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Singularities of hypoelliptic
Green functions
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Abstract. This paper is devoted to a precise description of the singularity
near the diagonal of the Green function associated to a hypoelliptic operator
using a probabilistic approach. Examples and some applications to potential
theory are given.
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1. Introduction

Let X1,...,X,, be smooth vector fields on IR?, d > 3 such that the Lie
algebra generated by Xi, ..., X,, is of full rank at every point:

(1.1) Vo € R?, dim Lie (X1, ..., Xn)(z) =d.

We are interested on the behaviour of the Green function G of the hypoel-
liptic operator

JRRANN
(1.2) L:§ZXJ-
j=1

on a smooth bounded domain Q of IRY. G is smooth off the diagonal and
we give in this paper a precise description of its singularity near the diagonal.

From the work of Nagel, Stein and Wainger [19] or Sanchez-Calle [20], it
is known that the Green function can be estimated in terms of the natural
sub-Riemannian distance p:

p(JU, y)Q
vol(B,(z, p(z,y))

Gz, y)| <c

To state a more precise form of these upper bound, let us introduce some



notations. For a multi-index J = (j1,...,7p) € {1,...,m}P, we shall write
|J| = p, and

X7 =X, X, (X5 X))
will denote the Lie bracket of the vector fields Xj,,...,X; . For any k € IN*
and any x € R¢, we consider

p—17

Cr(z) = Span {X”(x), |J| < k}
and
(1.3) r(z) = inf{k : dimCy(x) = d}.

By (1.1), r(z) is finite.
Let us denote by Q(x) the graded dimension at x:

r(z)
(1.4) Qz) = Z k (dim Ck(x) — dim Cr_1(x)) .
k=1

We shall assume that the geometry of the brackets is locally constant near x,
that is, for every k& € IN* and every y in a neighbourhood A(z) of x, dim Cy(y) =
dim Ck(x). Then, of course, r(y) and Q(y) are constant on this neighbourhood.
Since we want to exclude the trivial elliptic cases where d = Q = 2 and d =
Q@ = 3, we assume @ > 4.

Following [2], we shall introduce a useful coordinate chart. For a fixed z € Q
we choose a family of multi-indices B = {Ji, ..., Jq}, such that {X7/(z) : J €
B} is a triangular basis. That is, for every k < r, {X/(z) : J € B, |J| < k}
generates Ci(x). We shall denote the length |J;| =1;, j =1,...,d. There exists
a neighbourhood W of 0 such that the mapping

d
(1.5) u— @y (u) = exp ZquJj (x)

defines a diffeomorphism of W on ¢, (W). There exists a neighbourhood U
of z such that U C ¢, (W) N A(x).
For y € U, y = ¢, (u) we shall denote

T

(1.6) =3[ 3 2

k=1 \4j,l;=k

and we shall show that the estimate of Nagel, Stein and Wainger [19], can
be written as



C
(1.7) |G (z,y)| < W

We want to give a sharper description of the singularity of G(z,y) when
y — x. For this purpose we introduce the homogeneous angular variable, for

Y€ U \ {I}, Yy = @x(u),

(18) ) = ()

iyl
Then our main result will be:

(1.9) THEOREM. There exists a smooth function ®, > 0 such that,

(1.10) lim sup |G(z,y)|y|9® 2 —d,(0.(y))| =0.

el0 jlz—yll<e

Here and elsewhere || - || denotes the Euclidian norm on IR®.

This new geometric coefficient ® will be described in §5 as the density of
the occupation measure for a process (u;), that we call tangent process. This
process, non-markovian in general, will be seen as a projection of a left invariant
diffusion process on a free nilpotent Lie group.

It must be noticed that, in general, computing ® is not easy. The value of
® is computable in some examples (see §9), for instance on Heisenberg groups.

Theorem (1.9) shows that, in general, the limit

lim G(z,y) |yl

does not exist; it exists only ”radially”, that is, if y approaches x in such a
way that the angular variable 6, (y) tends to a limit. This is in contrast with
the elliptic situation, the Heisenberg group situation or the ”curved” Heisen-
berg group situation studied by Chaleyat-Maurel and Le Gall [9], where &, is
constant.

Our approach for the proof of the Theorem (1.9) is probabilistic. It relies on
results on stochastic Taylor expansion of paths of the diffusion generated by L
and on the a priori estimate given by Nagel, Stein and Wainger [19]. We follow
and extend the strategy given by Chaleyat-Maurel and Le Gall [9] in a simple
context.

One must also notice that the behaviour of the heat kernel p$}(x,%) on the
diagonal has been studied using the same probabilistic tools in [2] or Léandre
[18]. The results can be compared with the Theorem (1.9):

co(x)

\/EQ(I) ’

(1.11) p?(w,x) ~



where co(x) is the density of the law of the tangent process (u.) taken at time 1.

An example of different behaviour near the diagonal of the Green function
in presence of a drift was studied in [14]. The result could be compared with
the results in [3] and give an idea of the pathologies for the behaviour which
could appear in presence of a drift.

The plan of the paper is as follows: in §2 we introduce the stochastic Taylor
expansion and the tangent process, which we study in §3. In §4 — 6 we prove the
Theorem (1.9) except for some technical lemmas postponed to the Appendix.
We then apply our results to some potential theoretical problems in §7 — 8:
estimates of the capacities of small sets, of the volume of the Wiener sausage of
small radius, double points. In §9 we give examples where direct computations
illustrate our general theorem and even two examples where the conclusion of
the theorem is valid though our hypothesis of locally constant geometry fail.

2. Taylor stochastic expansion

Let (BY,...,B™) be a m-dimensional Brownian motion and consider (z;)
the solution of the Stratonovich equation

m
(2.1) dvy =Y Xj(x:)odB], zo =z,

j=1
killed at the first exit time from Q, 7 = inf{t > 0, 2; ¢ Q}. It is known
that 7 < oo, Py-a.s., for every z € R%.

By hypoellipticity, for every x € ), t > 0, the law of z; under P, has, on €,

a density with respect to the Lebesgue measure, p{’(x,y). It is the heat kernel
associated to L on  and the Green function is

(2.2) G(z,y) =/ Pz, y)dt, z,y € Q.
0

G is the density of occupation measure of (z;), that is, for every positive mea-
surable function f,

(2.3) E, / " fedt = / )Gz, y)dy.

(2.4) REMARK. We note that for the study of the singularity of G near the
diagonal it suffices to consider 2 as a bounded neighbourhood of z, Q C U.
Indeed, if we denote by Gy the Green function of L on a neighbourhood V of z,
then the singular behaviour near the diagonal of G and Gy is the same, because
L(G — Gy) = 0. From now on we shall assume that Q C U.

We are interested in the study of the process in short time, (x.24), € > 0.



For every x € (), it has the same law under P, as the solution of the equation

(2.5) dof =2y Xj(2§)odB] , a§ =z,
j=1
killed at the first exit time from Q, 7. = 7/
Let us consider, for A > 0, the dilation defined on R,

(2.6) Ta(u) = Arug, ... Aduy) .
For 0 <t < 7., we define the diffusion (Ut(s’m)), starting from 0,
(2.7) ot = (Ty 09 h)(a5).

We shall introduce a new process, called tangent process. For a multi-index
J = (j1,---,4p), we denote by B{ the Stratonovich iterated integral

(2.8) B :/ dB]'o...0dB}’
0<t1<...<tp<t ’

and by ¢/ the completely explicit linear combination of Stratonovich iterated
integrals

(_1)6(7—) Jor~1

S ()"

Here, for a permutation 7 € o,, of order p, we denoted e(7) the number of
errors in ordering 7(1),...,7(p) and

(2.9) ¢ =

Jot=(jra) - Jrp)) -

Recall that {X7(y) : J € B} is a triangular basis for y close to x. So, for
any multi-index L, there exists smooth functions, defined on a neighbourhood
of x, (a%)jep, such that

(2.10) Xt =>"ahx’.
JEB
DEFINITION. We shall call tangent proces, the process,

(2.11) ugw) = Z ak(z)ck

L,|L|=|J| JeB

(2.12) PROPOSITION. Let fix T > 0. Then, for any bounded Lipschitz con-
tinuous function f on R and for sufficiently small € > 0, there exists a positive
constant c, such that,



(2.13)

T T
(i 1t L1
0 0

Here we denoted

<elflipTe-

__ )~ S W)
ltip = e V@I 9 Sy

To prove this result, we shall use the results of [1] or [8] on the asymptotic
expansion in small time of z; in terms of Lie brackets and iterated
Stratonovich integrals. According to the Theorem 4.1 [8], p. 234, for t < T,

(2.14) xi = exp Zak Z cEXE ) (@) + e R (5, 1)
k=1  L,|L|=k

Here R,41(g,t) is bounded in probability. More precisely, there exists a, ¢ > 0
such that, for every R > ¢

(2.15) 1ifg1P< sup ||Rr41(e,0)|| > R) < exp (—R ) .

0<t<T cT

Proof of the Proposition (2.12). We can write

T T
" (LT“”/ g (”t(sw))dt>_E°/ )
0 0

T T
Ey (I(T<TE)/ f(Ut(E’I))dt> — Eq (I(T<TE)/ f(ugw))> dt
0 0

i TP(T = 7e) -

<

By the classical exponential inequality we know that, there exists two positive
constants ¢, ¢/, such that

o/

P(T>71.)<ce 27,

We shall study only the first term.
Let us consider v, the diffeomorphism

Ye((r)i<r) =exp [ Y vp Xy | ()

L,|L|<r



and we denote
(2.16) T = inf{t > 0: (elef) 1<, & ¥ (D)}

We can write,

T T
Ey <H(T<TE)/ f(Ut(E’x))dt> —Ep <H(T<TE)/ f(ugx))> dt
0 0
T () T @
Ey ]I(T<T5/\TS%)/ f0,")dt | — Eg I[(T<TEAT5)/ fu™) ) dt
0 0

+2|f i T P(T > T5)

<

As in [8], p. 238, we have that, for sufficiently small &,

crL
(2.17) P(T >TE) < L%; exp (_ngT> .

So, it remains to consider the first term:

T T
Ey <][(T<T€/\T§)/ f(vig’m))dt> —Ep (I(T<TE/\T§)/ f(ugz))> dt
0 0

< I lLip T Eo (mTWT@ s [l - uig“n) .

Hence, to finish the proof of (2.13), it suffices to prove the following:

(2.18) LEMMA. There exists a positive constant ¢, such that for any sufficiently
small £ > 0,

(2.19) Eo <I(T<TEAT5> sup_[[of" — UST)II) <ce.
0<t<T
Proof. For J € B and ¢t <Tg, we denote
UJ(Sa t, J}) = (‘p;l © wz)J((‘g'L‘ctL)\MSr) .
We have that, for J € B and t < T§¢,
() us (e, t,m)jc=o =0, if k < |J].
Indeed, by the triangularity of the basis {X7(y) : J € B}, for y close to z, we

have, for J € B,
ab =0,if |L| < |J],



on a neighbourhood of z. So, for J € B,
[0(03 " 0 va)s/OvL]),_, = af(x) =0, if |L| < |J].

Moreover, by the last equality we also have that, for J € B and ¢ < T¢,

(86)|J|uj(5,t7x)‘5:0 = Z ag(x)(as)‘Ll(E‘LlctL)lezo7
L,|L|=]J]|

because the terms coresponding to L, with |L| > |J|, are zero having the factor
elLl (see also [2], pp. 93-94).
Hence, the Taylor expansion around ¢ = 0 of uy(e, t,z), for J € B and

t <T§, can be written,
el o\l | T]+1
U;J(S,t,l‘) = W(a&-) UJ(E,t,£)|E:0—|-€ R‘],‘J‘+1(€,t7$),
or 1
muJ(&\)t?x) = Z Cfag(x) +ERJ,|J|+1(€7tax)'

L,|L|=|J]|
Here, for J € B and t < T§,

' _ eyl
RJ’|J|+1(5’t’z):/ (&)UIHUJ(EQt,x)(l i de..

0 7!

Using properties (P1), (P2) in [8], p. 238, we see that, for every J € B, there
exists ay,cy > 0, such that, for any R > c¢; and for € > 0 sufficiently small,

Ra.l
(2.20) P ( sup |Ryj j41(et,2)| > R; T < Té) < exp (— > .
0<t<T cyT

Indeed, By satisfies (2.20) and we get the same thing for us(e,t,z), using its
definition in terms of (¢/*IcF). Then we obtain (2.20).
By (2.14), we have, for t <T A Tg,

(T% o<p;1)(x§ —5T+1RT+1(E,t)) = Z ctLag(x) + ERJ"J‘J’,l(E,t,x)

L,|L|=|J| JeB

We note that, for any 0 < ¢ < 1 and any u € RY, ||T4 (u)|| < & ||u||. Therefore,

= gr

by the Lipschitz property of ¢, !, we can write, for t < T A 7. A TS,

lof™® = uf® || < Jlof™® = (Ty 0 o7 ") (@5 — e Ryya (e,1)

_ r T 1 r
HI(Ts 0 @)@ = R (e,1) =™ | < e S |7 Ry (e )|



+le (Ryn41(et, 7)) senl -
Hence, for t <T N7 ANT§,

(2.21) loi™ — uf?|| < e R(e, 1) ,
where, for t <T A7 NT§,
(2.22) R(e,t) = ¢|[Roga (e, D) + |(Ryys41 (2.t 7)) sell

Using (2.15) and (2.20) we prove the existence of positive constants o/, ¢/,
such that, for any R > ¢ and for ¢ > 0 sufficiently small,

(2.23) P(sup R(E,t)>R;T<T€/\T5)<exp<—R/ ) ,
0<t<T T

Finally, by (2.21), we can write,

E, (][(T<T€AT§) sup Hvt(g,z) _ ugw)”) <ekEy (I[(T<TE/\T5) sup R(a,t))
0<t<T 0

<t<T

o
:g/ P( sup R(e,t) > R; T<T5/\TS%) dR.
0 0<t<T
Now, (2.19) follows from this, using (2.23) and the lemma is proved.
This also ends the proof of the Proposition (2.12).

3. Study of the tangent process

The process (u?)) is not necessarily a diffusion process. However, we shall
prove that it is the image by a projection of a left invariant diffusion on a
nilpotent group.

We denote by g(m,r) the free r-nilpotent Lie algebra with m generators
Y1,..., Y. We shall identifie g(m, r) and the associated simple connected nilpo-
tent Lie group N (m,7), which is nothing but g(m,r) with the multiplication
given by the Campbell-Hausdorff formula. We denote, by a clear abuse of no-
tation, Y; the left invariant vector field on N(m,r) defined by the generator Y;
of g(m,r).

Let us consider (G;) the invariant diffusion on NV (m,r). That is the solution,
starting from the unit element, e € A(m, ), of the Stratonovich equation

(3.1) G, = "Y;(G)odB], Gy =e.

j=1
(3.2) PROPOSITION. There exists a unique linear projection, m,, such that



(3.3) (I 72(Gt) -

Proof. According to the result of the Proposition 3.1 [8], p. 228,

Ge=exp| > Y] (e).

L,|L|<r

Let {YX : K € A} be a Hall basis of g(m,r). Then, for every multi-index L,
(3.4) vh= > kYK,
KeA,|K|=|L]
with universal constants c%. Let us denote, for K € A,
bl = Z ckcl
L,|L|=| K]

and then, by a simple calculation, we get that

Gy = exp (Z bfYK) (e).

KeA

We note that, by the properties of vector fields, (3.4) it is also true with X

instead Y;. By the fact that {X”7(z) : J € B} is a basis, we see that u(x) an
be written:

ugx) = Z ay\r ( )bK

KeA,||K|=|J| JeB

Put n = dimg(m,r) —d and A = {K; : i = 1,...,d + n}. There exists a
diffeomorphism between IR*™", and A (m,r),

d+n
w — ¢e(w) = exp (Z inK'i> (e).

i=1

Let us denote by py : R4 — IRY the projection

Pz(w) = Z () w; =M(z)w.

i, K |=|J5

j=1,d
Here we denoted a’;(x) = aJ (x),j=1,...,d,i=1,...,d+n and M(z) is the
matrix with elements a(z) if |.J; = | K. | and zero otherwise.

Hence, taking



(35) Tg = Pz © ¢)e_1 )
we obtain (3.3).

(3.6) COROLLARY. For every t > 0, the law of u§"“’) has a smooth den-
sity with respect to the Lebesgue measure, q,E“’)(o, u).

Proof. We show that the Malliavin covariance matrix of u@ is not degen-
erate for every t > 0. It is known that the Malliavin covariance matrix of G;
is not degenerate for t > 0. The same thing is true for by = ¢, 1(G;). But, by
(3.3),

uim) = M(z) by,

and we conclude, noting that M(z) is a full rank matrix.

Let us denote, for u € R?\ {0},

(3.7) 0@ (0,u) = / ¢ (0, w)dt,
0

()) " That is, for ev-

the density of the occupation measure of the process (u;
ery positive measurable function f,

(3.8) Ey /OOO f(ugm))dt = /}Rd g0, u) f(u)du.

(3.9) PROPOSITION. ¢(*)(0, -) is a strictly positive smooth function on R\ {0}.

Proof. The fact that g(*) is smooth follows from (3.7). We show now that
g™ is a strictly positive function. We denote by G) the Green function of
the diffusion (G;). Then, for every positive measurable function f,

- _ (N) (o
E. /0 F(Gdt /N L GVe0r(o)dy,

where dg denotes the Haar measure on N (m, ).

It is known that GN) is a strictly positive function (see for instance [12], p.
102). Using again (3.3), we shall write ¢*) in terms of GV) as an integral on
a fiber of the projection map 7., and we shall conclude. We prove:

(3.10) gD 0,u)=c [ GN)($e(0,0), ¢o(u — M(z)h, h)dh.
Rn
Here ¢ > 0 and M (z) is the block of the matrix M (z), having d lines indexed

11



by B and n columns indexed by A\ B. Indeed, we have

/ g@(0,u) du-Eo/ Fuld
R4

_ o _ (V) (¢ o
*&A (f a@mﬁl&mﬂcNumu )(g)dg

—c / G (¢e(0,0), pe(u, ) (f 0 7y ) (de(u, h)du dh,
REXIR™®

where ¢ > 0 is the absolute value of the jacobian of ¢.. In the latter integral
we perform the change of variables v = u + D(x)h. Since f was an arbitrary
function we get (3.10) and the proposition is proved.

We show now that the time spent by (u; (e )) in a Euclidian ball is finite:

(3.11) PROPOSITION. For every p > 0,

(3.12) Eo/ g0, (ul™)dt < oo.
0

Before proving this result we shall make a useful remark. We note that, in
this nilpotent context, the estimate of the Green function (1.7), can be written:

(3.13) G (e, g)| < " |QN 5.9 7€,

where the homogeneous norm of g = ¢.(w), w € R4 is

T

(3.14) gy = |3 0w

k=1 \i,|K;|=k
Here Qy is the homogeneous dimension of N (m,r),

(3.15) Qv =) kdimVy,

k=1
with
Vi=Span{Y’: |J| =k}, k=1,...,r

Vi’s form the natural graduation of the Lie algebra, g(m,r) =Vi & ... ® V.

Proof of the Proposition (3.11). By (3.10), we can write

%/:mwm@mz/ ¢ (0, u) f (u)du
0 B(0,p)

12



—e / du [ G (60(0,0), 6 (u — M(x)h, h)dh
B(0,p) R"

—c / G (64(0,0), 6. (v, h)dv dh,
Fu(B(0,p)xIR™)

where we denoted Fy(u, h) = (pz(u, h),h). So, by (3.13),
o0 d
Eo/ Tp(0,0)(us”)dl < ¢ / S
0 Ima(@)l<p 191N
The right hand side of this last inequality is finite (see Lemma (A.7)).
(3.16) COROLLARY. For every p > 0, for every continuous function f on R4,

bounded by 1, with support in B(0, p), and for every 6 > 0, there exists T'(§) > 0
such that,

Ey f(ugx))dt
T(5)

(3.17) <.

(3.18) COROLLARY. For t > 0, we denote by ") the law of u\”). Then,
for every p > 0 and for every 6 > 0, there exists T'(§) > 0 such that,

(3.19) 1) (B(0,p) < 5.

Proof. We get the convergence of the integral [ Po(ut‘r) € B(0,p))dt, us-
ing (3.12). Hence, limyjoo 114™ (B(0, p)) = 0.

4. Study of the rescaled diffusion

We shall analyse now the diffusion (UEE’I)). We shall prove the following:

(4.1) PROPOSITION. For every 0 < p < 1 and for every continuous func-
tion f on RY, bounded by 1, with support in B(0, p),

(42) lim EQ <1[(T<7'5)/ f(vt(’fvaf))dt) =0.
T

£10,T 700
Proof. Let G**) be the Green function of (vt(s’x)). For every positive mea-
surable f,

(4.3) E, / FE)dt = / G (0, u) f (u)du..
0 (Tyows )@

13



We can write

EO (I(T<T5)/ f(vt(a,x))dt> = EO <]I(T<TE)E’U§~E’T/) / f(vt(g’w))dt>
T 0

= E ][(T<T£)/ G(E’m)(vgf’m),u)f(u)du
(T%W’El)(fl)

:/ . d,ugf’m)(v)/ . G (v, u) f(u)du .
(T1opz)(Q) (T1oez )()

Here ugf @) denotes the measure having the density I, ) with respect to the

law of véf’ . We shall estimate the integral of G(&*).
It is a simple calculation to show that, for v,u € (T o v, 1)(Q),

@)

(4.4) G (v,0) = £92G (07, uf),

Here we denoted u? = (¢, o Tr)(u), for € Q, ¢ > 0 sufficiently small and
u € R%
Therefore, by (1.8), we get

Q-2y
(45) / G(E’z)(v,u)dug/ %,
B(0,p) B(0,p) |uZl]

T
Ve

for & > 0 sufficiently small and u € (T1 o ¢ 1)(9).

(4.6) LEMMA. For any v € R? and for ¢ > 0 sufficiently small, there ex-
ists a constant ¢ > 0, such that

Q-2y
(47) [ e
B(0.p) [uZly=

Moreover,
Q-2y
(4.8) lim / =0,
lwlitee JB(0,p) |uZ] sz
uniformly in € > 0.

Proof. For the first part we write the integral as

. dy”
€ a2
(2oT)(B(0,0)) |Y"|Zx

(4.7) is a particular case of the following estimate: there exists a positive con-
stant ¢ such that, for € > 0 sufficiently small

14



z

d
(4.9) sup/ % <cé?,
lyl-<e |y|Z

with the supremum taken for z in a neighbourhood of x. We shall now prove
(4.9). Firstly, by the change of variables v = (T1 o o, 1)(y), we get that

d dv
/ 572 = 052/ T ) < 052,
lyl<e |Yla loln<t V]

as follows from the Lemma (A.1) of the Appendix. Here and elsewhere |u],
denotes the homogeneous norm of u € IR%:

o
Q=

T

= [ X

k=1 \4,l=k

To get (4.9) it suffices to note that the bound in Lemma (A.1) depends only
on the radius of the homogeneous ball (here equal to 1). Since {X7i(z):j =
1,...,d}, is a triangular basis, for z close enough to x, we conclude by a smooth
change of coordinates.

In proving (4.8) we use some simple properties of the locally homogeneous
norm (see (6.9), (6.11)). There exists some constants cg, c¢’, ¢’ > 0, such that

g@—2 1 1

Sup ——m—5 < sup 0=3 = Q-2
X
<o g™ <o (Lo, — Jul, ) (£l = ept)

From this, (4.8) is easily obtained and the lemma is proved.

Now we can complete the proof of the Proposition (4.1). By (4.5) and (4.7)
we can write, for every R > 0,

(4.10) Eo (]I(T<TE) /T f(vt(s’m))dt>

<t BO.R)+ swp [ G
lvI>R JB(0,p)

(with the convention that G(z,y) =0if z or y ¢ Q).

We can make small the second term in (4.10) by choosing a large R, as fol-
lows from (4.5) and (4.8). Hence, to finish the proof of (4.2), it suffices to prove
the following:

(4.11) LEMMA. For every R > 0,
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. (e,x) _
(4.12) Ll e (B(0,R)) =0.

Proof. Noting the result of the Corollary (3.18), the conclusion is obtained
as soon as we show that, for every R > 0,

(4.13) lim i7" (B(0, B)) = g (B(0, R).
For this, we write

‘Eo (]I(T<Tg)]IB(0,R) (Ugﬂm))) — Eolpo,r) (ug@) <

Ey (H(T<T€/\Té) 50,1 (05™) = Tp(o,r) (uéf))() +P(T>7)+2P(T >T5).

As in the proof of the Proposition (2.12), it suffices to study the first term. But,
the result of the Lemma (2.18) allows us to control this term, using the fact
that u% does not charge the boundary of the ball, and (4.13) follows.

This also ends the proof of the Proposition (4.1).

5. Proof of the Theorem (1.9)

To prove the Theorem (1.9) we need the following important:
(5.1) PROPOSITION. Let H be a compact subset of IR* \ {0}. Then
(5.2) lim sup |G (0,u) — g@ (0,u)] = 0.

el yeH

Proof. We shall show that, for ¢ | 0,
(5.3) G (0,u)du — ¢ (0,u)du , vaguely ,
and then, that there exists g > 0, such that {G®)(0,-),e € (0,g0]} is a
relatively compact subset of the set of continuous functions on H.

For the proof of (5.3), we denote Lip,(IR?) the set of all bounded Lipschitz
continuous functions f on IR?, with support in B(0, p), such that Hf”Lip <1.

By (4.3) and (3.8), for every f € Lipp(]Rd)7

IRd
T T
Eo (LT@ / f(vf’“)dt) — Ey / Fud™dt
0 0

16

/ G(E’w)(&u)f(u)du_/ 9t (0, u) f (u)du
(Téovgl)(ﬂ)

<




+‘E0 (11<T<T5)/ f(v§f’”))dt>’+TP(TzTE)+ ‘EO/ f(u?))dt’
T T

Te
<cTe+ ’Eo (][(T<T€)/ f(ﬂt(s"m))dt> 7
T
as follows from (2.13) and from the classical exponential inequality. We can
make small the last term by choosing a large T', as in (3.17). To control the
second term we use (4.2). Doing so we get (5.3).
Now, we shall show that there exists g > 0, such that the functions G(:#)(0, -),
e € (0,eq], are uniformly equicontinuous, provided they are restricted to the
compact set H.
We prove the existence of a constant ¢ > 0, such that, for every u € H, and
€€ (Oa 60]7

, )
+eTe &7 + ‘EO/ Fulat
T

(5.4) IX71GED(0,u)| <e,j=1,...,d.
By (4.4), for u € (T1 0 ¢;1)(9), we have
X7GED(0,u) = 972X G, u®) = €972 (XTI Q) (@, u”)

To obtain (5.4), we use another important estimate. It is similar to (1.7),
but on the derivatives of G (see §6):

c

(5.5) | X, . X, G, y)| < W , Y # x close enough .
x

Hence, for j =1,...,d,
Q—2+1;

Q-2+, (v J; x ce _ ¢
) J(X 3G)($;U5) < |uw‘§_2+lj = ‘u|g_2+lj )

€

which is bounded when w« lies in a compact set, and (5.4) is verified.

Using the weak convergence in (5.3) and the relatively compacteness of
{GE=2)(0,-),e € (0,60]} on H, we can identifie the limit of G(=#)(0,-). This
ends the proof of (5.2).

Proof of the Theorem (1.9). We take
H={uecR:sup(|u;|:j=1,...,d) =1}

and

ey =sup(|u;| :j=1,...,d),

ll'
with y € Q, y = p,(u). Clearly,
(Ti wgl) (y) € (Tf Ow;l) @Q)nH.
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For every 6 > 0 and for every y sufficiently close to z, there exists (d) > 0,
such that ¢, <e(d) and, by (5.1),

‘G(”) (o (T% op:) ) =9 (o, (T% 0p;) (y))‘ <4

We note that, ugz and Tg(ui””)) have the same law. Hence, by (3.8), we get

(5.6) g (0,1 (w)) =926 (0, ).

Then, using (4.4) and (5.6), for every § > 0 and for every y sufficiently close
to z, y = g (u),

(5.7) EyQ*QG(x,y) - 63729@)(0, u)| <9.

Moreover, we can replace here ¢, by |y|, because, there exists ¢ > 0 such
that,

(5.8) lyl. < cey .
Finally, let us denote, for § € R?\ {0},
(5.9) ®,(0) = 9(0,0).
As a consequence of the Proposition (3.9), ®, is a strictly positive smooth

function on R%\ {0}.
By (1.8), for y # x,

0.() = (T o9:") ).

lyle

So, we conclude that, for every § > 0 and for every y sufficiently close to z,

[y|972G (2, y) — @ (0 (y))| <4,

that is, (1.10).

The proof of the Theorem (1.9) is complete, except for the proof of Lemmas
(A.1) and (A.7) of the Appendix and of the estimates (1.7), (3.13) and (5.5),
which are simple consequences of [19] estimates, as we show in the following
section.

6. Locally homogeneous norm associated to L
In this section we shall study the locally homogeneous norm | - |, and we

shall then justify the estimates (1.7), (3.13) and (5.5). It suffices to prove the
following:

18



(6.1) PROPOSITION. There exists some positive constants ¢, ¢, such that, for
y # x close enough,

/ 2—q
y |X11 quG(.’E,y” < m ° |y|:b

clylz _cE T
(6:2)  |G(ay) < — (Bh(z, yl2))

(Bh(xv |y|a:))

The estimates are then obtained using the simple calculation of the volume
of a small homogeneous ball, B (z,¢) = {y : |y|. < e}

dy:ceQ/ dv=ce?.
|U‘h<1

Here we performed the change of variables v = (T o ¢ !)(y) and ¢’ denotes a
positive constant.

(6.3) m(B(z,)) = /

lylz<e

Proof of the Proposition (6.1). Noting the result of the Corollary in [19], p.
117, it is enough to show that there exists a positive constant ¢, such that, for
y sufficiently close to =z,

(6.4) plz,y) < clyls.

Recall that p(z,y) is the distance introduced by [19], p. 107.

But by the Theorem 3 in [19], p. 112, p is locally equivalent to the pseudo-
distance ps3. So, there exists a positive constant ¢, such that, for y sufficiently
close to x,

(6.5) p(z,y) < cps(z,y).
Recall that,
pg(x,y) = inf{(s >0:3f € 03(6)a f(O) = l‘,f(l) = y}

Here C5(9) = UpC3(d, D), where, for each d-tuple D of multi-indices J, with
|J| < r, C3(8, D) denote the class of smooth curves f : [0,1] — IR%, such that
JHOES Z cs X7 (f(t)), with|c;| < oV, Je D.

JebD

We shall introduce a slight modification of the pseudo-distance p3. We de-
note by C(8, B) the set of C'-functions f : [0,1] — IR?, such that

Q
2k

Fiy=> Xli(f@), with> [ > ] <.

G=1,....d k=1 \jl=k
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Then we define,
dp(w.y) = inf{6 > 0: 3f € C(3, B), £(0) =2, f(1) = y} A 1.

But

Q
2k

S | <%= lel<d,i=1,....d,

k=1 \4j,l;=k

so, C(8, B) C C3(0). It follows that, for y sufficiently close to z,

(66) P3(1’7y) < dB(‘Ta y) .

Moreover, by the definitions of |y|, and of dg(z,y), and by our assumptions
on (), it is a simple observation that, for x,y € €,

(6.7) dp(z,y) = [yl -
This ends the proof of (6.4) and of the proposition.

(6.8) REMARK. Clearly, dg(z,y) is a pseudo-distance in the sense of [19], p.
109. From this, by (6.7), we see that there exists a constant ¢g > 1, such that,
for every z,y, z € §,

(6.9) yle < co (2] + |2[y) -

(6.10) REMARK. We can check another simple property of | - |;. For every
x,y € Q, y = @, (u), there exists two positive constants, ¢/, ¢”, such that

(6.11) ¢l < lyle < ¢ ull* -
7. Capacity of small compact sets

In this section we shall estimate the capacity (relative to the kernel G) of
small compact sets.

To apply the theory of Blumenthal and Getoor [6] for Markov processes in
duality, we must consider the process (z;) killed at an independent exponential
random time &, of parameter A > 0, which we denote by (x,EA)).

The Green function of (xg’\)) is the A-potential of (z):

(7.1) Gala,y) = / T e MR )t

(7.2) REMARK. The result of the Theorem (1.9) still holds with G replaced
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by G». Indeed, we have

|Gz, ) [y 972 = @2 (0.(y)))|

Gi(z,y) ‘ —2 —2
<= =1 |Gl y) IS T2 + |Gl y) [y]E 2 — @a(0a(y))] -
DI ]Gl 192+ Gl bl - 202 00)
The conclusion follows as soon as we show that,
. (z,9) ‘
lim sup A -1/ =0,
elo ly—z|<e G(QL'7 y)

which can be done as in [9], p. 241.
Therefore, for every n > 0 and for every y # z close enough,

(7.3) . < < -
y|$ 2 y|$ 2

Now, let us recall some definitions. By choosing A > 0 large enough, we can
apply the theory of [6] to the process (x,(g/\)). For a compact subset H in 2, we
denote

T =inf{t > 0: 2™ € H}.

Let ug‘) the equilibrium measure of H, that is the unique finite measure sup-
ported by H such that, for every = € 2,

(74) PATY) < 50) = Gal (@) = [ Galaify (d).

The A-capacity of H will be denoted by cx(H), and is the total mass of ,ug),
or, equivalently

(7.5) ex(H) =sup{|p|: p € M(H),Grpp <1 on Q}.

Here M(H) is the set of all positive finite measures supported on H.

Let H be a compact subset of IR? containing 0. We shall describe the
capacity of a small compact set. The natural dilation of H is HY = (p,0T.)(H).
We shall study the asymptotic behaviour of ¢y (HZ) as € — 0.

To write down the statement we need the following:

(7.6) LEMMA. There exists

xT
(7.7) Jin [l

= a(u,v) > 0
lim = a(u,v)

and
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(7.8) lim 6, (v7) = B, v) 20,

for u # v e R\ {0}.

Proof. We have to calculate [vZ],z. Since {X7i(y) : j = 1,...,d} is a basis
for y close to x, we have,

ve = exp(Ze)(w) = exp(We)(uZ) , ug = exp(Ye)(2),

By the Campbell-Hausdorff formula we get,

1
ZE:W5+YE+§[WE,1@]+...,

S0,
w; = libj(u,v) + OV, j=1,...,d, bj(u,v) #0.
Using (1.5), we get
(7.9) |02 |y = € a(u,v) + O(e**?), 6 € (0,1).
with,
st

I 2k ¢

(7.10) o(u,v) = > bi(u,v)?

k=1 \j,l;=k

This proves (7.7).
On the other hand, by (1.8) and the preceding calculation, we can write,

[ _( by(w) +0)
s <|U§||J|>jl d (O‘(Uﬂ))l-f + O(E‘;))j—L..,,d 0€ 0.1

x
Ug

.....

Taking,

(7.11) Blu,v) = (bj(mv))jl,“.,d

alu,v)l

we get (7.8) and the lemma is proved.
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‘We denote

0. (B(u, v))

m(H)
a(u,v)@@)=2" b=

7.12 2 (u,v) = '
( ) r (U, U) maXycoH fH ’I“I(U,U)d'U

(H) =

We can state now the main result of this section:

(7.13) PROPOSITION. Let H be the closure of a bounded domain in R® con-
taining 0, and x € 2. Then

_cx (HD)
(7.14) I o

Proof. We consider v, the measure with the density Ty with respect to the
Lebesgue measure and 2, the image measure of v through ¢, o 7.

A lower bound for ¢y (H?) is obtained as soon as we can obtain a uniform
bound on Gv*. By the maximum principle of Bony [7], for hypoelliptic oper-
ators, it suffices to bound G v¥ on HY.

Take uZ € HY. Then,

Gk(uj,v)uf(dv):/ Ga(uZ,vE)dv.
H

Garzut) = |

Rd
Then, by (7.3) and (7.9),

n+ (I)u§' (eu? (vf)) dv — / N+ (bu? (9“§ (v2))
H

dv .
oz |92 £Q—2(a(u, 0)?-2 1 0(%) "’

Gazuz) < [

H

Using (7.5), for all u € H,

o (H) _ m(H)
Q-2 = 7]+¢)ug‘(9ug(1}:))d
Ju a(u,0)@2+0() ¢V

Hence, by the continuity of ®,(6) and by (7.11), we get,

e O (HD)
(7.15) hr?l%)nf Jrom

> qq(H).
On the other hand,

GA(vZ,ul)dv = / Ga(uZ,v¥)dv,
H

ué”GA(u;”):/]Rd GA(v,vg)V:(dv):/

H
so, again by (7.3) and (7.9),

H

dv .
0z (32 e22(a(u,0)? 2+ 0(e) "

VEGH(u?) > /

H
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€

We denote by p 7’2, the equilibrium measure of H¥. We can write,

A,z -n + (I)ug (eug (Ux)) A,z x T x
|:u’€ HI L 5Q72(Oé(u7 /U)Q,Q + 80(55)) dU S /IRd /“‘Lg,H(duE)VE G)\(us)
= [ @G o) < o] = m(r).
Hence, for all u € H,

ey (HY) / =1 + Pyz (Ouz (V7))
g2 i a(u,v)972 + O(e9)

dv <m(H),

from which we get, by (7.11),

: ex (H?)
(7.16) hrrsll%up o= S @(H).

8. Applications: various sample path properties

As was said in [9], p. 222, as soon as we dispose of the results on the Green
function and on the capacity of small compact sets, we can derive some sample
path properties. The general methods used in [9], §7 and §8, can be applied.

We note that, for certain properties we do not need the exact behaviour of
G, but only the estimates

C/

(8.1) 7| |Q72 < G(z,y) < 7| ‘572 , with z # y close enough ,

Ylx Y
¢, ¢’ being positive constants. The right hand is (1.7) and the left hand can
be obtained in a similar way as (1.7), that is, using the estimate on the volume
of homogeneous small balls, (6.3) and the Theorem I (ii) in [10], p. 248.

We shall emphasize only the differences with respect to the case considered
by [9].

T

(a) Hitting probabilities of small compact sets.

For & > 0 sufficiently small, we denote,
TH;c :mf{t >0:2; € H:}

(8.2) PROPOSITION. For n > 1 integer, for xg,x1,...,%, distinct points of
Q and for t > 0,

1
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X / dsy...dsp p?l (zo, xl)pgz_sl (z1,22) .. .p?n_SWl (Tp—1,Tn) -
0<s1<...<sp<t

Moreover, there exists constants c, ¢, > 0, independent of xg, 1, ..., Ty, such
that, whenever |zj|,, , >ce, j=1,...,n
1 o\" - 1
j=1 |:Cj|517j—1

For the proof we use the result on the capacity (7.11) and we repeat the ar-
guments in pp. 250-252, [9].

(b) Wiener sausage.

We shall analyse the asymptotic behaviour of the volume of the Wiener
sausage of small radius. For 0 < ¢ < 7, let us denote

(35) Sus0,0)= |J H,

0<s<t

the ”sausage” associated to (x:) and to HY, H C R?, containing 0.
By a similar proof as in [9], pp. 253-257, we could obtain:

(8.6) PROPOSITION. Let pu(dx) = f(x)dx, where f is a bounded measur-
able function on Q. Then, for every p > 1,0<T < 7, g € (Q,
p]

(8.8) REMARK. Recall that (G;) denote the invariant diffusion on N(m,r).
Let us denote, for e > 0, t > 0,

sup
0<t<T

. 1 :
(87) lallnol Ewo Wﬂ (SH;r <Oat)) _/O f(xs)QQ:s (H)dS

(8.9) SN(0,t) ={g e N(m,r):|g-G; | n < ¢, for somes < t}.

If 11 denotes the Haar measure on the group, by the Theorem (4.9) in [12],
we get,

1
(8.10) gm n w(SN(0,t)) =c, P. — as.
From this we obtain a similar result as (7.q) in [9], p. 258:
. 1 . s
(8.11) lalﬂ)l “onz w(SN(0,1)) = ¢, in probability .

Indeed, if d. denotes the image on N (m, r) of the dilation on the algebra g(m,r)
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(see [2], p. 88), then (4.(Gs)) and (G.2,) have the same law. By scaling and ho-
mogeneity properties we can show that 4(SN(0,1)) and €9~ (S (0, %)) have

the same law.
(c) Double points.
We could prove the same result as the Theorem 8.2 in [9], p. 261:

(8.12) PROPOSITION. For every x € Q, with P, probability one, the pro-
cess {zs : 0 < s < 7} does not have double points.

In proving this, we use the Hausdorff measure with respect to the homoge-
neous norm | - |, and the estimates for G, (8.1). The difference with respect to
[9] is that, instead (8.d), p. 262, we prove:

Q)—2
E, ( sup |9:S|§(x)2> <céd 2,
S<ONT

for every x € Q, § € (0,1), ¢ being a positive constant. For this, we use the
Taylor stochastic expansion and the fact that, for every multi-index J, there
exists a constant ¢(.J) > 0, such that, E(|B/|?) < ¢(J) /| (see [1], p. 34).

(d) Wiener and Poincaré tests.

The result which we formulate is similar to the classical Wiener test. For
another form we refer to [5], p. 98.

Let us consider a constant « greather than the constant ¢y > 1, which ap-
pears in the triangular inequality for the homogeneous norm | - |,, (6.9). For B
a Borel set contained in U we denote

1 1

(8.14) PROPOSITION. The probability Pm(Tg‘) = 0) = 0 or 1 according as
the series Y, a™Q@)=2)¢,(B,,) converges or diverges.

We show that, for n > 1,

d a2\ (B,) < Pw(Tg‘L) < 00) < caV@=2ey (B,
using the estimates in (8.1). Then we conclude as in [12], pp. 108-110.

This result could be applied to obtain the cone test of Poincaré. A homo-
geneous cone with vertex 0 is a Borel set C' with non-empty interior, which is
stable for the dilations T, and such that 0 € 9C.
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(8.15) COROLLARY. Consider C a homogeneous cone with vertex 0 and N
a neighbourhood of 0. If B is a Borel set such that ¢,(NNC) C B C U, then

P (TS =0) = 1.

We note that Cpy1 = T1/0(Cn), n > 1, so, by a simple property of the
capacity (see [12] Proposition (4.7)), we get, cx(Cy) = ca™™®@=2) ¢ > 0. Then
we can conclude, using the Proposition (8.14), since ¢, ((N N C),) C B, and
ex(pz(NNC)) =cex(NNC), ¢ >0, (see also the Corollary (5.4) [12]).

9. Examples

In this section we shall describe some concrete examples, where we can
perform more calculations. Firstly, let us point out some simple cases.

We consider on IR? the vector fields X; = Oz, +22904,, Xo = Ogy — 22104,
Then [X;, X5] = —40,, and the operator L = 1(X{ + X3) is hypoelliptic. This
case is called the Heisenberg case and in [11], p. 375 (see also [13], p. 101) was
calculated the Green function on IR® with pole 0:

1/(4r) 1/(4)
H
(9.1) G7(0,y) = - - T2 = Qa2
(WE +93)° + 93 vl
In [9] a more general situation is treated. Consider two smooth vector fields

X1, X on IR?, such that for every = € Q, X, (), Xa(2), [X1, X2](z) span IR,
Then the Green function satisfies:

(9.2) |G(z,y) d(z,y)*~2 - cf—0,asy > .

It is also shown that the pseudo-distance d(z,y) is equivalent to |y|..
We firstly treat the following:

(a) Curved Heisenberg case.

For n > 1 integer, we take m = 2n and d = 2n+1. Suppose that X1,..., Xo,
are smooth vector fields on IR*" !, such that,

(93) [X2k—17X2k] = [Xl,XQ], k‘ = 1, oo,

all other brackets being zero. Let us consider 2 a bounded domain in R*" . We
shall suppose that, for every = € Q, the vectors X1 (z),. .., Xon (), [X1, X2](2)
span IR?" T,

It is a particular case because we consider only two order brackets and a
single one is not zero. In this case r = 2 and @ = 2n + 2. The basis is indexed
by B=1{1,2,...,2n,(1,2)}.

The diffusion associated to the vector fields, starting from a fixed point
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T €, is

2n

; I~ [ :
(94) we=exp | 3 BIX;— 5> / (BB — B21dB2 (X, X5 | (2)
k=1

Jj=1

13 Ry(t),

as we can see by (2.14). We must compare (z:) to the left invariant diffu-
sion on the Heisenberg group, Ha,41, with its usual structure on R?>" ! The
left invariant vector fields are defined by

Yor_1= (91»%71 — 219 6;52“,“ , Yor = 83;% + 22951 Bw%“ Jk=1,...,n,

so, the invariant diffusion started from 0 is

2n n t
; 1
(95) Gr=exp | Y BlY;— 5> /0 (B3B! = BI1dBI)[V1,Yal | (0).
j=1 k=1

In this case we do not need any projection, and (ugz)) is the diffusion

1 [*
(9.6) (Bg,...,BE",—QZ/ (B%gB2k-1 —Bfk_ldBfk)> .
k=170

Its Green fonction, g(*), is the invariant Green function on the Heisenberg group.
By the result of [11], p. 375, we get

1/cy - 2I0(2)
2 2 30T T
n
[(Zj=1 yjz) +y%n+1:|

For y = %;(yh ce. ,y2n+1), we denote

(9.7) g"(0,y) =

1
n+1 2n+2

2n
(9.8) yle = Z’UJQ + [yonpa "
=1

Then, applying the Theorem (1.9), we obtain

(9.9) lim sup ’G(x,y)\y|i"—<l>1(9m(y))|:0.
el0 jla—yll<e
Here,
Y1 Yon Y2n+1
9.10 0,(y) = (2, ... 2
(910 =g )
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and
Cx/cn
2n 42 2 2
(Zj:l tj) + 1541

(9.12) REMARK. Noting the symetry of the first 2n coordinates, we can write
a simpler form of (9.9). Put

(911) ‘I)x(tlw .. ,t2n+1) = 7, Cp > 0.
2

n 1 (1+thym
(9.13) oy) = el gy o L ET )T
Zj:l 9]2 Cn (1+t2)2

Then, by (9.9), we get

(9.14) lim sup ’G(.’E, Y) |y\§” - cm\Il(ﬁ(y))| =0.
L0 |ly—afl<e
We also note that, for n = 1, ¥ = L is constant and we can compare (9.14)

with the result obtained by [9], (92)C

(9.15) REMARK. In this particular case we could easily write the result on
the capacity of small compact sets.

Now, we shall study a slight extension of the last model. Let us replace (9.3)
by the following assumption:

(916) [ngfl,XQk] = ak[Xl,Xg], arp € IR*, k=1,...,n,

all other hypothesis on the vector fields being the same.

The associated diffusion can be written as in (9.4), using the Taylor stochas-
tic expansion. It will be compared to the diffusion (af) generated by the fol-
lowing vector fields:

}/Qk—l = ax2k71 + 2ak T2k a$2n+1 5 )/Qk = 8x2k - 2ak T2k—1 ax2n+1 ) k= 17 ey
that is,
1 !
(9.17) <Bg, ...,B¥, -3 Zak/o (B?*kqB2k—1 Bﬁklngk)) .
k=1
The Green function associated to (47) was pointed out by [16], p. 136:
A(s)d
019 300w = [ Als)ds .
R (X pey Ox(8) (U351 + ¥3) +i5Yanyt1)

where i = /—1, ¢, = ("2;1)! and

29



n

4ags
(9.19) () 47T H Smh A’:aks , bi(s) = (ags) coth(4ays) .

(920) REMARK. When (yl, N 7y2n+1) = (O, ey 0, y2n+1), with Yon+1 # O,
we must integrate in (9.19) on R +iq, ¢ > 0 (see also [4]).

We can obtain the behaviour of the Green function G, associated to the
vector fields X, as in the first case. We use the same homogeneous norm, given
by (9.8), and we get the same relation as (9.9), with ®, replaced by:

5 . A(s)ds
(9.21) Poltrs s tanin) = € n/ (X e br(8) (83 _y +13) + i stons1)”

(9.22) REMARK. We can simplify the result again, using the symetry of the
pairs of coordinates.

(9.23) REMARK. We can find again the result of [9], for n = 1. Also, we
could formulate the result on the capacity.

(9.24) REMARK. A more general situation can be obtained assuming that
m = 2n, d = 2n + p (p missing directions, p > 1, integer) and r = 2. Us-
ing some recent results of [4] we could write similar results.

As was said, we shall describe a case when the condition that the geometry
of the brackets is locally constant fails:

(b) A case at step larger than two.

Let us consider on IR? the vector fields
(9.25) X1 =0y, +2pwa(x} +23)P710,, , Xo = 0y, — 2px1(x} + 23)P710,,,
with p > 1, integer, and L = %(Xf + X2). The case p = 1 is the classical
Heisenberg case Hz = N (2,2).

The operator L is nowhere elliptic, but is hypoelliptic. Indeed, for p > 1
and for x ¢ {z1 = 22 = 0}, we have

(X1, Xo] = —8p (2] +3)P 'Oy -

So, for p > 1 and for = ¢ {z1 = 22 = 0}, X1(z), X2(z) and [X7, Xs](x) span

IR3. This situation was already treated. On the other hand we see that for the
points on the axis {x; = 25 = 0}, to span IR? we need to go up to the brackets
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of order 2p in this points. This time r(0,0,z3) = 2p and Q(0,0,x3) = 2p + 2.
Clearly, the geometry of the brackets is not locally constant around the point
(07 07 1'3) .

Operators like L occur in the study of the boundary of the Cauchy-Riemann
complex (see [17]). Precisely, let us consider the domain

D ={(z1,2) € C*, Im 2z > |2|*}.

If p = 1, D is the generalized upper half plane in C%. The vector field
0, — 2120, is the unique holomorphic vector field which is tangent to the
boundary bD of D. In the tangential coordinate system (see [17]: coordinates
p=1Imz — 2], 2,Z and 23 = Re 21) this vector field takes the form

Z=0.4i20,,.

Z is left-invariant with respect to the nilpotent group structure, the Heisenberg
group, on IR? = bD.
In the case p > 1, we have

Z=0,+ipzP"1zP Oz,

and there is no group structure on ]R3 with respect to which Z is left-invariant.
We also note that Z = %Xl — 5 X5 and L is of the type —LJ,, precisely,

L=ZZ+277Z.

Recall that in the Heisenberg case, the Green function on IR® is known.
By left-invariance it suffices to know the Green function with pole (0,0,0) (see
(9.1)).

In [15] the case p = 2 is considered and the expression of the Green function
on IR? with arbitrary pole is given.

Here we consider an arbitrary p. As was said, the case when the pole is
outside of the axis {z; = x2 = 0} was treated. It is plausible that the method
of [15] can give an exact formula for the Green function with arbitrary pole.
However, the calculation seems to be more delicate (see also [17], p. 157). Nev-
ertheless, we can give an exact formula for the Green function with pole on the
axis {x1 = 2o = 0}:

(9.26) PROPOSITION. The Green function on IR®, associated to the vector
fields X1, Xo, with pole (0,0, z3), is

1/(4pm)
V(i +13)% + (g3 — 23)?

Proof. We denote w = y1 +iys, 0% = |w|* + (y3 — 23)? and we must show that
the Green function is

(9.27) G((0,0,23), (y1,¥2,93)) =

G((0,23), (w, ys)) = 4plm .
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Clearly, this function is a C*°-function of (w,ys), as long as (w,y3) # (0, z3).
We consider, for € > 0, the C*°-function on IR?,

GE((O, 1‘3)’ (wvys)) = 4]91“76

)

where o7 = (Jw[? + €P)? + (y3 — x3)%.
Then, G((0,z3), (w,y3)) — G((0,23), (w, y3)), pointwise as € | 0, as long as
(w,y3) # (0,2z3). In fact, we can show that

G((0,23), (w,y3)) = lillgl G.((0,3), (w,y3)), as a distribution inIR>.

Indeed, we see that there exists a positive constant ¢, independent of €, such
that |G| < £. If we show that % is locally integrable, then, by the Lebesgue
dominated convergence theorem we get

G.((0,z3),-) — G((0,23),-), nD'(R®), ase | 0.

We study the integrability at (w,y3) = (0, z3) and we may suppose that z3 = 0.
We shall estime X on the domain |w| < 1, |y3] < 1. We have,

1

d

/ % =2log[l+(1+ |w|4p)1/2] —4plog|w|.
1

The first term is clearly integrable on |w| < 1, as for the second, fl | log |w]|

w|<1
xdv(w) = 27rf01 r logrdr < co.
After some calculations, we get

I 1 _p € |w|?P—2
4pmo.) 27 o3 ’

LG =0, aslong as (w,ys) # (0,x3)

Hence, we have,

and
LG.((0,23), (w,y3)) = 0,as e | 0,

uniformly on compact subsets of IR* which do not contain the point (0,x3).
We show that

/ LG((0,23), (w, ys))dv(w, ys) = 1.
RS

Indeed,

Fa 2p|w\2p_2/ dys P € |w|?P—2
27 R [(|w]2P + €2P)2 4 (y3 — x3)2]3/2 T
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and then,

P o |w|?P~2 dv(w) 2% o p2=lgy
—¢€ (To2p a2 = 2P€ o oy L
T Jre (|w]* + ) o (r?P+e)

Now we consider an arbitrary ¢ € C§° (IF{3). Then, for any neighbourhood
U of (0,z3), we can write,

< G((O7 .'1,'3), ')7 L ¢ >= lelllg RS Ge((oa 1‘3)7 (’U), 93))L¢(U% yB)dU(w7 y3>

= leilr(r)lqb(o,xs)/mgLGG((07$3)»(way3))dv(w7y3)

+hﬁ)1 LGe((Oa IB)a (w7 y3))(¢(w’ y3) - ¢(Ov x3))dv(w, y3)
€ R3

= ¢(0,z3) + lim LG((0,23), (w, y3))(¢(w, y3) — (0, 23))dv(w, y3)
el0 Jra\u

+l€1%1 U L Ge((07 173), (U), y3))(¢(w7 yB) - ¢(07 z3))dv(w7 y3) = ¢(Oa 2133) .

This proves the fact that G is the Green function of L on IR® with pole (0, 23).

(9.28) REMARK. In the Heisenberg case, the Green function with arbitrary
pole is given by (9.27). For the case treated in [15], p = 2, the Green function
with arbitrary pole has two terms, the first being the right hand of (9.27). In
the general case we should attempt to find p terms for the Green function with
arbitrary pole, the first being the right hand of (9.30).

The diffusion started from (0,0,0) € {z; = 22 = 0}, generated by X, X is

t
(9.29) Ty = (33,33,4;9 / R§<P—1>dss> :
0
where
1 t
(9.30) R} = (BYP + (B2, 5, = 5 [ Bl - Blap?.
0

We denote, for y = ©(0,0,0)(¥1,Y2,¥3),

1
p+17 2p+2
(9.31) lylo = [(yf+y§)p+1+|ys v }2 -
Yy Y2 Y3
9.32 00 Y=\ 71 )
932 ) <|y0 o |y|gp>
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and

1 1
(9.33) o (t1,ta,t3) =

Cdpm B+ )P+ 13

Then, by (9.27),

o (6(y): 95(1), 06(v)
lyle?

Clearly, we could use the symmetry of the first two coordinates to write an-
other expression for the Green function (see [14] ).

(9.34) G(0,y) =

Finally, we shall consider the:
(¢) Grushin case.
Let us consider on IR? the vector fields
(9.35) X1 =04, , Xo =210, .

Then [Xi,Xs] = 9;, and the operator L = 1(X? 4+ X3) is hypoelliptic on
the axis {z1 = 0} and elliptic elsewhere.

We consider the point 2 = (0,0), which lies on the axis {z; = 0}. Clearly,
r(0,0) = 2, Q(0,0) = 3 and B = {1, (12)}.

The diffusion started from x is

t BlB2
(9.36) Ty = (Btl,/ B;dBﬁ) = (Btl, t2 ¢ —St) :
0

where S; is as in (9.30).
The left invariant diffusion started from 0 on the Heisenberg group Hs is

(9.37) G = (B}, B}, =5%).
Therefore,
b
(9.38) 2y = 74(Gt), m(a,b,¢) = (a, % +c).

From this it is not difficult to see that the Green function of (x;) is

039 G0.0.0) = [ 67 (10,0000 - %) .

or, by (9.1)
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yy))—i/ ah
o AmIw w2y (g -ty

(9.40) G((0,0), (

Let us denote

(9.41) [(y1, 92)lo = \/|w1]® + ly2|2 .

If we take
Y1 Y2
942 9 5 - )
( ) o(y1,2) <|(y1,y2)0 |(y1,y2)|8)
and
1 dh
(9.43) Do (tr,t2) = T/ ’
IR 4122+ (- B2
then
Dy (0 ,
(944) G((Ov O)a (ylv y2)) = Mléyfg) .
|(y17y2)|0

(9.45) REMARK. We could take as angular variable Jg(y1,y2) = z—g to write
1

another expression for the Green function (see [14] ).

(9.46) REMARK. In this case several of our hypothesis fail: d = 2, Q(z) = 3,
the geometry of the brackets is not locally constant in x and the estimates of
[19] are not proved. Nevertheless, the result obtained by a direct calculation,
(9.44) is quite close to the result of the Theorem (1.9).

Appendix

We prove here the integral estimates which we used in the proof of the
Theorem (1.9).

We shall denote d, = card{j : [; = k}, k =1,...,7. So, d = >, _, dj and
Q=Y 1_; kdi. We assume that r > 2, dy >2and dp > 1, k=2,...,r.

(A.1) LEMMA. There exists two positive constants cg,ci, such that, for ev-
ery S >0,

(A.2) Z:/ _du_osE
|

ulp<S |u|h_2
— l—r r—1 — — _ 2
where ¢ = co(2m)! "¢} 7! except for r = 2, dy = 1 where ¢ = \/2(27)2.
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Proof. In estimating Z we shall use the following simple observation. Let us
denote, for n > 1, p,g > 0 and o > 0,

o pnfl
A3 A = ———dp.
(A.3) n.p.q(0) /0 (p7 + 1)P P
Clearly, A, 4 is increasing and we see that, there exists ¢; > 0, depending
only on n, p, g, such that

(A.4) lim A, 4(t) < c1, provided pg —n > 0.

oloo

Also, for S, R > 0, we have

S n—1
14 n-pgq S
A5 / L gp=R" An<>
(45) o (it R P\ Ri

(A.6) 57 = Z u?7Qk:Zidi.

Jilj=k i=k
Then J
IS/ . - Q-2
{u:|sk|<S* ,k=1,...,r} Q Q
(22_1 513)
B / du”/ du’
- Q1—2
{Jskl<S* k=2,....r} {s11<8} (s? + Ry) " @
Q
where du’ = Hj,l]:l duj, du” = Hj,ZSler duj and Ry =Y, _, s} . By asimple

change of variables and by (A.5), we get

d’LL/ -1 S pdl—ldp
NN = (27T) T
{Is11<S} (s7° + Ry)~ @ 0 (p94+R1)" @

d1-Q1+2 S

di—
=(@2m)® 'R, ° Adl,QlQ‘Z,Q

T
Q
Rl

We have Q - 452 —dy = Q5 — 2.
The case r = 2, dy = 1 will be considered separately. For » = 2 and dy > 1,
by (A.4) we get

1
S2  dy—1
du” p*~Ldp 1
1 di+da—2
I<c/ ., ga= =¢ s = €52, c=(2m)" T ey .
{\S2|<S2}822 Q 0 P2
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For r > 3, again by (A.4), we can write

d /
I< c/ . du”/ P B ey 4 eyl
{Isk|<SF k=3,...,r} {Is21<82} (s7 + Ry)™ @

Q

. : ! . " o__ . _ T 3

where, this time du’ = ||j’lj:2 duj, du" = ||j,3§lj§r duj and Ry = ), _55F.
By a similar calculation:

du’ _ da—1 5 p®~tdp
1 Q Qo—2 (Qﬂ-) Q Qgp—2
{ls:1<S%} (57 + Ry)" 0 (pT+Ry) @

( )d 1 2d2*QQ2+2A (S;
=(2m)*~ R2 d Qa—2 Q S50 .
; 5 Q
2,7 Q 2 }%2/

-

SinceQ-%—2d2:Q3—2>O,Weget

Qa—2

< C/ . R, 9 du’,c= (2m)htd—22,
{Isk|<S® k=3,...,r}

For r = 3, d3 = 1, we have 7 < ¢S%, with ¢ = 3(2m)htd2=2c2 and for
r=3,ds>1,

1
du S3 dgfld
I<C‘/{ %:(27T)d3710\/0 pTJ:CS%,

1 Q.Q
|53\<53}533 Q p3

with ¢ = 2(27)drFdatda=3c2,
For r > 4 we repeat the reasoning and (A.2) is obtained in a finite number

of steps.
To finish the proof we must treat the case r = 2, do = 1. We have
duydusdusg pdpdz 9
Ig/ SHERTS _or LEPTE < (27)2V2S .
{lsi]<S,ls2|<5%} /5] + 53 (0.8)x(0,5%) v/ pt + 22

This ends the proof of (A.2).

Before stating the second result of this section we introduce some notations.
Recall that n = dim g(m,r) —d = card A — card B. Put A\ B ={L4,...,L,},
m; = |Li|, e =1,...,n and e = card{i : m; = k}, k = 1,...,r. So, n =
Sy_yerand Qn = Sy _; k(dy + ex). For a point (u,h) € R? x R" we denote

1
QN QN

r 2k

((wh)x =D | D uf+ D b
k

k=1 j,l]‘:k‘ i,mi:
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(A.7) LEMMA. For every S > 0, there exists a positive constant ¢, such that

du dh
(A8) / _dudh
{luln<Syxme |(u, h)[F

Proof. Let us denote, for k=1,...,r

(A.9) th= > b}, Qui= i(di+e).

i,mi:k i=k
Replacing in (A.2), d by d +n and |u|p, by |(u, h)|n, we get the existence of
a constant ¢ > 0, such that for every U > 0,

(A.10) / % <cU? .
()| n<U |(u, )[R

So, it suffices to prove that, for every S,T > 0, there exists a constant ¢ > 0,
such that

du dh
(A.11) J = . ) - on @z <€
(sl <S® |tk 2T k=1,...r} [ (57 +t2)?§§] oN

We see that, for S, 7 >0,b>1and fora>2andp>2ora=1andp > 3,
there exists a constant co > 0, such that

g4~ ltb 1
(A.12) / ds/ dt 52+ 12) P(a+b) 7 S cC2.

Indeed, we have to study only the mtegral in t and, clearly,

""" ET 2 1) 1R,

tb—l
T ™ ,ast T oo.
(s2 4 2)2 = fites
We proceed as in the proof of the Lemma (A.1):
du’ di
J = du” dh”/ o
{\sk\<Sk |tk\>Tk k=2,...,r} [s1]|<S,|t1|>T [ oN

where du’ =],y du;, dh' =T, ,,. 4 hi, du” =], o) <, du;, dh” =
4 _dhy, Ry =3, _ (52 + 2 P Using again (A.5) and (A.4), we get
,2<m;<r k=2\"k k

oo d1+€1—1d
j<c/ 1 ) du”dh”/ p e
skl <SF [ty [>Tk k=2,....,r} O (pQv + Ry) v

dite; —Qn,1+2

<co / . ) du"dh"R, N
{Isk|<S®,|[tx|2T* k=2,...,r}
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Here we used the fact that Qy - Qna=2 (di +e1) = QN2 — 2 >0, excepting

the case when r = 2, do = 1 and ez = 0 which will be treated separately.
For r =2, dy > 1 and ep > 1, we can write, by (A.12),

du” dh'" sh gd2—1lpea—1
/ 1 1 QN QN2 2 / dS/ 1 dt 2 (dgtes) 2 < c.
[s2|<SZ,|t2|>T2 (3 _|_t2) : T3 _|_t2 —=

For r > 3 we repeat the reasoning:

J < ccl/ ) ) du” dn”
{lsk|<SE® |t |>2T* k=3,...,r}

du’ dh'
X 1 1 QN,2—2 )
[s2|<SZ,|t2| 2T2 on

[( + t2) + RQ}
where du’ = valJ:Q duj, dh' =111, =0 hi, du" = Hj,3§lj§r duj, dh" =
[T s<m,<r dhiy Ro = S5_y(s2 +12) 5% Then, by (A.5) and (A.4), we get

d2+eg—1dp

* o p
J < ccl/ . ) du” dh”/ o
{Isk|<SF |te|>T*® k=3,...,r} 0 (p™F + Ry) " v

2(dg+e2)—Q N 212

<ecct / ) ) du" dh" R, N ,
{lsk|<S®, |tk |>T% k=3,...,r}

since Q%-%—(dg—l—eg) =Qn3—2>0.
If r = 3, we have, by (A.12),
/ du dh" /53 ds 1t63 1
ds/ < cy.
Ans? (dg+ea)—
|sa|<S3 |ts|>T3 (s§+t§)Q S b (a2 4g2) R

For r > 4 we repeat the calculation and (A.11) is obtained in a finite number
of steps.
Finally we treat the case r =2, dy =1, e5 = 0:

53 dl_ltel_ldsdtdz 1
—c/ / / oo ANt < cepS?.
52+t2 L2 eN

This ends the proof of (A.8).
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