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Hölder norms and the support theorem for diffusions

One shows that the Stroock-Varadhan [S-V] support theorem is valid in α-Hölder norm. The central tool is an estimate of the probability that the Brownian motion has a large Hölder norm but a small uniform norm.

Introduction

What is the probability that the Brownian motion oscillates rapidly conditionally on the fact that it is small in uniform norm? More precisely, what is the probability that the α-Hölder norm of the Brownian motion is large conditionally on the fact that its uniform norm (or more generally its β-Hölder norm with β < α) is small? This is the kind of question that naturally appears if one wants to extend the Stroock-Varadhan characterization of the support of the law of diffusion processes [S-V] to sharper topologies than the one induced by the uniform norm.

We deal with this question in §1 and show that those tails are much smaller than the gaussian tails one would get without the conditioning. This gives a family of examples where the conjecture (stated in [DG-E-...]) that two convex symmetric bodies are positively correlated (for gaussian measures) is true.

Our proofs are based on the Ciesielski isomorphism [C] (see [B-R] for other applications of this theorem) and on the correlation inequality. We give in appendix a proof which avoids these tools.

This enables us to control in §3 the probability that a Brownian stochastic integral oscillates rapidly conditionally on the fact that the Brownian motion is small in uniform norm. This is the tool to extend the Stroock-Varadhan support theorem to α-Hölder norms.

Conditional tails for oscillations of the Brownian motion

If x is a continuous real function on [0, 1], vanishing at zero, we define the sequence ( ξ m (x) ) m≥1 by the formula:

ξ m (x) = ξ 2 n +k (x) = 2 n 2 2x 2k -1 2 n+1 -x k 2 n -x k -1 2 n ,
for n ≥ 0 and k = 1, . . . , 2 n . Denote

(1.1)

x 0 = sup 0≤t≤1 |x t | , (1.2) x α = sup 0≤s =t≤1 |x t -x s | |t -s| α , α ∈ ]0, 1] ,
(1.3)

x ′ α = sup m≥1 |m α-1 2 ξ m (x)| , α ∈ [0, 1] .
It is now classical that, for α ∈ ]0, 1[, the norms • α and • α ′ are equivalent (see [C], p. 218):

(1.4)

2 α-1 x ′ α ≤ x α ≤ 2 -1 2 k α x ′ α , α ∈ ]0, 1[ , where k α = 2 (2 α -1)(2 1-α -1) ,
and

(1.5) 2 -2 x ′ 0 ≤ x 0 .
Let w be a liniar Brownian motion started from zero. We want to estimate the probability that w. α is large conditionally on the fact that w. β is small. We shall first tackle the same problem with the norms

• ′ . (1.6) Theorem. Let (r, R) be a couple of real positive numbers, v = R b r a 1 b-a and denote (1.7) Λ α,β (r, R) = ϕ(v) v + 1 a R -1 a ∞ v ϕ(t)t 1 a -2 dt ,
where

ϕ(t) = e -t 2 2 √ 2π , a = 1 2 -α , b = 1 2 -β. Then, (1.8) P ( w. ′ α > R | w. ′ β < r ) ≤ 1 v 0 ϕ(t) dt Λ α,β (r, R) ;
(1.9)

P ( w. ′ α > R | w. β ≤ r ) ≤ Λ α,β (p β r, R) ,
where p β = 2 1-β , if β > 0 and p 0 = 4;

(1.10)

P ( w. α > R | w. β ≤ r ) ≤ Λ α,β (p β r, 2 1 2 k -1 α R) .
To prove the theorem we need the following:

(1.11) Lemma. Let us denote n 0 = R r 1 b-a . Then (1.12) n≥n 0 +1 ∞ Rn a ϕ(t) dt ≤ Λ α,β (r, R) .
Proof. By the classical bound:

∞ t ϕ(s) ds ≤ ϕ(t) t ≡ ψ(t) , t > 0 ,
and the fact that ψ is decreasing, we get:

n≥n 0 +1 ∞ Rn a ϕ(t) dt ≤ n≥n 0 +1 ψ(Rn a ) = ψ(R(n 0 + 1) a ) + n≥n 0 +2 ψ(Rn a ) ≤ ψ(v) + ∞ n 0 +1 ψ(Rt a ) dt = ϕ(v) v + 1 a R -1 a ∞ R(n 0 +1) a ψ(t) t 1 a -1 dt .
From this the conclusion follows.

q.e.d.

We make another essential observation. If C , C ′ are two symmetric convex sets in IR d , a general conjecture stated in [DG-E-...] predicts that they are positively correlated for the canonical Gaussian measure γ d , that is,

(1.13) γ d (C ∩ C ′ ) ≥ γ d (C) γ d (C ′ ) .
This is true for d = 2 (see [P]), and for arbitrary d provided C ′ is a symmetric strip (see [Sc] or [Si]). The general case is stil open.

Proof of the Theorem (1.6).

Proof of (1.8). We note that g n = ξ n (w) is a sequence of independent identically distributed standard Gaussian random variables. Then,

P ( w. ′ α > R | w. ′ β < r ) = P ( sup n≥1 |n -a g n | > R | sup m≥1 |m -b g m | < r ) = P (∪ n≥1 ( |g n | > Rn a ) ∩ ∩ m≥1 ( |g m | < rm b )) P (∩ m≥1 |g m | < rm b ) ≤ n≥1 P ((Rn a < |g n | < rn b ) ∩ ∩ m≥1,m =n ( |g m | < rm b )) m≥1 P ( |g m | < rm b ) = n≥1 P (Rn a < |g n | < rn b ) P ( |g n | < rn b ) • 1 ( Rn a < rn b ) = n≥1 2 rn b Rn a e -s 2 2 √ 2π ds 2 rn b 0 e -s 2 2 √ 2π ds • 1 ( Rn a <rn b ) = n≥n 0 +1 rn b Rn a ϕ(t) dt rn b 0 ϕ(t) dt ≤ 1 v 0 ϕ(t) dt n≥n 0 +1 ∞ Rn a ϕ(t) dt .
Clearly rn b ≥ r(n 0 + 1) b ≥ v so the last inequality is true. Then (1.8) is a consequence of the Lemma (1.11).

Proof of (1.9). We can write again

P ( w. ′ α > R | w. β ≤ r ) = P ( sup n≥1 |n -a g n | > R | w. β ≤ r ) = P (∪ n≥1 ( |g n | > Rn a ) | w. β ≤ r ) ≤ n≥1 P ( |g n | > Rn a | w. β ≤ r ) .
But for w. β ≤ r, by (1.4) or (1.5) we get

|g n | ≤ 2 1-β rn b , if β > 0 or |g n | ≤ 4rn 1 2 , if β = 0 .
So, the preceding sum is taken over all integer n ≥ 1 such that 2 1-β rn b ≥ Rn a , if β > 0, or 4rn

1 2 ≥ Rn a , if β = 0, that is, n ≥ 2 β-1 α-β R r 1 b-a or n ≥ 2 -2 α R r 1 α .
On the other hand, g n = ξ n (w) is a linear form on the Wiener space. By the correlation inequality with one of sets a symmetric strip and by a simple finite dimensional approximation (see also [S-Z], p. ???), we obtain

P ( |g n | > Rn a , w. β ≤ r ) ≥ P ( |g n | > Rn a ) P ( w. β ≤ r ) or P ( |g n | > Rn a | w. β ≤ r ) ≤ P ( |g n | > Rn a ) . Therefore P ( w. ′ α > R | w. β ≤ r ) ≤ n≥n 1 +1 P ( |g n | > Rn a ) = n≥n 1 +1 ∞ Rn a ϕ(t) dt ,
where

n 1 = p 1 b-a β R r 1 b-a
. By the Lemma (1.11) we get (1.9).

Proof of (1.10). It is a consequence of (1.4) or (1.5) and (1.9).

q.e.d.

We shall estimate Λ α,β (r, R):

(1.14) Lemma. With the notations of the Theorem (1.6), there exists a polynomial function Ψ a , increasing on ]0, ∞[, such that

(1.15) Λ α,β (r, R) ≤ ϕ(v) v 1 + 1 a R -1 a v
Proof. We shall simply give an upper bound for ∞ v ϕ(t) t 1 a -2 dt. Noting that ϕ ′ (t) = -t ϕ(t) and integrating by parts, we get

∞ v ϕ(t) t 1 a -2 dt = - ∞ v ϕ ′ (t) t 1 a -3 dt = ϕ(v) v 1 a -3 + 1 a -3 ∞ v ϕ(t) t 1 a -4 dt . If a ≥ 1 3 , ∞ v ϕ(t) t 1 a -2 dt ≤ ϕ(v) v 1 a -3 , which gives (1.14) with Ψ a (x) ≡ 1. If a < 1 3 , similarly, ∞ v ϕ(t) t 1 a -4 dt = ϕ(v) v 1 a -5 + 1 a -5 ∞ v ϕ(t) t 1 a -6 dt . So, if 1 5 ≤ a < 1 3 , ∞ v ϕ(t) t 1 a -2 dt ≤ ϕ(v) v 1 a -3 + 1 a -3 ϕ(v) v 1 a -5 ,
which is exactly (1.14) with p = 1 in the following expression:

Ψ a (x) = 1 + 1 a -3 x 2 + . . . + 1 a -3 1 a -5 . . . 1 a -2p -1 x 2p .
Repeating the same reasoning the result is easily obtained for any p and any a such that 1 2p+3 ≤ a < 1 2p+1 . Ψ a has positive coefficients, it is therefore increasing on ]0, ∞[.

q.e.d.

Combining this result with the Theorem (1.6) we obtain the following:

(1.16) Corollary. Let (R, r) be such that v ≥ ε > 0. Then, (1.17) P ( w. ′ α > R | w. ′ β < r ) ≤ c(ε) ϕ(v) ε   1 + Ψ a 1 ε R β r α 2 α-β   ; (1.18) P ( w. ′ α > R | w. β < r ) ≤ ϕ(q β v) q β ε   1 + q 1 a -2 β Ψ a 1 ε R β r α 2 α-β   ; (1.19) P ( w. α > R | w. β < r ) ≤ ϕ(c α,β v) c α,β ε (1 + (2 1 2 k -1 α ) -1 a c 1 a -2 α,β • . Ψ a 1 ε R β r α 2 α-β
) .

Here

q β = p -a b-a β , c α,β = q β (2 1 2 k -1 α ) b b-a and c(ε) = 1 ε 0 ϕ(t) dt . Note that if ε → ∞ then c(ε) → 2 and Ψ a ( 1 ε ) → 1.
We prove now a stronger result:

(1.20) Theorem. Let α , β be two real numbers such that 0 ≤ β < α < 1 2 . There exists a positive number u

α,β = 1-2α 1-2β , such that, for every u ∈ [0, u α,β [, there exists M 0 (α, β, u) and positive constants k i (α, β, u) , i = 1, 2, such that, for every M ≥ M 0 , (1.21) sup 0<δ≤1 P ( w. α > M δ u | w. β < δ) ≤ k 1 M 2β α-β exp -k 2 M 1-2β α-β .
Proof. First of all we take in the Corollary (1.16), R = M δ u and r = δ. So, for every δ ∈]0, 1],

P ( w. α > M δ u | w. β < δ) ≤ c α,β M 1-2b b-a δ u(1-2b)-(1-2a) b-a • exp -c ′ α,β M 2b b-a δ 2 ub-a b-a . It is clear that, when M ≥ 2 c ′ α,β • u(1-2b)-(1-2a) b-a • b-a a-ub b-a
2b the right hand side of the last inequality is an increasing function of δ, for δ ∈]0, 1]. So,

sup 0<δ≤1 P ( w. α > M δ u | w. β < δ) ≤ c α,β M 1-2b b-a exp -c ′ α,β M 2b b-a
, namely the conclusion. q.e.d.

Hölder balls of different exponent positively correlated

We show here that the conjecture on the correlation inequality is true for Hölder balls. We denote

B α (ρ) = { w. α ≤ ρ } and B ′ α (ρ) = { w. ′ α ≤ ρ }.
(2.1) Theorem. If R is sufficient large and if r is fixed, then B α (R) and B β (r) are positively correlated.

Proof. We proved in Corollary (1.16), for example when r = 1, that, for large R,

(2.2) P ( B α (R) c | B β (1) ) ≤ c α,β exp -c ′ α,β R 1-2β α-β
, for every 0 ≤ β < α < 1 2 . We can compare this estimate with the classical gaussian estimate, for large R,

(2.3) P ( w. α > R ) ≤ exp (-c α R 2 )
(see [BA-Le] or [B-BA-K] for other consequences of this inequality).

By large deviations principle we obtain in fact,

P (B α (R) c ) ∼ e -cα R 2 ,
provided R is sufficiently large. Therefore, by (2.2), for large R,

(2.4)

P (B α (R) | B β (1)) ≥ P (B α (R)) .
So, in this particular case, the general conjecture is valid: the two symmetric convex sets B α (R) and B β (1) are positively correlated, for large R.

q.e.d.

(2.5) Remark. We can also show that, for any R, r > 0, the pairs of balls

(B ′ α (R), B ′ β (r)) and (B ′ α (R), B β (r)) are positively correlated. Indeed, by (1.3), B ′ α (R) = ∩ m≥1 |g m | ≤ Rm 1 2 -α = ∩ m≥1 S m ,
so, it is an intersection of independent symmetric strips. Then, with the same argument as in the proof of (1.9), we get, for any convex symmetric C,

P (C ∩ B ′ α (R)) = P (C ∩ ∩ m≥1 S m ) ≥ P (C ∩ ∩ m≥2 S m ) P (S 1 ) ≥ . . . ≥ P (C) m≥1 P (S m ) = P (C) P (∩ m≥1 S m ) = P (C) P (B ′ α (R)
) . Here we used the independence of S m . The conclusion is obtained taking

C = B ′ β (r) or C = B β (r).

Conditional tails for oscillations of stochastic integrals

We shall estimate the Hölder norm of some stochastic integrals. Let X j (t, x), j = 1, . . . , m, X 0 (t, x) be smooth vector fields on IR d+1 and denote (B 1 , . . . , B m ) a m-dimensional Brownian motion. Let P x be the law of the diffusion (x t ), the solution of the Stratonovich equation

(3.1) dx t = m j=1 X j (t, x t ) • dB j t + X 0 (t, x t ) dt , x 0 = x .
Let us introduce the following class of stochastic processes:

(3.2) Definition. For α , β ∈ [0, 1 2 [ and u ∈ [0, 1], we shall denote by M α , β u the set of stochastic processes Y , such that

(3.3) lim M ↑∞ sup 0<δ≤1 P ( Y. α > M δ u | B. β < δ ) = 0 .
Here and elsewhere B. α = max 1≤i≤m B. i α . We collect our results in the following:

(3.4) Lemma. Let f : IR d -→ IR be a smooth function and, for i, j ∈ {1, . . . , r}, denote

(3.5) η ij t = 1 2 t 0 (B i s dB j s -B j s dB i s ) , ξ ij t = t 0 B i s • dB j s .
Then,

(i) B. i ∈ M α , β u , f or 0 ≤ β < α < 1 2 and u ∈ 0, 1-2α 1-2β . (ii) η. ij ∈ M α , 0 u , f or α ∈ [0, 1 2 [ and u ∈ [0, 1] . (iii) ξ. ij ∈ M α , 0 u , f or α ∈ [0, 1 2 [ and u ∈ [0, 1] . (iv) • 0 f (x s ) dξ ij s ∈ M α , 0 u , f or α ∈ [0, 1 2 [ and u ∈ [0, 1] . (v) • 0 f (x s ) • dB i s ∈ M α , 0 u , f or α ∈ [ 0 , 1 2 [ and u ∈ [0, 1 -2α[.
Proof. Clearly, (i) is proved in the Theorem (1.20).

(ii) We proceed as in [S-V]. There exists a one dimensional Brownian motion w, such that, when i = j,

η ij t = w(a(t)) , a(t) = 1 4 t 0 ((B i s ) 2 + (B j s ) 2 ) ds ,
where w is independent of the process (B i t ) 2 + (B j t ) 2 and so, independent of B. 0 . There exists a positive constant c, such that a 0 , a 1 are bounded

The conclusion follows at once from (i), (ii) and

ξ. ij α ≤ η. ij α + 1 2 B. i B. j α ≤ η. ij α + B. 0 B. α .
(iv) We apply Ito's formula several times (using the usual convention that repeated indices are summed):

t 0 f (x s ) dξ ij s = f (x t ) ξ ij t - t 0 f l (x s ) X l k (x s ) ξ ij s dB k s - t 0 (L s f ) (x s ) ξ ij s ds - t 0 f l (x s ) X l j (x s ) B i s ds = I 1 + I 2 + I 3 + I 4 .
Here L t is the generator of the diffusion (x t ) and X l j denotes the l component of X j . It is sufficient to verify (iv) for each I i , i = 1, 2, 3, 4. We readily see that Firstly,

I 1 = f (x) ξ ij t + t 0 (L s f ) (x s ) ds ξ ij t + t 0 f l (x s ) X l k (x s ) ξ ij s dB k s ξ ij t = I 10 + I 11 + I 12 . Again (b) I 10 , I 11 ∈ M α , 0 u , because I 10 α = c ξ. ij α , I 11 α ≤ c ξ. ij α . Setting α k = -f l X l k , α k,m = ∂α k ∂x m we can write I 12 = -α k (x t ) B k t ξ ij t - t 0 B k s (L s α k ) (x s ) ds ξ ij t - t 0 B k s α k,m (x s )X m n (x s ) dB n s ξ ij t + t 0 (α k,p ) 2 (x s ) (X p k ) 2 (x s ) ds ξ ij t = I 121 + I 122 + I 123 + I 124 .
There is no problem to see that

I 122 α ≤ c B. 0 ξ. ij α and I 124 α ≤ c ξ. ij α
and so, (c)

I 122 , I 124 ∈ M α , 0 u .
There exists a one-dimensional Brownian motion w, such that

I 123 = w(a(t)) ξ ij t , a(t) = t 0 (α k,m α k ′ ,m ′ a mm ′ )(x s )B k s B k ′ s ds ,
where a ij = m k=1 X i k X j k . We obtain

P ( I 123 α > M δ u | B. 0 < δ ) ≤ P ( ξ. ij α > M 1 2 δ | B. 0 < δ )+ P ( w. α , c B. 2 0 c B. 2α 0 ξ. ij α > M δ u , ξ. ij α ≤ M 1 2 δ | B. 0 < δ ) .
By (iii), we have to consider only the second term:

P ( w. α > c M 1 2 δ u-2 ) • P ( B. 0 < δ ) -1 ≤ exp - c α M δ 2(2-u) + c δ 2 .
This yields (d)

I 123 ∈ M α , 0 u .
Then,

I 2 = t 0 α k (x s ) ξ ij s dB k s = α k (x t ) ξ ij t B k t - t 0 α k,l (x s ) (X l m )(x s ) ξ ij s B k s dB m s - t 0 (L s α k ) (x s ) ξ ij s B k s ds - t 0 α k (x s ) B k s dξ ij s - t 0 α j (x s ) B i s ds - t 0 ξ ij s α k,l (x s ) X l m (x s ) δ km ds- t 0 B k s α k,l (x s ) X l j (x s ) B i s ds = J 1 + • • • + J 7 . Clearly, (e) I 121 + J 1 = 0 and J 3 α ≤ c B. 0 ξ. ij 0 , J 5 α ≤ c B. 0 , J 6 α ≤ c ξ. ij 0 , J 7 α ≤ c B. 2 0 . So, (f) J 3 , J 5 , J 6 , J 7 ∈ M α , 0 u .
By the same reasoning,

J 2 = w(a(t)) , a(t) = t 0 (ξ ij s ) 2 (α k,l α k ′ ,l ′ a ll ′ )(x s ) B k s B k ′ s ds ,
so, it suffices to estimate

P ( J 2 α > M δ u , ξ. ij 0 ≤ M 1 2 δ | B. 0 < δ ) ≤ P ( w. α , c ξ. ij 2 0 B. 2 0 c ξ. ij 2α 0 B. 2α 0 > M δ u , ξ. ij 0 < M 1 2 δ | B. 0 < δ ) ≤ P ( w. α > c M 1 2 δ u-2 ) • P ( B. 0 < δ ) -1 ≤ exp - c α M δ 2(2-u) + c δ 2 . Again (g) J 2 ∈ M α , 0 u .
Finally we have to study the martingale part of J 4 , the bounded variation being obviously controlled. We can write as above,

t 0 α k (x s ) B k s B i s dB j s = w(a(t)) , a(t) = t 0 α 2 k (x s ) (B k s B i s ) 2 ds .
Obviously,

P ( • 0 α k (x s ) B k s B i s dB j s α > M δ u | B. 0 < δ ) ≤ P ( w. α > c M δ u-2 ) • P ( B. 0 < δ ) -1 ≤ exp (- c α M 2 δ 2(2-u) + c δ 2 ) . So, (h) J 4 ∈ M α , 0 u . Using formulas (a)-(h) we can conclude that • 0 f (x s ) dξ ij s ∈ M α , 0 u .
(v) We use the same idea, namely we shall apply Ito's formula several times. Firstly, denoting ∂f ∂x l = f l ,

t 0 f (x s ) dB i s = f (x) B i t + t 0 dB i s s 0 (L u f )(x u ) du+ t 0 dB i s s 0 f l (x u )X l j (x u ) dB j u = S 1 + S 2 + S 3 . But S 1 α ≤ c B. α and S 2 = B i t t 0 (L s f )(x s ) ds - t 0 B i s (L s f )(x s ) ds = S 21 + S 22 ,
where

S 21 α ≤ c B. α and S 22 α ≤ c B. 0 . Clearly, S 1 , S 21 , S 22 ∈ M α , 0 u .
Then, with the same notation as in (iv),

S 3 = -B i t t 0 α j (x s ) dB j s + t 0 B i s α j (x s ) dB j s + t 0 α j (x s ) ds = S 31 + S 32 + S 33 .
By (iv), it is clear that

S 32 = t 0 α j (x s ) dξ ij s ∈ M α , 0 u , if i = j .
For i = j we get a term with the same form as S 33 , terms which are bounded in Hölder norm by a constant. To prove (v), it is sufficient to prove that S 31 ∈ M α , 0 u . Note that

S 31 = -B i t B j t α j (x) -B i t t 0 dB j s s 0 (L u α j )(x u ) du- B i t t 0 dB j s s 0 α j,l (x u )X l k (x u ) dB k u = S 311 + S 312 + S 313 .
But S 311 α ≤ c B. 0 B. α and

S 312 = B i t B j t t 0 (L s α j )(x s ) ds -B i t t 0 B j s (L s α j )(x s ) ds = S 3121 + S 3122 ,
where

S 3121 α ≤ c B. α B. 0 and S 3122 α ≤ c B. α B. 0 . Again S 311 , S 3121 , S 3122 ∈ M α , 0 u . We denote β k (x) = -α j,l (x)X l k (x). Then, S 313 = B i t B j t t 0 β k (x s ) dB k s -B i t t 0 B j s β k (x s ) dB k s -B i t t 0 β k (x s ) ds = S 3131 + S 3132 + S 3133 .
Arguing as for S 32 , S 33 we see that

S 3132 = -B i t t 0 β k (x s ) dξ jk s , j = k and S 3133 are in M α , 0
u . We repeat with S 3131 the computations which we already performed for S 31 and we see that (with clear notations)

S 31311 , S 313121 , S 313122 , S 313133 ∈ M α , 0 u . Then S 313132 = B i t B j t t 0 γ l (x s ) dξ kl s , l = k, where γ l = β m (x)X m l (x)
, so S 313132 satisfies (v) as above.

To control the Hölder norm of S 313131 we can write

S 313131 = B i t B j t B k t t 0 γ l (x s ) dB l s = B i t B j t B k t w(a(t)) , a(t) = t 0 γ 2 l (x s ) ds ,
where w is a one-dimensional Brownian motion. So,

P ( S 313131 α > M δ u | B. 0 < δ ) ≤ P ( B. α > M 1 2 δ u-1 2 | B. 0 < δ )+ P ( w. α c B. α B. 2 0 > M δ u , B. α ≤ M 1 2 δ u-1 2 | B. 0 < δ ) ≤ P ( B. α > M 1 2 δ u-1 2 | B. 0 < δ ) + exp - c α M δ 3 + c δ 2
. From this we can conclude that S 313131 satisfies (v).

The proof of the lemma is complete.

q.e.d.

Support theorem in Hölder norm

Now we are able to extend the support theorem of Stroock-Varadhan for α-Hölder topology. Let us denote by Φ x the mapping which associates to h ∈ L 2 = L 2 ([0, 1], IR m ) the solution of the differential equation (4.1)

dy t = m j=1
X j (t, y t ) h j t dt + X 0 (t, y t ) dt , y 0 = x .

(4.2) Theorem.

Let α ∈ [0, 1 2 [. For the • α -topology, the support of the probability P x coincide with the closure of Φ x (L 2 ) , that is,

(4.3) supp α (P x ) = Φ x (L 2 ) α .
Proof. To begin with, we note that, for every ε > 0 and δ = (

ε 2 n ) 1 u , u ∈]0, 1 -2α[, n > 0 integer, P • 0 X k (s, x s ) • dB k s α > ε | B. 0 < δ = P • 0 X k (s, x s ) • dB k s α > 2 n δ u | B. 0 < δ ≤ sup 0<η≤1 P • 0 X k (s, x s ) • dB k s α > 2 n η u | B. 0 < η .
Letting n ↑ ∞, by (v) of the Lemma (3.4), we obtain, for every ε > 0, (4.4) lim

δ↓0 P • 0 X k (s, x s ) • dB k s α > ε | B. 0 < δ = 0 .
Then we prove that, for every ε > 0, (4.5)

lim δ↓0 P ( x. -Φ x (0) α < ε | B. 0 < δ) = 1 ,
using (4.4) and the following variant of Gronwall's lemma:

(4.6) Lemma. For m and l two functions, put

z t = z + m(t) + t 0 l(z s ) ds , zt = z + t 0 l(z s ) ds .
Suppose that m α ≤ η , m(0) = 0 and that l is a Lipschitz continuous function with constant L. Then

z -z α ≤ (1 + L) e L η .
Proof. By Gronwall's lemma we can immediately write

z -z 0 ≤ η e L .
Then,

z -z α , t ≤ η + • 0 (l(z u ) -l(z u )) du α , t ≤ η + max 0 ≤ p < q ≤ t L |p -q| α | p q |z u -zu | du | ≤ η + max 0 ≤ p < q ≤ t L |p -q| α p q ( |z q -zq | + |u -q| α z -z α , u ) du ≤ η + L z -z 0 + L t 0 z -z α , u du .
Gronwall's lemma ends up the proof of the Lemma (4.6).

q.e.d.

We apply this with z = Φ x (B.), z = Φ x (0), m(t) = t 0 X k (s, x s ) • dB k s and l(x s ) = X 0 (s, x s ). So, there exists a positive constant K, such that Φ

x (B.) -Φ x (0) α < K ε , provided • 0 X k (s, x s ) • dB k s α ≤ ε .
Thus we obtain

P ( x. -Φ x (0) α > ε | B. 0 < δ ) = P ( x. -Φ x (0) α > ε ) ∩ • 0 X k (s, x s ) • dB k s α > ε K | B. 0 < δ ≤ P • 0 X k (s, x s ) • dB k s α > ε K | B. 0 < δ .
Now (4.5) is a clear consequence of (4.4). Finally, Girsanov's formula gives, for any h ∈ L 2 and ε > 0, (4.7) lim δ↓0

P ( Φ x (B.) -Φ x (h.) α < ε | B. -h. 0 < δ ) = 1 (as in [S-V], p. 353). But, (4.7) implies (4.8) P ( Φ x (B.) -Φ x (h.) α < ε) > 0 , for every ε > 0 .
and, consequently, we obtain the inclusion (4.9) supp α

(P x ) ⊇ Φ x (L 2 ) α .
The converse inclusion is easily obtained using the polygonal approximation of the Brownian motion. For each n ≥ 0 and t ≥ 0, we consider

t n = [2 n ] 2 n , t + n = [2 n ] + 1 2 n , Ḃ(n) t = 2 n (B t + n -B tn ) . Let (x (n) 
t ) be the solution of the equation (4.1) with Ḃ(n)k t instead h k t . If we denote P (n) x the law of this solution, it is obvious that x. (n) ∈ Φ x (L 2 ) and P (n) x ( Φ x (L 2 ) α ) = 1 .

It suffices to show that P x is the weak limit of (P (n) x ) or, that (P (n) x ) is relatively weakly compact with respect to • α -topology. By classical estimates, for every p ≥ 0, there exists a positive constant c p , such that, for every positive integer n and for every s, t ∈ [ 0 , 1 ],

E|x (n) t -x (n) s | 2p ≤ c p |t -s| p
(see for instance [Bi], p. 40). It is easy to see that

sup n E( x. (n) 2p α ′ ) < c , if α ′ < p -1 2p .
If we choose p large enough so that α < p-1 2p , and if α ′ ∈ ]α, p-1 2p [, it is then clear that the set K(c) = { z : z α ′ < c } is compact in • α -topology, and that, for every ε > 0, there exists a positive constant c ε , such that, sup n P (n) x ( K(c ε ) ) < ε .

So, (P (n) x ) is tight. The proof of the Theorem (4.2) is complete.

q.e.d.

Appendix

We give now another proof of a variant of (1.10) (or (1.19)), when β = 0, which does not require the use of Ciesielski's theorem (that is (1.4) and (1.5)) nor the correlation inequality. Here v = (s, t) , D = {v : s < t ≤ s + η} and X α v = wt-ws |t-s| α is a two-parameter gaussian variable. Now, we can estimate

P ( ( w α > R ) ∩ ( w β < r ) ) ≤ P ( sup v∈D |X α v | ≥ R ) ≤ exp - (R -M α ) 2 2X 2 α ,
where the last inequality is valid when R ≥ M α (see [L-T], p. 57). Here

0 < M α = E( sup v∈D |X α v | ) ≤ E( w α ) < ∞ and X 2 α = sup v∈D E( (X α v ) 2 ) = η 1-2α .
So, we get P ( ( Now, we need only

w α > R ) ∩ ( w β < r ) ) ≤ exp - R 2 2η 1-2α = exp   - 1 2 R 1-2β α-β
R α ′ -β α-β r α ′ -α α-β > E( w α ′ ) = M α ′ ,
and the proof of the theorem is complete. q.e.d.

  c B. 0 and I 3 ≤ c ξ. ij 0 , so, we consider only I 1 and I 2 .

  (A.1) Theorem.Let (r, R) be a couple of real positive numbers. For every a ′ < a and b ′ > b, there exists a constant c, such that, ifR a ′ r b ′ > c, then (A.2) P ( ( w α > R ) ∩ ( w β < r ) ) ≤ exp w β < r, sup s<t,t-s>η |w tw s | |t -s| α ≤ R . Thus we obtain ( ( w α > R ) ∩ ( w β < r ) ) ⊂ sup s<t≤s+η |w tw s | |t -s| α ≥ R ∩ ( sup t |w t | < r ) ⊂ sup s<t≤s+η |w tw s | |t -s| α ≥ R = ( sup v∈D |X α v | ≥ R ) .

  The restriction R ≥ M α may be weakened as follows. Take α ′ > α and writesup s<t≤s+η |w tw s | |t -s| α ≥ R = sup s<t≤s+η |w tw s | |t -s| α ′ • |t -s| α ′ -α ≥ R ⊂ sup s<t≤s+η |w tw s | |t -s| α ′ ≥ R η α-α ′ =

a -2 Ψ a 1 v .

by c B. 0 . Then we can write

Here and elsewhere • α,T denotes the Hölder norm on

A scaling in Hölder norm shows that w α,τ 2 and τ 1-2α w α,1 have the same law. Then we can write

by the independence of w and B. 0 , and by the gaussian inequality (2.3).

(iii) We note another trivial inequality: if z , z are α-Hölder then z z is α-Hölder and z z α ≤ z α z 0 + z 0 z α .

In particular

Clearly, the Theorem (A.1) implies that

If r is small we need the condition α < 1 4 for an interesting estimate.