the last inequality we have used that the weight functions are strictly
positive as long as we are ‘far away’ from t = 0 and t = T . By a similar
argument, we can also prove that the integral

∫

Ω

|∇ψ(x, z, 0)|2 dx dz

is also bounded by the left hand side of (40). Thanks to this, to the boundary
condition γ = 0 on ΣS and to the relation

∂zγ = −∇ · ψ,

one can also prove that ∫

Ω

|γ(x, z, 0)|2 dx dz

is bounded by the left hand side of (40).
With this, inequality (8) is readily deduced from (41).

Appendix: Proof of Proposition 1

In this appendix we prove the Carleman estimate stated in proposition 1.

15



Let us set π := m(x)π0. Then, we can rewrite system (19) as follows:




−ϕt − ∆ϕ + a(x, t)ϕ⊥ + A(x, t) · ∇ϕ + ∇π = f1 in Q0,

∇ · ϕ = 0 in Q0,

ϕ = 0 on Σ0,

ϕ(·, T ) = ϕ0 in U,

(42)

where f1 is given by
f1 = f0 − (∇m/m)(x)π.

In the rest of the proof we drop the (x, t) sign which indicates the dependence
on those variables of the coefficients a, A and m.

• Some previous Carleman inequalities
Let us first apply the Carleman inequality for the heat equation to ϕ (see

lemma 2), where f1 −∇π is seen as a right hand side. This gives

I(ϕ) ≤ C

(∫∫

Q0

e−2sα(|f0|
2 + |π|2 + |∇π|2) dx dt

+ s3λ4

∫∫

O1×(0,T )

e−2sαξ3|ϕ|2 dx dt

)
,

(43)

for any s, λ ≥ C. The next step will be to localize the pressure terms. For this,
we take the divergence operator in the equation of (42) and we find:

∆π = ∇ · (−aϕ⊥ − A · ∇ϕ + f1).

To this elliptic equation, we apply lemma 3 and we obtain
∫

U

e2τθ|∇π|2 dx + τ2λ2

∫

U

e2τθθ2|π|2 dx

≤ C

(
τ2λ2

∫

O2

e2τθθ2|π|2 dx + τ1/2e2τ‖π‖2
H1/2(∂U)

+τ

∫

U

e2τθθ(|f0|
2 + |ϕ|2 + |∇ϕ|2 + |π|2) dx

)
(44)

for any τ, λ ≥ C. The global term in the righthand side concerning π is au-
tomatically eliminated (for an eventual greater C). In order to combine this
estimate with (43), we recall that θ(x) = exp{λη0(x)} and that

α(x, t) =
e5/4λk‖η0‖∞ − eλ(k‖η0‖∞+η0(x))

t4(T − t)4
=

e5/4λk‖η0‖∞

t4(T − t)4
−

θeλk‖η0‖∞

t4(T − t)4
.

Thus, let us set τ = st−4(T − t)−4eλk‖η0‖∞ . In particular, observe that

exp (2τθ) = exp

(
2s

θeλk‖η0‖∞

t4(T − t)4

)
.
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Then, multiplying (44) by

exp(−2st−4(T − t)−4e(5/4)λk‖η0‖∞)

and integrating with respect to t in (0, T ), we get

∫∫

Q0

e−2sα|∇π|2 dx dt + s2λ2

∫∫

Q0

e−2sαξ2|π|2 dx dt

≤ C

(
s2λ2

∫∫

O2×(0,T )

e−2sαξ2|π|2 dx dt + s1/2

∫ T

0

e−2sα∗

(ξ∗)1/2‖π‖2
H1/2(∂U) dt

+s

∫∫

Q0

e−2sαξ(|f0|
2 + |ϕ|2 + |∇ϕ|2) dx dt

)

Combining this inequality with (43), we have

I(ϕ) +

∫∫

Q0

e−2sα|∇π|2 dx dt + s2λ2

∫∫

Q0

e−2sαξ2|π|2 dx dt

≤ C

(
s2λ2

∫∫

O2×(0,T )

e−2sαξ2(|π|2 + sλ2ξ|ϕ|2) dx dt

+s1/2

∫ T

0

e−2sα∗

(ξ∗)1/2‖π‖2
H1/2(∂U) dt + s

∫∫

Q0

e−2sαξ|f0|
2 dx dt

)
,

(45)

for s, λ ≥ C.

• Estimate of the trace of the pressure
We define the weight function ℓ3(t) = s1/4e−sα∗

(ξ∗)1/4 and we introduce the
new variables

(ϕ∗, π∗) = ℓ3(ϕ, π).

They satisfy





−ϕ∗
t − ∆ϕ∗ + aϕ∗ + B · ∇ϕ∗ + ∇π∗ = ℓ3 f1 − ℓ3,tϕ in Q0,

∇ · ϕ∗ = 0 in Q0,

ϕ∗ = 0 on Σ0,

ϕ∗(·, T ) = 0 in U.

(46)

We apply to this system strong global estimates for the Stokes system (see, for
instance, [15]). In particular, this yields π∗ ∈ L2(0, T ; H1(U)) and

‖π∗‖2
L2(0,T ;H1(U)) ≤ C

(
s1/2

∫∫

Q0

e−2sα∗

(ξ∗)1/2(|f0|
2 + |π|2) dx dt

+s5/2

∫∫

Q0

e−2sα∗

(ξ∗)3|ϕ|2 dx dt

)
,

(47)
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for any s ≥ C. Here, we have used that ℓ3,t ≤ Cs5/4e−sα∗

(ξ∗)3/2 for s ≥ C.
Consequently, from (45) we get

I(ϕ) +

∫∫

Q0

e−2sα|∇π|2 dx dt + s2λ2

∫∫

Q0

e−2sαξ2|π|2 dx dt

≤ C

(
s2λ2

∫∫

O2×(0,T )

e−2sαξ2(|π|2 + sλ2ξ|ϕ|2) dx dt

+s

∫∫

Q0

e−2sαξ|f0|
2 dx dt

)
,

(48)

for s, λ ≥ C. Here, we have absorbed the terms in the right hand side of (47)
concerning ϕ and π with I(ϕ) and the third term in the left hand side of (45),
respectively.

The last step of the proof consists of estimating the local integral of the
pressure:

s2λ2

∫∫

O2×(0,T )

e−2sαξ2|π|2 dx dt ≤ s2λ2

∫∫

O2×(0,T )

e−2sα̂ξ̂2|π|2 dx dt.

First, we choose the pressure π0 = π/m to have null mean-value in the open set
O2 and so it suffices to estimate

s2λ2

∫∫

O2×(0,T )

e−2sα̂ξ̂2|∇π0|
2 dx dt.

Looking at the equations in (19) and (42), we deduce that

s2λ2

∫∫

O2×(0,T )

e−2sα̂ξ̂2|π|2 dx dt

≤ Cs2λ2

(∫∫

O3×(0,T )

e−2sα̂ξ̂2(|ϕt|
2 + |∆ϕ|2 + |ϕ|2 + |f0|

2) dx dt

)
,

(49)

where O2 ⊂⊂ O3 ⊂⊂ O. Here, we have estimated the local integral of |B∇ϕ|2

in O2 × (0, T ) by those of |∆ϕ|2 and |ϕ|2 in O3 × (0, T ).
Let us work with the terms concerning ∆ϕ and ϕt.

• Estimate of the terms in |∆ϕ|2 and |ϕt|
2

Let us set (ϕ̂, π̂0) = θ0(t)(ϕ, π0) with θ0(t) = sλe−sα̂ξ̂. Then, (ϕ̂, π̂0) fulfills
system (19) with f0 replaced by θ0f0 − θ0,tϕ. From (49), we see that the goal
is now to estimate the L2 norm of |∆ϕ̂|2 and |ϕ̂t|

2 in O3 × (0, T ).
Let us introduce now the weight functions

θ1(t) = s5/2λes(α∗−α̂)(ξ̂)11/4, and θ2(t) = θ0(t)θ1(t). (50)

Then, we decompose the previous solution as follows:

θ1(ϕ̂, π̂) = (ϕ̂1 + ϕ̂2, π̂1 + π̂2), (51)
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where (ϕ̂1, π̂1) solves





−ϕ̂1
t − ∆ϕ̂1 + a(ϕ̂1)⊥ + A · ∇ϕ̂1 + m∇π̂1 = θ2f0 in Q0,

∇ · ϕ̂1 = 0 in Q0,

ϕ̂1 = 0 on Σ0,

ϕ̂1(·, T ) = 0 in U.

(52)

and (ϕ̂2, π̂2) solves





−ϕ̂2
t − ∆ϕ̂2 + a(ϕ̂2)⊥ + A · ∇ϕ̂2 + m∇π̂2 = −θ2,tϕ in Q0,

∇ · ϕ̂2 = 0 in Q0,

ϕ̂2 = 0 on Σ0,

ϕ̂2(·, T ) = 0 in U.

(53)

Consequently, it suffices to estimate both |θ
1/2
3 ∆ϕ̂i|2 and |θ

1/2
3 ϕ̂i

t|
2 in O3×(0, T ),

for i = 1, 2 with

θ3(t) = (θ1)
−2(t) = s−5λ−2e−2s(α∗−α̂)(ξ̂)−11/2. (54)

For ϕ̂1, we use Lemma 1 and we deduce:

∫∫

O3×(0,T )

θ3(|ϕ̂
1
t |

2 + |∆ϕ̂1|2) dx dt ≤

∫∫

O3×(0,T )

(|ϕ̂1
t |

2 + |∆ϕ̂1|2) dx dt

≤ C

∫∫

Q0

|θ2|
2|f0|

2 dx dt.

(55)

As long as ϕ̂2 is concerned, let ρ ∈ C2
c (O) with ρ = 1 in O3. Then, integrat-

ing by parts, we have

∫∫

O3×(0,T )

θ3|∆ϕ̂2|2 dx dt ≤

∫∫

O×(0,T )

ρθ3|∆ϕ̂2|2 dx dt

=

∫∫

O×(0,T )

θ3(ρ∆2ϕ̂2 + 2∇ρ · ∇∆ϕ̂2 + ∆ρ∆ϕ̂2) · ϕ̂2 dx dt

≤ ε‖θ3ϕ̂
2‖2

L2(0,T ;H4(O)) + C‖ϕ̂2‖2
L2(O×(0,T )),

(56)

where ε > 0 is a small constant.
On the other hand, we integrate by parts in the term concerning |ϕ̂2

t |
2 and

we obtain
∫∫

O3×(0,T )

θ3|ϕ̂
2
t |

2 dx dt =

∫∫

O3×(0,T )

(−θ3ϕ̂
2
ttϕ̂

2 +
1

2
(θ3)tt|ϕ̂

2|2) dx dt

≤ ε‖θ3ϕ̂
2‖2

H2(0,T ;L2(O)) + C‖ϕ̂2‖2
L2(O×(0,T )).

(57)
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From (55), (56) and (57) we deduce that
∫∫

O3×(0,T )

(|ϕ̂t|
2 + |∆ϕ̂|2) dx dt

≤ ε(‖θ3ϕ̂
2‖2

H2(0,T ;L2(O)) + ‖θ3ϕ̂
2‖2

L2(0,T ;H4(O)))

+C‖ϕ̂2‖2
L2(O×(0,T )) + C

∫∫

Q0

|θ2|
2|f0|

2 dx dt.

(58)

Next, we will obtain estimates for the terms concerning the higher norms of
ϕ̂2. For this, we introduce the new variables (ϕ3, π3) = θ3(ϕ̂

2, π̂2), which satisfy




−ϕ3
t − ∆ϕ3 + a(ϕ3)⊥ + A · ∇ϕ3 + m∇π3 = −θ3θ2,tϕ − θ3,tϕ̂

2 in Q0,

∇ · ϕ3 = 0 in Q0,

ϕ3 = 0 on Σ0,

ϕ3(·, T ) = 0 in U.
(59)

Due to the exponential decay of (ϕ3, π3) as t → T−, following the arguments
in the proof of Lemma 1 and assuming for a moment that θ3θ2,tϕ + θ3,tϕ̂

2 ∈ X
(recall that X was defined in (11)), it is not difficult to see that (ϕ3, π3) belongs
to the space X1 × X2, where

X1 := L2(0, T ; H4(U)) ∩ H2(0, T ;L2(U))

X2 := L2(0, T ; H3(U)) ∩ H1(0, T ; H1(U))

and
‖(ϕ3, π3)‖X1×X2

≤ ‖(θ3θ2,t + θ3,tϕ̂
2)ϕ‖X . (60)

Observe that from the definitions of θ2 and θ3 given in (50) and (54) respectively,
we deduce that

θ3θ2,t = s−3/2e−2s(α∗−α̂)(ξ̂)−11/2(esα∗−2sα̂(ξ̂)15/4)t.

Let us denote
θ4(t) = s−1/4e−sα∗

(ξ∗)−1/2.

Plugging this into (58), we get
∫∫

O3×(0,T )

(|ϕ̂t|
2 + |∆ϕ̂|2) dx dt ≤ ε(‖θ4ϕ‖

2
X + ‖θ3,tϕ̂

2‖X)

+C‖ϕ̂2‖2
L2(O×(0,T )) + C

∫∫

Q0

|θ2|
2|f0|

2 dx dt.

(61)

>From the definition of I(ϕ), and (51) together with the estimate for ϕ̂1 (55),
we have ∫∫

O3×(0,T )

(|ϕ̂t|
2 + |∆ϕ̂|2) dx dt

≤ εI(ϕ) + C
(
‖θ2ϕ‖

2
L2(O×(0,T )) + ‖θ2f0‖

2
L2(Q0)

)
.

(62)
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Combining this with (48) and (49) and using the definition of θ2 given in
(50), we obtain

I(ϕ) +

∫∫

Q0

e−2sα|∇π|2 dx dt + s2λ2

∫∫

Q0

e−2sαξ2|π|2 dx dt

≤ Cs7λ4

∫∫

Q0

e−4sα̂+2sα∗

(ξ̂)15/2(|f0|
2 + |ϕ|21O) dx dt,

(63)

which readily yields (22).
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