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1. Introduction

Let X1, . . . , Xm be smooth vector fields on IRd, d ≥ 3 such that the Lie
algebra generated by X1, . . . , Xm is of full rank at every point:

(1.1) ∀x ∈ IRd , dim Lie (X1, . . . , Xm)(x) = d .

We are interested on the behaviour of the Green function G of the hypoel-
liptic operator

(1.2) L =
1

2

m
∑

j=1

X2
j

on a smooth bounded domain Ω of IRd. G is smooth off the diagonal and
we give in this paper a precise description of its singularity near the diagonal.

From the work of Nagel, Stein and Wainger [19] or Sánchez-Calle [20], it
is known that the Green function can be estimated in terms of the natural
sub-Riemannian distance ρ:

|G(x, y)| ≤ c
ρ(x, y)2

vol(Bρ(x, ρ(x, y))
.

To state a more precise form of these upper bound, let us introduce some

1



notations. For a multi-index J = (j1, . . . , jp) ∈ {1, . . . ,m}p, we shall write
|J | = p, and

XJ = [Xj1 , [Xj2 , . . . , [Xjp−1
, Xjp

] . . .]]

will denote the Lie bracket of the vector fields Xj1 , . . . , Xjp
. For any k ∈ IN∗

and any x ∈ IRd, we consider

Ck(x) = Span {XJ(x) , |J | ≤ k}

and

(1.3) r(x) = inf{k : dimCk(x) = d} .

By (1.1), r(x) is finite.
Let us denote by Q(x) the graded dimension at x:

(1.4) Q(x) =

r(x)
∑

k=1

k (dimCk(x) − dimCk−1(x)) .

We shall assume that the geometry of the brackets is locally constant near x,
that is, for every k ∈ IN∗ and every y in a neighbourhood A(x) of x, dimCk(y) =
dimCk(x). Then, of course, r(y) and Q(y) are constant on this neighbourhood.
Since we want to exclude the trivial elliptic cases where d = Q = 2 and d =
Q = 3, we assume Q ≥ 4.

Following [2], we shall introduce a useful coordinate chart. For a fixed x ∈ Ω
we choose a family of multi-indices B = {J1, . . . , Jd}, such that {XJ(x) : J ∈
B} is a triangular basis. That is, for every k ≤ r, {XJ(x) : J ∈ B , |J | ≤ k}
generates Ck(x). We shall denote the length |Jj | = lj , j = 1, . . . , d. There exists
a neighbourhood W of 0 such that the mapping

(1.5) u 7→ ϕx(u) = exp





d
∑

j=1

ujX
Jj



 (x)

defines a diffeomorphism of W on ϕx(W ). There exists a neighbourhood U
of x such that U ⊂ ϕx(W ) ∩A(x).

For y ∈ U , y = ϕx(u) we shall denote

(1.6) |y|x =







r
∑

k=1





∑

j,lj=k

u2
j





Q
2k







1
Q

and we shall show that the estimate of Nagel, Stein and Wainger [19], can
be written as
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(1.7) |G(x, y)| ≤ c

|y|Q(x)−2
x

.

We want to give a sharper description of the singularity of G(x, y) when
y → x. For this purpose we introduce the homogeneous angular variable, for
y ∈ U \ {x}, y = ϕx(u),

(1.8) θx(y) =

(

u1

|y|l1x
, . . . ,

ud

|y|ldx

)

.

Then our main result will be:

(1.9) THEOREM. There exists a smooth function Φx > 0 such that,

(1.10) lim
ε↓0

sup
‖x−y‖<ε

∣

∣

∣
G(x, y) |y|Q(x)−2

x − Φx(θx(y))
∣

∣

∣ = 0 .

Here and elsewhere ‖ · ‖ denotes the Euclidian norm on IRd.
This new geometric coefficient Φ will be described in §5 as the density of

the occupation measure for a process (ut), that we call tangent process. This
process, non-markovian in general, will be seen as a projection of a left invariant
diffusion process on a free nilpotent Lie group.

It must be noticed that, in general, computing Φ is not easy. The value of
Φ is computable in some examples (see §9), for instance on Heisenberg groups.

Theorem (1.9) shows that, in general, the limit

lim
y→x

G(x, y) |y|Q(x)−2
x

does not exist; it exists only ”radially”, that is, if y approaches x in such a
way that the angular variable θx(y) tends to a limit. This is in contrast with
the elliptic situation, the Heisenberg group situation or the ”curved” Heisen-
berg group situation studied by Chaleyat-Maurel and Le Gall [9], where Φx is
constant.

Our approach for the proof of the Theorem (1.9) is probabilistic. It relies on
results on stochastic Taylor expansion of paths of the diffusion generated by L
and on the a priori estimate given by Nagel, Stein and Wainger [19]. We follow
and extend the strategy given by Chaleyat-Maurel and Le Gall [9] in a simple
context.

One must also notice that the behaviour of the heat kernel pΩ
t (x, y) on the

diagonal has been studied using the same probabilistic tools in [2] or Léandre
[18]. The results can be compared with the Theorem (1.9):

(1.11) pΩ
t (x, x) ∼ c0(x)√

t
Q(x)

,
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where c0(x) is the density of the law of the tangent process (ut) taken at time 1.
An example of different behaviour near the diagonal of the Green function

in presence of a drift was studied in [14]. The result could be compared with
the results in [3] and give an idea of the pathologies for the behaviour which
could appear in presence of a drift.

The plan of the paper is as follows: in §2 we introduce the stochastic Taylor
expansion and the tangent process, which we study in §3. In §4−6 we prove the
Theorem (1.9) except for some technical lemmas postponed to the Appendix.
We then apply our results to some potential theoretical problems in §7 − 8:
estimates of the capacities of small sets, of the volume of the Wiener sausage of
small radius, double points. In §9 we give examples where direct computations
illustrate our general theorem and even two examples where the conclusion of
the theorem is valid though our hypothesis of locally constant geometry fail.

2. Taylor stochastic expansion

Let (B1, . . . , Bm) be a m-dimensional Brownian motion and consider (xt)
the solution of the Stratonovich equation

(2.1) dxt =
m
∑

j=1

Xj(xt) ◦ dBj
t , x0 = x ,

killed at the first exit time from Ω, τ = inf{t > 0 , xt /∈ Ω}. It is known
that τ <∞, Px-a.s., for every x ∈ IRd.

By hypoellipticity, for every x ∈ Ω, t > 0, the law of xt under Px has, on Ω,
a density with respect to the Lebesgue measure, pΩ

t (x, y). It is the heat kernel
associated to L on Ω and the Green function is

(2.2) G(x, y) =

∫ ∞

0

pΩ
t (x, y)dt , x, y ∈ Ω .

G is the density of occupation measure of (xt), that is, for every positive mea-
surable function f ,

(2.3) Ex

∫ τ

0

f(xt)dt =

∫

Ω

f(y)G(x, y)dy .

(2.4) REMARK. We note that for the study of the singularity of G near the
diagonal it suffices to consider Ω as a bounded neighbourhood of x, Ω ⊂ U .
Indeed, if we denote by GV the Green function of L on a neighbourhood V of x,
then the singular behaviour near the diagonal of G and GV is the same, because
L(G−GV ) = 0. From now on we shall assume that Ω ⊂ U .

We are interested in the study of the process in short time, (xε2t), ε > 0.
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For every x ∈ Ω, it has the same law under Px as the solution of the equation

(2.5) dxε
t = ε

m
∑

j=1

Xj(x
ε
t ) ◦ dBj

t , x
ε
0 = x ,

killed at the first exit time from Ω, τε = τ/ε2.
Let us consider, for λ > 0, the dilation defined on IRd,

(2.6) Tλ(u) = (λl1u1, . . . , λ
ldud) .

For 0 ≤ t < τε, we define the diffusion (v
(ε,x)
t ), starting from 0,

(2.7) v
(ε,x)
t = (T 1

ε
◦ ϕ−1

x )(xε
t ) .

We shall introduce a new process, called tangent process. For a multi-index
J = (j1, . . . , jp), we denote by BJ

t the Stratonovich iterated integral

(2.8) BJ
t =

∫

0<t1<...<tp<t

dBj1
t1 ◦ . . . ◦ dBjp

tp

and by cJt the completely explicit linear combination of Stratonovich iterated
integrals

(2.9) cJt =
∑

τ∈σ|J|

(−1)e(τ)

|J |2
(

|J | − 1
e(τ)

) BJ◦τ−1

t .

Here, for a permutation τ ∈ σp, of order p, we denoted e(τ) the number of
errors in ordering τ(1), . . . , τ(p) and

J ◦ τ = (jτ(1), . . . , jτ(p)) .

Recall that {XJ(y) : J ∈ B} is a triangular basis for y close to x. So, for
any multi-index L, there exists smooth functions, defined on a neighbourhood
of x, (aL

J )J∈B , such that

(2.10) XL =
∑

J∈B

aL
JX

J .

DEFINITION. We shall call tangent proces, the process,

(2.11) u
(x)
t =





∑

L,|L|=|J|

aL
J (x)cLt





J∈B

.

(2.12) PROPOSITION. Let fix T > 0. Then, for any bounded Lipschitz con-

tinuous function f on IRd and for sufficiently small ε > 0, there exists a positive

constant c, such that,

5



(2.13)

∣

∣

∣

∣

∣

E0

(

1I(T<τε)

∫ T

0

f(v
(ε,x)
t )dt

)

− E0

∫ T

0

f(u
(x)
t )dt

∣

∣

∣

∣

∣

≤ c ‖f‖Lip T ε .

Here we denoted

‖f‖Lip = sup
x∈IRd

|f(x)| + sup
x6=y

|f(x) − f(y)|
‖x− y‖ .

To prove this result, we shall use the results of [1] or [8] on the asymptotic
expansion in small time of xt in terms of Lie brackets and iterated
Stratonovich integrals. According to the Theorem 4.1 [8], p. 234, for t ≤ T ,

(2.14) xε
t = exp





r
∑

k=1

εk
∑

L,|L|=k

cLt X
L



 (x) + εr+1Rr+1(ε, t) .

Here Rr+1(ε, t) is bounded in probability. More precisely, there exists α, c > 0
such that, for every R > c

(2.15) lim
ε↓0

P

(

sup
0≤t≤T

‖Rr+1(ε, t)‖ ≥ R

)

≤ exp

(

−R
α

c T

)

.

Proof of the Proposition (2.12). We can write

∣

∣

∣

∣

∣

E0

(

1I(T<τε)

∫ T

0

f(v
(ε,x)
t )dt

)

− E0

∫ T

0

f(u
(x)
t )dt

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

E0

(

1I(T<τε)

∫ T

0

f(v
(ε,x)
t )dt

)

− E0

(

1I(T<τε)

∫ T

0

f(u
(x)
t )

)

dt

∣

∣

∣

∣

∣

+‖f‖Lip T P (T ≥ τε) .

By the classical exponential inequality we know that, there exists two positive
constants c, c′, such that

P (T ≥ τε) ≤ c e−
c′

ε2 T .

We shall study only the first term.
Let us consider ψx the diffeomorphism

ψx((vL)|L|≤r) = exp





∑

L,|L|≤r

vLXL



 (x)
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and we denote

(2.16) T ε
Ω̄ = inf{t > 0 : (ε|L|cLt )|L|≤r /∈ ψ−1

x (Ω̄)} .

We can write,

∣

∣

∣

∣

∣

E0

(

1I(T<τε)

∫ T

0

f(v
(ε,x)
t )dt

)

− E0

(

1I(T<τε)

∫ T

0

f(u
(x)
t )

)

dt

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

E0

(

1I(T<τε∧T ε
Ω̄
)

∫ T

0

f(v
(ε,x)
t )dt

)

− E0

(

1I(T<τε∧T ε
Ω̄
)

∫ T

0

f(u
(x)
t )

)

dt

∣

∣

∣

∣

∣

+2 ‖f‖Lip T P (T ≥ T ε
Ω̄) .

As in [8], p. 238, we have that, for sufficiently small ε,

(2.17) P (T ≥ T ε
Ω̄) ≤

∑

L,|L|≤r

exp
(

− cL
ε2|L|T

)

.

So, it remains to consider the first term:

∣

∣

∣

∣

∣

E0

(

1I(T<τε∧T ε
Ω̄
)

∫ T

0

f(v
(ε,x)
t )dt

)

− E0

(

1I(T<τε∧T ε
Ω̄
)

∫ T

0

f(u
(x)
t )

)

dt

∣

∣

∣

∣

∣

≤ ‖f‖Lip T E0

(

1I(T<τε∧T ε
Ω̄
) sup
0≤t≤T

‖v(ε,x)
t − u

(x)
t ‖

)

.

Hence, to finish the proof of (2.13), it suffices to prove the following:

(2.18) LEMMA. There exists a positive constant c, such that for any sufficiently

small ε > 0,

(2.19) E0

(

1I(T<τε∧T ε
Ω̄
) sup
0≤t≤T

‖v(ε,x)
t − u

(x)
t ‖

)

≤ c ε .

Proof. For J ∈ B and t < T ε
Ω̄
, we denote

uJ(ε, t, x) = (ϕ−1
x ◦ ψx)J((ε|L|cLt )|L|≤r) .

We have that, for J ∈ B and t < T ε
Ω̄
,

(∂ε)
kuJ(ε, t, x)|ε=0 = 0 , if k < |J | .

Indeed, by the triangularity of the basis {XJ(y) : J ∈ B}, for y close to x, we
have, for J ∈ B,

aL
J ≡ 0 , if |L| < |J | ,

7



on a neighbourhood of x. So, for J ∈ B,

[∂(ϕ−1
x ◦ ψx)J/∂vL]|v=0

= aL
J (x) = 0 , if |L| < |J | .

Moreover, by the last equality we also have that, for J ∈ B and t < T ε
Ω̄
,

(∂ε)
|J|uJ(ε, t, x)|ε=0

=
∑

L,|L|=|J|

aL
J (x)(∂ε)

|L|(ε|L|cLt )|ε=0
,

because the terms coresponding to L, with |L| > |J |, are zero having the factor
ε|L| (see also [2], pp. 93-94).

Hence, the Taylor expansion around ε = 0 of uJ(ε, t, x), for J ∈ B and
t < T ε

Ω̄
, can be written,

uJ(ε, t, x) =
ε|J|

|J |! (∂ε)
|J|uJ(ε, t, x)|ε=0

+ ε|J|+1RJ,|J|+1(ε, t, x) ,

or
1

ε|J|
uJ(ε, t, x) =

∑

L,|L|=|J|

cLt a
L
J (x) + εRJ,|J|+1(ε, t, x) .

Here, for J ∈ B and t < T ε
Ω̄
,

RJ,|J|+1(ε, t, x) =

∫ 1

0

(∂ε)
|J|+1uJ(ε ξ, t, x)

(1 − ξ)|J|

|J |! dξ .

Using properties (P1), (P2) in [8], p. 238, we see that, for every J ∈ B, there
exists αJ , cJ > 0, such that, for any R > cJ and for ε > 0 sufficiently small,

(2.20) P

(

sup
0≤t≤T

|RJ,|J|+1(ε, t, x)| ≥ R ; T < T ε
Ω̄

)

≤ exp

(

−R
αJ

cJT

)

.

Indeed, BJ
t satisfies (2.20) and we get the same thing for uJ(ε, t, x), using its

definition in terms of (ε|L|cLt ). Then we obtain (2.20).
By (2.14), we have, for t < T ∧ T ε

Ω̄
,

(T 1
ε
◦ϕ−1

x )(xε
t − εr+1Rr+1(ε, t)) =





∑

L,|L|=|J|

cLt a
L
J (x) + εRJ,|J|+1(ε, t, x)





J∈B

.

We note that, for any 0 < ε < 1 and any u ∈ IRd, ‖T 1
ε
(u)‖ ≤ 1

εr ‖u‖. Therefore,

by the Lipschitz property of ϕ−1
x , we can write, for t ≤ T ∧ τε ∧ T ε

Ω̄
,

‖v(ε,x)
t − u

(x)
t ‖ ≤ ‖v(ε,x)

t − (T 1
ε
◦ ϕ−1

x )(xε
t − εr+1Rr+1(ε, t))‖

+‖(T 1
ε
◦ ϕ−1

x )(xε
t − εr+1Rr+1(ε, t)) − u

(x)
t ‖ ≤ c

1

εr
‖εr+1Rr+1(ε, t)‖
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+‖ε (RJ,|J|+1(ε, t, x))J∈B‖ .
Hence, for t ≤ T ∧ τε ∧ T ε

Ω̄
,

(2.21) ‖v(ε,x)
t − u

(x)
t ‖ ≤ εR(ε, t) ,

where, for t ≤ T ∧ τε ∧ T ε
Ω̄
,

(2.22) R(ε, t) = c ‖Rr+1(ε, t)‖ + ‖(RJ,|J|+1(ε, t, x))J∈B‖ .

Using (2.15) and (2.20) we prove the existence of positive constants α′, c′,
such that, for any R > c′ and for ε > 0 sufficiently small,

(2.23) P

(

sup
0≤t≤T

R(ε, t) ≥ R ; T < τε ∧ T ε
Ω̄

)

≤ exp

(

−R
α′

c′T

)

.

Finally, by (2.21), we can write,

E0

(

1I(T<τε∧T ε
Ω̄
) sup
0≤t≤T

‖v(ε,x)
t − u

(x)
t ‖

)

≤ εE0

(

1I(T<τε∧T ε
Ω̄
) sup
0≤t≤T

R(ε, t)

)

= ε

∫ ∞

0

P

(

sup
0≤t≤T

R(ε, t) ≥ R ; T < τε ∧ T ε
Ω̄

)

dR .

Now, (2.19) follows from this, using (2.23) and the lemma is proved.
This also ends the proof of the Proposition (2.12).

3. Study of the tangent process

The process (u
(x)
t ) is not necessarily a diffusion process. However, we shall

prove that it is the image by a projection of a left invariant diffusion on a
nilpotent group.

We denote by g(m, r) the free r-nilpotent Lie algebra with m generators
Y1, . . . , Ym. We shall identifie g(m, r) and the associated simple connected nilpo-
tent Lie group N (m, r), which is nothing but g(m, r) with the multiplication
given by the Campbell-Hausdorff formula. We denote, by a clear abuse of no-
tation, Yj the left invariant vector field on N (m, r) defined by the generator Yj

of g(m, r).
Let us consider (Gt) the invariant diffusion on N (m, r). That is the solution,

starting from the unit element, e ∈ N (m, r), of the Stratonovich equation

(3.1) dGt =
m
∑

j=1

Yj(Gt) ◦ dBj
t , G0 = e .

(3.2) PROPOSITION. There exists a unique linear projection, πx, such that
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(3.3) u
(x)
t = πx(Gt) .

Proof. According to the result of the Proposition 3.1 [8], p. 228,

Gt = exp





∑

L,|L|≤r

cLt Y
L



 (e) .

Let {Y K : K ∈ A} be a Hall basis of g(m, r). Then, for every multi-indexL,

(3.4) Y L =
∑

K∈A,|K|=|L|

cLKY
K ,

with universal constants cLK . Let us denote, for K ∈ A,

bKt =
∑

L,|L|=|K|

cLKc
L
t .

and then, by a simple calculation, we get that

Gt = exp

(

∑

K∈A

bKt Y
K

)

(e) .

We note that, by the properties of vector fields, (3.4) it is also true with Xj

instead Yj . By the fact that {XJ(x) : J ∈ B} is a basis, we see that u
(x)
t can

be written:

u
(x)
t =





∑

K∈A,|K|=|J|

aK
J (x)bKt





J∈B

.

Put n = dim g(m, r) − d and A = {Ki : i = 1, . . . , d + n}. There exists a
diffeomorphism between IRd+n, and N (m, r),

w 7→ φe(w) = exp

(

d+n
∑

i=1

wiY
Ki

)

(e) .

Let us denote by px : IRd+n → IRd the projection

px(w) =





∑

i,|Ki|=|Jj |

ai
j(x)wi





j=1,...,d

= M̃(x)w .

Here we denoted ai
j(x) = aKi

Jj
(x), j = 1, . . . , d, i = 1, . . . , d+ n and M̃(x) is the

matrix with elements ai
j(x) if |Jj = |Ki| and zero otherwise.

Hence, taking
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(3.5) πx = px ◦ φ−1
e ,

we obtain (3.3).

(3.6) COROLLARY. For every t > 0, the law of u
(x)
t has a smooth den-

sity with respect to the Lebesgue measure, q
(x)
t (0, u).

Proof. We show that the Malliavin covariance matrix of u
(x)
t is not degen-

erate for every t > 0. It is known that the Malliavin covariance matrix of Gt

is not degenerate for t > 0. The same thing is true for bt = φ−1
e (Gt). But, by

(3.3),

u
(x)
t = M̃(x) bt ,

and we conclude, noting that M̃(x) is a full rank matrix.

Let us denote, for u ∈ IRd \ {0},

(3.7) g(x)(0, u) =

∫ ∞

0

q
(x)
t (0, u)dt ,

the density of the occupation measure of the process (u
(x)
t ). That is, for ev-

ery positive measurable function f ,

(3.8) E0

∫ ∞

0

f(u
(x)
t )dt =

∫

IRd

g(x)(0, u)f(u)du .

(3.9) PROPOSITION. g(x)(0, ·) is a strictly positive smooth function on IRd\{0}.

Proof. The fact that g(x) is smooth follows from (3.7). We show now that
g(x) is a strictly positive function. We denote by G(N) the Green function of
the diffusion (Gt). Then, for every positive measurable function f ,

Ee

∫ ∞

0

f(Gt)dt =

∫

N (m,r)

G(N)(e, g)f(g)dg ,

where dg denotes the Haar measure on N (m, r).
It is known that G(N) is a strictly positive function (see for instance [12], p.

102). Using again (3.3), we shall write g(x) in terms of G(N) as an integral on
a fiber of the projection map πx, and we shall conclude. We prove:

(3.10) g(x)(0, u) = c

∫

IRn

G(N)(φe(0, 0), φe(u−M(x)h, h)dh .

Here c > 0 and M(x) is the block of the matrix M̃(x), having d lines indexed
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by B and n columns indexed by A \B. Indeed, we have

∫

IRd

g(x)(0, u)f(u)du = E0

∫ ∞

0

f(u
(x)
t )dt

= Ee

∫ ∞

0

(f ◦ πx)(Gt)dt =

∫

N (m,r)

G(N)(e, g)(f ◦ πx)(g)dg

= c

∫

IRd×IRn

G(N)(φe(0, 0), φe(u, h)(f ◦ πx)(φe(u, h)du dh ,

where c > 0 is the absolute value of the jacobian of φe. In the latter integral
we perform the change of variables v = u + D(x)h. Since f was an arbitrary
function we get (3.10) and the proposition is proved.

We show now that the time spent by (u
(x)
t ) in a Euclidian ball is finite:

(3.11) PROPOSITION. For every ρ > 0,

(3.12) E0

∫ ∞

0

1IB(0,ρ)(u
(x)
t )dt <∞ .

Before proving this result we shall make a useful remark. We note that, in
this nilpotent context, the estimate of the Green function (1.7), can be written:

(3.13) |G(N)(e, g)| ≤ c

|g|QN−2
N

, g 6= e ,

where the homogeneous norm of g = φe(w), w ∈ IRd+n, is

(3.14) |g|N =







r
∑

k=1





∑

i,|Ki|=k

w2
i





QN
2k







1
QN

.

Here QN is the homogeneous dimension of N (m, r),

(3.15) QN =
r
∑

k=1

k dimVk ,

with
Vk = Span{Y J : |J | = k} , k = 1, . . . , r .

Vk’s form the natural graduation of the Lie algebra, g(m, r) = V1 ⊕ . . .⊕ Vr.

Proof of the Proposition (3.11). By (3.10), we can write

E0

∫ ∞

0

1IB(0,ρ)(u
(x)
t )dt =

∫

B(0,ρ)

g(x)(0, u)f(u)du

12



= c

∫

B(0,ρ)

du

∫

IRn

G(N)(φe(0, 0), φe(u−M(x)h, h)dh

= c

∫

Fx(B(0,ρ)×IRn)

G(N)(φe(0, 0), φe(v, h)dv dh ,

where we denoted Fx(u, h) = (px(u, h), h). So, by (3.13),

E0

∫ ∞

0

1IB(0,ρ)(u
(x)
t )dt ≤ c

∫

‖πx(g)‖<ρ

dg

|g|QN−2
N

.

The right hand side of this last inequality is finite (see Lemma (A.7)).

(3.16) COROLLARY. For every ρ > 0, for every continuous function f on IRd,
bounded by 1, with support in B(0, ρ), and for every δ > 0, there exists T (δ) > 0
such that,

(3.17)

∣

∣

∣

∣

∣

E0

∫ ∞

T (δ)

f(u
(x)
t )dt

∣

∣

∣

∣

∣

≤ δ .

(3.18) COROLLARY. For t > 0, we denote by µ
(x)
t the law of u

(x)
t . Then,

for every ρ > 0 and for every δ > 0, there exists T (δ) > 0 such that,

(3.19) µ
(x)
T (δ)(B(0, ρ)) ≤ δ .

Proof. We get the convergence of the integral
∫∞

0
P0(u

(x)
t ∈ B(0, ρ))dt, us-

ing (3.12). Hence, limt↑∞ µ
(x)
t (B(0, ρ)) = 0.

4. Study of the rescaled diffusion

We shall analyse now the diffusion (v
(ε,x)
t ). We shall prove the following:

(4.1) PROPOSITION. For every 0 < ρ < 1 and for every continuous func-

tion f on IRd, bounded by 1, with support in B(0, ρ),

(4.2) lim
ε↓0,T↑∞

E0

(

1I(T<τε)

∫ τε

T

f(v
(ε,x)
t )dt

)

= 0 .

Proof. Let G(ε,x) be the Green function of (v
(ε,x)
t ). For every positive mea-

surable f ,

(4.3) E0

∫ τε

0

f(v
(ε,x)
t )dt =

∫

(T 1
ε
◦ϕ−1

x )(Ω)

G(ε,x)(0, u)f(u)du .
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We can write

E0

(

1I(T<τε)

∫ τε

T

f(v
(ε,x)
t )dt

)

= E0

(

1I(T<τε)Ev
(ε,x)

T

∫ τε

0

f(v
(ε,x)
t )dt

)

= E0



1I(T<τε)

∫

(T 1
ε
◦ϕ−1

x )(Ω)

G(ε,x)(v
(ε,x)
T , u)f(u)du





=

∫

(T 1
ε
◦ϕ−1

x )(Ω)

dµ
(ε,x)
T (v)

∫

(T 1
ε
◦ϕ−1

x )(Ω)

G(ε,x)(v, u)f(u)du .

Here µ
(ε,x)
T denotes the measure having the density 1I(T<τε) with respect to the

law of v
(ε,x)
T . We shall estimate the integral of G(ε,x).

It is a simple calculation to show that, for v, u ∈ (T 1
ε
◦ ϕ−1

x )(Ω),

(4.4) G(ε,x)(v, u) = εQ−2G(vx
ε , u

x
ε ) ,

Here we denoted ux
ε = (ϕx ◦ Tε)(u), for x ∈ Ω, ε > 0 sufficiently small and

u ∈ IRd.
Therefore, by (1.8), we get

(4.5)

∫

B(0,ρ)

G(ε,x)(v, u)du ≤
∫

B(0,ρ)

c εQ−2du

|ux
ε |Q−2

vx
ε

,

for ε > 0 sufficiently small and u ∈ (T 1
ε
◦ ϕ−1

x )(Ω).

(4.6) LEMMA. For any v ∈ IRd and for ε > 0 sufficiently small, there ex-

ists a constant c > 0, such that

(4.7)

∫

B(0,ρ)

εQ−2du

|ux
ε |Q−2

vx
ε

< c .

Moreover,

(4.8) lim
‖v‖↑∞

∫

B(0,ρ)

εQ−2du

|ux
ε |Q−2

vx
ε

= 0 ,

uniformly in ε > 0.

Proof. For the first part we write the integral as

ε−2

∫

(ϕx◦Tε)(B(0,ρ))

dy′′

|y′′|Q−2
zx

ε

.

(4.7) is a particular case of the following estimate: there exists a positive con-
stant c such that, for ε > 0 sufficiently small
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(4.9) sup
z

∫

|y|z<ε

dy

|y|Q−2
z

< c ε2 ,

with the supremum taken for z in a neighbourhood of x. We shall now prove
(4.9). Firstly, by the change of variables v = (T 1

ε
◦ ϕ−1

x )(y), we get that

∫

|y|x<ε

dy

|y|Q−2
x

= c ε2
∫

|v|h<1

dv

|v|Q−2
h

< c ε2 ,

as follows from the Lemma (A.1) of the Appendix. Here and elsewhere |u|h
denotes the homogeneous norm of u ∈ IRd:

|u|h =







r
∑

k=1





∑

j,lj=k

u2
j





Q
2k







1
Q

.

To get (4.9) it suffices to note that the bound in Lemma (A.1) depends only
on the radius of the homogeneous ball (here equal to 1). Since {XJj (z) : j =
1, . . . , d}, is a triangular basis, for z close enough to x, we conclude by a smooth
change of coordinates.

In proving (4.8) we use some simple properties of the locally homogeneous
norm (see (6.9), (6.11)). There exists some constants c0, c

′, c′′ > 0, such that

sup
‖u‖<ρ

εQ−2

|ux
ε |Q−2

vx
ε

≤ sup
‖u‖<ρ

1
(

1
c0
|v|h − |u|h

)Q−2
≤ 1
(

c′

c0
‖v‖ − c′′ρ

1
r

)Q−2
.

From this, (4.8) is easily obtained and the lemma is proved.

Now we can complete the proof of the Proposition (4.1). By (4.5) and (4.7)
we can write, for every R > 0,

(4.10) E0

(

1I(T<τε)

∫ τε

T

f(v
(ε,x)
t )dt

)

. ≤ c µ
(ε,x)
T (B(0, R)) + sup

‖v‖≥R

∫

B(0,ρ)

G(ε,x)(v, u)du

(with the convention that G(z, y) = 0 if z or y /∈ Ω).
We can make small the second term in (4.10) by choosing a large R, as fol-

lows from (4.5) and (4.8). Hence, to finish the proof of (4.2), it suffices to prove
the following:

(4.11) LEMMA. For every R > 0,
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(4.12) lim
ε↓0,T↑∞

µ
(ε,x)
T (B(0, R)) = 0 .

Proof. Noting the result of the Corollary (3.18), the conclusion is obtained
as soon as we show that, for every R > 0,

(4.13) lim
ε↓0

µ
(ε,x)
T (B(0, R)) = µ

(x)
T (B(0, R)) .

For this, we write

∣

∣

∣
E0

(

1I(T<τε)1IB(0,R)(v
(ε,x)
T )

)

− E01IB(0,R)(u
(x)
T )
∣

∣

∣ ≤

E0

(

1I(T<τε∧T ε
Ω̄
)

∣

∣

∣
1IB(0,R)(v

(ε,x)
T ) − 1IB(0,R)(u

(x)
T )
∣

∣

∣

)

+ P (T ≥ τε) + 2P (T ≥ T ε
Ω̄) .

As in the proof of the Proposition (2.12), it suffices to study the first term. But,
the result of the Lemma (2.18) allows us to control this term, using the fact
that ux

T does not charge the boundary of the ball, and (4.13) follows.
This also ends the proof of the Proposition (4.1).

5. Proof of the Theorem (1.9)

To prove the Theorem (1.9) we need the following important:

(5.1) PROPOSITION. Let H be a compact subset of IRd \ {0}. Then

(5.2) lim
ε↓0

sup
u∈H

|G(ε,x)(0, u) − g(x)(0, u)| = 0 .

Proof. We shall show that, for ε ↓ 0,

(5.3) G(ε,x)(0, u)du→ g(x)(0, u)du , vaguely ,

and then, that there exists ε0 > 0, such that {G(ε,x)(0, ·), ε ∈ (0, ε0]} is a
relatively compact subset of the set of continuous functions on H.

For the proof of (5.3), we denote Lipρ(IR
d) the set of all bounded Lipschitz

continuous functions f on IRd, with support in B(0, ρ), such that ‖f‖Lip ≤ 1.

By (4.3) and (3.8), for every f ∈ Lipρ(IR
d),

∣

∣

∣

∣

∣

∣

∫

(T 1
ε
◦ϕ−1

x )(Ω)

G(ε,x)(0, u)f(u)du−
∫

IRd

g(x)(0, u)f(u)du

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

E0

(

1I(T<τε)

∫ T

0

f(v
(ε,x)
t )dt

)

− E0

∫ T

0

f(u
(x)
t )dt

∣

∣

∣

∣

∣
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+

∣

∣

∣

∣

E0

(

1I(T<τε)

∫ τε

T

f(v
(ε,x)
t )dt

)∣

∣

∣

∣

+ T P (T ≥ τε) +

∣

∣

∣

∣

E0

∫ ∞

T

f(u
(x)
t )dt

∣

∣

∣

∣

≤ c T ε+

∣

∣

∣

∣

E0

(

1I(T<τε)

∫ τε

T

f(v
(ε,x)
t )dt

)∣

∣

∣

∣

+ c T e−
c′

ε2T +

∣

∣

∣

∣

E0

∫ ∞

T

f(u
(x)
t )dt

∣

∣

∣

∣

,

as follows from (2.13) and from the classical exponential inequality. We can
make small the last term by choosing a large T , as in (3.17). To control the
second term we use (4.2). Doing so we get (5.3).

Now, we shall show that there exists ε0 > 0, such that the functionsG(ε,x)(0, ·),
ε ∈ (0, ε0], are uniformly equicontinuous, provided they are restricted to the
compact set H.

We prove the existence of a constant c > 0, such that, for every u ∈ H, and
ε ∈ (0, ε0],

(5.4) |XJjG(ε,x)(0, u)| ≤ c , j = 1, . . . , d .

By (4.4), for u ∈ (T 1
ε
◦ ϕ−1

x )(Ω), we have

XJjG(ε,x)(0, u) = εQ−2XJjG(x, ux
ε ) = εQ−2+lj (XJjG)(x, ux

ε ) .

To obtain (5.4), we use another important estimate. It is similar to (1.7),
but on the derivatives of G (see §6):

(5.5) |Xi1 . . . Xiq
G(x, y)| ≤ c

|y|Q−2+q
x

, y 6= x close enough .

Hence, for j = 1, . . . , d,

εQ−2+lj (XJjG)(x, ux
ε ) ≤ c εQ−2+lj

|ux
ε |

Q−2+lj
x

=
c

|u|Q−2+lj
h

,

which is bounded when u lies in a compact set, and (5.4) is verified.
Using the weak convergence in (5.3) and the relatively compacteness of

{G(ε,x)(0, ·), ε ∈ (0, ε0]} on H, we can identifie the limit of G(ε,x)(0, ·). This
ends the proof of (5.2).

Proof of the Theorem (1.9). We take

H = {u ∈ IRd : sup(|uj | : j = 1, . . . , d) = 1}

and
εy = sup(|uj |

1
lj : j = 1, . . . , d) ,

with y ∈ Ω, y = ϕx(u). Clearly,

(

T 1
εy

◦ ϕ−1
x

)

(y) ∈
(

T 1
εy

◦ ϕ−1
x

)

(Ω) ∩H .
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For every δ > 0 and for every y sufficiently close to x, there exists ε(δ) > 0,
such that εy ≤ ε(δ) and, by (5.1),

∣

∣

∣
G(ε,x)

(

0,
(

T 1
εy

◦ ϕ−1
x

)

(y)
)

− g(x)
(

0,
(

T 1
εy

◦ ϕ−1
x

)

(y)
)∣

∣

∣ ≤ δ .

We note that, u
(x)
ε2t and Tε(u

(x)
t ) have the same law. Hence, by (3.8), we get

(5.6) g(x)
(

0, T 1
ε
(u)
)

= εQ−2g(x)(0, u) .

Then, using (4.4) and (5.6), for every δ > 0 and for every y sufficiently close
to x, y = ϕx(u),

(5.7)
∣

∣

∣εQ−2
y G(x, y) − εQ−2

y g(x)(0, u)
∣

∣

∣ ≤ δ .

Moreover, we can replace here εy by |y|x because, there exists c > 0 such
that,

(5.8) |y|x ≤ c εy .

Finally, let us denote, for θ ∈ IRd \ {0},

(5.9) Φx(θ) = g(x)(0, θ) .

As a consequence of the Proposition (3.9), Φx is a strictly positive smooth
function on IRd \ {0}.

By (1.8), for y 6= x,

θx(y) =
(

T 1
|y|x

◦ ϕ−1
x

)

(y) .

So, we conclude that, for every δ > 0 and for every y sufficiently close to x,

∣

∣|y|Q−2
x G(x, y) − Φx(θx(y))

∣

∣ ≤ δ ,

that is, (1.10).
The proof of the Theorem (1.9) is complete, except for the proof of Lemmas

(A.1) and (A.7) of the Appendix and of the estimates (1.7), (3.13) and (5.5),
which are simple consequences of [19] estimates, as we show in the following
section.

6. Locally homogeneous norm associated to L

In this section we shall study the locally homogeneous norm | · |x and we
shall then justify the estimates (1.7), (3.13) and (5.5). It suffices to prove the
following:
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(6.1) PROPOSITION. There exists some positive constants c, c′, such that, for

y 6= x close enough,

(6.2) |G(x, y)| ≤ c |y|2x
m(Bh(x, |y|x))

, |Xi1 . . . Xiq
G(x, y)| ≤ c′ |y|2−q

x

m(Bh(x, |y|x))
.

The estimates are then obtained using the simple calculation of the volume
of a small homogeneous ball, Bh(x, ε) = {y : |y|x < ε}:

(6.3) m(Bh(x, ε)) =

∫

|y|x<ε

dy = c εQ

∫

|v|h<1

dv = c′ εQ .

Here we performed the change of variables v = (T 1
ε
◦ ϕ−1

x )(y) and c′ denotes a
positive constant.

Proof of the Proposition (6.1). Noting the result of the Corollary in [19], p.
117, it is enough to show that there exists a positive constant c, such that, for
y sufficiently close to x,

(6.4) ρ(x, y) ≤ c |y|x .

Recall that ρ(x, y) is the distance introduced by [19], p. 107.
But by the Theorem 3 in [19], p. 112, ρ is locally equivalent to the pseudo-

distance ρ3. So, there exists a positive constant c, such that, for y sufficiently
close to x,

(6.5) ρ(x, y) ≤ c ρ3(x, y) .

Recall that,

ρ3(x, y) = inf{δ > 0 : ∃f ∈ C3(δ), f(0) = x, f(1) = y} .

Here C3(δ) = ∪DC3(δ,D), where, for each d-tuple D of multi-indices J , with
|J | ≤ r, C3(δ,D) denote the class of smooth curves f : [0, 1] → IRd, such that

f ′(t) =
∑

J∈D

cJX
J(f(t)) , with |cJ | < δ|J| , J ∈ D .

We shall introduce a slight modification of the pseudo-distance ρ3. We de-
note by C(δ,B) the set of C1-functions f : [0, 1] → IRd, such that

f ′(t) =
∑

j=1,...,d

cjX
Jj (f(t)) , with

r
∑

k=1





∑

j,lj=k

c2j





Q
2k

< δQ .
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Then we define,

dB(x, y) = inf{δ > 0 : ∃f ∈ C(δ,B), f(0) = x, f(1) = y} ∧ 1 .

But

r
∑

k=1





∑

j,lj=k

c2j





Q
2k

< δQ ⇒ |cj | < δlj , j = 1, . . . , d ,

so, C(δ,B) ⊂ C3(δ). It follows that, for y sufficiently close to x,

(6.6) ρ3(x, y) ≤ dB(x, y) .

Moreover, by the definitions of |y|x and of dB(x, y), and by our assumptions
on Ω, it is a simple observation that, for x, y ∈ Ω,

(6.7) dB(x, y) = |y|x .

This ends the proof of (6.4) and of the proposition.

(6.8) REMARK. Clearly, dB(x, y) is a pseudo-distance in the sense of [19], p.
109. From this, by (6.7), we see that there exists a constant c0 ≥ 1, such that,
for every x, y, z ∈ Ω,

(6.9) |y|x ≤ c0 (|z|x + |z|y) .

(6.10) REMARK. We can check another simple property of | · |x. For every
x, y ∈ Ω, y = ϕx(u), there exists two positive constants, c′, c′′, such that

(6.11) c′ ‖u‖ ≤ |y|x ≤ c′′ ‖u‖ 1
r .

7. Capacity of small compact sets

In this section we shall estimate the capacity (relative to the kernel G) of
small compact sets.

To apply the theory of Blumenthal and Getoor [6] for Markov processes in
duality, we must consider the process (xt) killed at an independent exponential

random time ξ, of parameter λ > 0, which we denote by (x
(λ)
t ).

The Green function of (x
(λ)
t ) is the λ-potential of (xt):

(7.1) Gλ(x, y) =

∫ ∞

0

e−λtpΩ
t (x, y)dt .

(7.2) REMARK. The result of the Theorem (1.9) still holds with G replaced
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by Gλ. Indeed, we have

∣

∣Gλ(x, y) |y|Q−2
x − Φx(θx(y))

∣

∣

≤
∣

∣

∣

∣

Gλ(x, y)

G(x, y)
− 1

∣

∣

∣

∣

·
∣

∣G(x, y) |y|Q−2
x

∣

∣+
∣

∣G(x, y) |y|Q−2
x − Φx(θx(y))

∣

∣ .

The conclusion follows as soon as we show that,

lim
ε↓0

sup
‖y−x‖<ε

∣

∣

∣

∣

Gλ(x, y)

G(x, y)
− 1

∣

∣

∣

∣

= 0 ,

which can be done as in [9], p. 241.
Therefore, for every η > 0 and for every y 6= x close enough,

(7.3)
−η + Φx(θx(y))

|y|Q−2
x

≤ Gλ(x, y) ≤ η + Φx(θx(y))

|y|Q−2
x

.

Now, let us recall some definitions. By choosing λ > 0 large enough, we can

apply the theory of [6] to the process (x
(λ)
t ). For a compact subset H in Ω, we

denote
T

(λ)
H = inf{t > 0 : x

(λ)
t ∈ H} .

Let µ
(λ)
H the equilibrium measure of H, that is the unique finite measure sup-

ported by H such that, for every x ∈ Ω,

(7.4) Px(T
(λ)
H <∞) = Gλµ

(λ)
H (x) =

∫

IRd

Gλ(x, y)µ
(λ)
H (dy) .

The λ-capacity of H will be denoted by cλ(H), and is the total mass of µ
(λ)
H ,

or, equivalently

(7.5) cλ(H) = sup{|µ| : µ ∈ M(H), Gλµ ≤ 1 on Ω} .

Here M(H) is the set of all positive finite measures supported on H.
Let H be a compact subset of IRd containing 0. We shall describe the

capacity of a small compact set. The natural dilation of H is Hx
ε = (ϕx◦Tε)(H).

We shall study the asymptotic behaviour of cλ (Hx
ε ) as ε→ 0.

To write down the statement we need the following:

(7.6) LEMMA. There exists

(7.7) lim
ε↓0

|vx
ε |ux

ε

ε
= α(u, v) > 0

and
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(7.8) lim
ε↓0

θux
ε
(vx

ε ) = β(u, v) 6= 0 ,

for u 6= v ∈ IRd \ {0}.

Proof. We have to calculate |vx
ε |ux

ε
. Since {XJj (y) : j = 1, . . . , d} is a basis

for y close to x, we have,

vx
ε = exp(Zε)(x) = exp(Wε)(u

x
ε ) , ux

ε = exp(Yε)(x) ,

with,

Zε =
∑

j=1,...,d

εljvjX
Jj , Yε =

∑

j=1,...,d

εljujX
Jj , Wε =

∑

j=1,...,d

wε
jX

Jj .

By the Campbell-Hausdorff formula we get,

Zε = Wε + Yε +
1

2
[Wε, Yε] + . . . ,

so,
wε

j = εlj bj(u, v) +O(εlj+1) , j = 1, . . . , d , bj(u, v) 6= 0 .

Using (1.5), we get

(7.9) |vx
ε |ux

ε
= ε α(u, v) +O(ε1+δ) , δ ∈ (0, 1) .

with,

(7.10) α(u, v) =







r
∑

k=1





∑

j,lj=k

bj(u, v)
2





Q
2k







1
Q

.

This proves (7.7).
On the other hand, by (1.8) and the preceding calculation, we can write,

θux
ε
(vx

ε ) =

(

wε
j

|vx
ε ||J|

ux
ε

)

j=1,...,d

=

(

bj(u, v) +O(ε)

α(u, v)lj +O(εδ)

)

j=1,...,d

, δ ∈ (0, 1) .

Taking,

(7.11) β(u, v) =

(

bj(u, v)

α(u, v)lj

)

j=1,...,d

we get (7.8) and the lemma is proved.
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We denote

(7.12) rx(u, v) =
Φx(β(u, v))

α(u, v)Q(x)−2
, qx(H) =

m(H)

maxu∈∂H

∫

H
rx(u, v)dv

.

We can state now the main result of this section:

(7.13) PROPOSITION. Let H be the closure of a bounded domain in IRd con-

taining 0, and x ∈ Ω. Then

(7.14) lim
ε↓0

cλ (Hx
ε )

εQ(x)−2
= qx(H) .

Proof. We consider ν, the measure with the density 1IH with respect to the
Lebesgue measure and νx

ε , the image measure of ν through ϕx ◦ Tε.
A lower bound for cλ (Hx

ε ) is obtained as soon as we can obtain a uniform
bound on Gλν

x
ε . By the maximum principle of Bony [7], for hypoelliptic oper-

ators, it suffices to bound Gλν
x
ε on Hx

ε .
Take ux

ε ∈ Hx
ε . Then,

Gλν
x
ε (ux

ε ) =

∫

IRd

Gλ(ux
ε , v)ν

x
ε (dv) =

∫

H

Gλ(ux
ε , v

x
ε )dv .

Then, by (7.3) and (7.9),

Gλν
x
ε (ux

ε ) ≤
∫

H

η + Φux
ε
(θux

ε
(vx

ε ))

|vx
ε |Q−2

ux
ε

dv =

∫

H

η + Φux
ε
(θux

ε
(vx

ε ))

εQ−2(α(u, v)Q−2 +O(εδ))
dv .

Using (7.5), for all u ∈ H,

cλ (Hx
ε )

εQ−2
≥ m(H)
∫

H

η+Φux
ε
(θux

ε
(vx

ε ))

α(u,v)Q−2+O(εδ)
dv

.

Hence, by the continuity of Φx(θ) and by (7.11), we get,

(7.15) lim inf
ε↓0

cλ (Hx
ε )

εQ−2
≥ qx(H) .

On the other hand,

νx
εGλ(ux

ε ) =

∫

IRd

Gλ(v, vx
ε )νx

ε (dv) =

∫

H

Gλ(vx
ε , u

x
ε )dv =

∫

H

Gλ(ux
ε , v

x
ε )dv ,

so, again by (7.3) and (7.9),

νx
εGλ(ux

ε ) ≥
∫

H

−η + Φux
ε
(θux

ε
(vx

ε ))

|vx
ε |Q−2

ux
ε

dz =

∫

H

−η + Φux
ε
(θux

ε
(vx

ε ))

εQ−2(α(u, v)Q−2 +O(εδ))
dv .
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We denote by µλ,x
ε,H , the equilibrium measure of Hx

ε . We can write,

|µλ,x
ε,H | ·

∫

H

−η + Φux
ε
(θux

ε
(vx

ε ))

εQ−2(α(u, v)Q−2 +O(εδ))
dv ≤

∫

IRd

µλ,x
ε,H(dux

ε )νx
εGλ(ux

ε )

=

∫

IRd

νx
ε (dv)Gλµ

λ,x
ε,H(v) ≤ |νx

ε | = m(H) .

Hence, for all u ∈ H,

cλ (Hx
ε )

εQ−2
·
∫

H

−η + Φux
ε
(θux

ε
(vx

ε ))

α(u, v)Q−2 +O(εδ)
dv ≤ m(H) ,

from which we get, by (7.11),

(7.16) lim sup
ε↓0

cλ (Hx
ε )

εQ−2
≤ qx(H) .

8. Applications: various sample path properties

As was said in [9], p. 222, as soon as we dispose of the results on the Green
function and on the capacity of small compact sets, we can derive some sample
path properties. The general methods used in [9], §7 and §8, can be applied.

We note that, for certain properties we do not need the exact behaviour of
G, but only the estimates

(8.1)
c′

|y|Q−2
x

≤ G(x, y) ≤ c

|y|Q−2
x

, withx 6= y close enough ,

c, c′ being positive constants. The right hand is (1.7) and the left hand can
be obtained in a similar way as (1.7), that is, using the estimate on the volume
of homogeneous small balls, (6.3) and the Theorem I (ii) in [10], p. 248.

We shall emphasize only the differences with respect to the case considered
by [9].

(a) Hitting probabilities of small compact sets.

For ε > 0 sufficiently small, we denote,

THx
ε

= inf{t > 0 : xt ∈ Hx
ε } .

(8.2) PROPOSITION. For n ≥ 1 integer, for x0, x1, . . . , xn distinct points of

Ω and for t ≥ 0,

(8.3) lim
ε↓0

(

1

εQ(x)−2

)n

Px0(TH
x1
ε

≤ . . . ≤ THxn
ε

≤ t) = qx1(H) . . . qxn
(H)
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. ×
∫

0≤s1≤...≤sn≤t

ds1 . . . dsn p
Ω
s1

(x0, x1)p
Ω
s2−s1

(x1, x2) . . . p
Ω
sn−sn−1

(xn−1, xn) .

Moreover, there exists constants c, cn,t > 0, independent of x0, x1, . . . , xn, such

that, whenever |xj |xj−1
≥ c ε, j = 1, . . . , n

(8.4)

(

1

εQ(x)−2

)n

Px0(TH
x1
ε

≤ . . . ≤ THxn
ε

≤ t) ≤ cn,t

n
∏

j=1

1

|xj |Q(x)−2
xj−1

.

For the proof we use the result on the capacity (7.11) and we repeat the ar-
guments in pp. 250-252, [9].

(b) Wiener sausage.

We shall analyse the asymptotic behaviour of the volume of the Wiener
sausage of small radius. For 0 ≤ t < τ , let us denote

(8.5) SHx
ε
(0, t) =

⋃

0≤s≤t

Hxs
ε ,

the ”sausage” associated to (xt) and to Hx
ε , H ⊂ IRd, containing 0.

By a similar proof as in [9], pp. 253-257, we could obtain:

(8.6) PROPOSITION. Let µ(dx) = f(x) dx, where f is a bounded measur-

able function on Ω. Then, for every p ≥ 1, 0 < T < τ , x0 ∈ Ω,

(8.7) lim
ε↓0

Ex0

[

sup
0≤t≤T

∣

∣

∣

∣

1

εQ(x)−2
µ
(

SHx
ε
(0, t)

)

−
∫ t

0

f(xs)qxs
(H)ds

∣

∣

∣

∣

p
]

= 0 .

(8.8) REMARK. Recall that (Gt) denote the invariant diffusion on N (m, r).
Let us denote, for ε > 0, t ≥ 0,

(8.9) SN
ε (0, t) = {g ∈ N (m, r) : |g · G−1

s |N ≤ ε , for some s ≤ t} .

If µ denotes the Haar measure on the group, by the Theorem (4.9) in [12],
we get,

(8.10) lim
t↑∞

1

t
µ(SN

1 (0, t)) = c , Pe − a.s.

From this we obtain a similar result as (7.q) in [9], p. 258:

(8.11) lim
ε↓0

1

εQN−2
µ(SN

ε (0, 1)) = c, in probability .

Indeed, if δε denotes the image on N (m, r) of the dilation on the algebra g(m, r)
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(see [2], p. 88), then (δε(Gs)) and (Gε2s) have the same law. By scaling and ho-
mogeneity properties we can show that µ(SN

ε (0, 1)) and εQNµ(SN
1 (0, 1

ε2 )) have
the same law.

(c) Double points.

We could prove the same result as the Theorem 8.2 in [9], p. 261:

(8.12) PROPOSITION. For every x ∈ Ω, with Px probability one, the pro-

cess {xs : 0 ≤ s < τ} does not have double points.

In proving this, we use the Hausdorff measure with respect to the homoge-
neous norm | · |x and the estimates for G, (8.1). The difference with respect to
[9] is that, instead (8.d), p. 262, we prove:

Ex

(

sup
s<δ∧τ

|xs|Q(x)−2
x

)

≤ c δ
Q(x)−2

2 ,

for every x ∈ Ω, δ ∈ (0, 1), c being a positive constant. For this, we use the
Taylor stochastic expansion and the fact that, for every multi-index J , there
exists a constant c(J) > 0, such that, E(|BJ

t |2) ≤ c(J) t|J| (see [1], p. 34).

(d) Wiener and Poincaré tests.

The result which we formulate is similar to the classical Wiener test. For
another form we refer to [5], p. 98.

Let us consider a constant α greather than the constant c0 ≥ 1, which ap-
pears in the triangular inequality for the homogeneous norm | · |x, (6.9). For B
a Borel set contained in U we denote

(8.13) Bn = {y ∈ B :
1

αn+1
≤ |y|x ≤ 1

αn
} , n ≥ 1 .

(8.14) PROPOSITION. The probability Px(T
(λ)
B = 0) = 0 or 1 according as

the series
∑

n α
n(Q(x)−2)cλ(Bn) converges or diverges.

We show that, for n ≥ 1,

c′ αn(Q−2)cλ(Bn) ≤ Px(T
(λ)
Bn

<∞) ≤ c α(n+1)(Q−2)cλ(Bn) ,

using the estimates in (8.1). Then we conclude as in [12], pp. 108-110.
This result could be applied to obtain the cone test of Poincaré. A homo-

geneous cone with vertex 0 is a Borel set C with non-empty interior, which is
stable for the dilations Tα and such that 0 ∈ ∂C.
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(8.15) COROLLARY. Consider C a homogeneous cone with vertex 0 and N
a neighbourhood of 0. If B is a Borel set such that ϕx(N ∩ C) ⊂ B ⊂ U , then

Px(T
(λ)
B = 0) = 1.

We note that Cn+1 = T1/α(Cn), n ≥ 1, so, by a simple property of the

capacity (see [12] Proposition (4.7)), we get, cλ(Cn) = cα−n(Q−2), c > 0. Then
we can conclude, using the Proposition (8.14), since ϕx((N ∩ C)n) ⊂ Bn and
cλ(ϕx(N ∩ C)) = c cλ(N ∩ C), c > 0, (see also the Corollary (5.4) [12]).

9. Examples

In this section we shall describe some concrete examples, where we can
perform more calculations. Firstly, let us point out some simple cases.

We consider on IR3 the vector fields X1 = ∂x1
+ 2x2∂x3

, X2 = ∂x2
− 2x1∂x3

.
Then [X1, X2] = −4 ∂x3

and the operator L = 1
2 (X2

1 +X2
2 ) is hypoelliptic. This

case is called the Heisenberg case and in [11], p. 375 (see also [13], p. 101) was
calculated the Green function on IR3 with pole 0:

(9.1) GH(0, y) =
1/(4π)

√

(y2
1 + y2

2)2 + y2
3

4−2 =
1/(4π)

|y|QH−2
0

.

In [9] a more general situation is treated. Consider two smooth vector fields
X1, X2 on IR3, such that for every x ∈ Ω, X1(x), X2(x), [X1, X2](x) span IR3.
Then the Green function satisfies:

(9.2)
∣

∣G(x, y) d(x, y)4−2 − c
∣

∣→ 0 , as y → x .

It is also shown that the pseudo-distance d(x, y) is equivalent to |y|x.
We firstly treat the following:

(a) Curved Heisenberg case.

For n ≥ 1 integer, we take m = 2n and d = 2n+1. Suppose thatX1, . . . , X2n

are smooth vector fields on IR2n+1, such that,

(9.3) [X2k−1, X2k] = [X1, X2] , k = 1, . . . , n ,

all other brackets being zero. Let us consider Ω a bounded domain in IR2n+1. We
shall suppose that, for every x ∈ Ω, the vectors X1(x), . . . , X2n(x), [X1, X2](x)
span IR2n+1.

It is a particular case because we consider only two order brackets and a
single one is not zero. In this case r = 2 and Q = 2n+ 2. The basis is indexed
by B = {1, 2, . . . , 2n, (1, 2)}.

The diffusion associated to the vector fields, starting from a fixed point
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x ∈ Ω, is

(9.4) xt = exp





2n
∑

j=1

Bj
tXj −

1

2

n
∑

k=1

∫ t

0

(B2k
s dB2k−1

s −B2k−1
s dB2k

s )[X1, X2]



 (x)

. +t
3
2R3(t) ,

as we can see by (2.14). We must compare (xt) to the left invariant diffu-
sion on the Heisenberg group, H2n+1, with its usual structure on IR2n+1. The
left invariant vector fields are defined by

Y2k−1 = ∂x2k−1
− 2x2k ∂x2n+1

, Y2k = ∂x2k
+ 2x2k−1 ∂x2n+1

, k = 1, . . . , n ,

so, the invariant diffusion started from 0 is

(9.5) Gt = exp





2n
∑

j=1

Bj
tYj −

1

2

n
∑

k=1

∫ t

0

(B2k
s dB2k−1

s −B2k−1
s dB2k

s )[Y1, Y2]



 (0) .

In this case we do not need any projection, and (u
(x)
t ) is the diffusion

(9.6)

(

B1
t , . . . , B

2n
t ,−1

2

n
∑

k=1

∫ t

0

(B2k
s dB2k−1

s −B2k−1
s dB2k

s )

)

.

Its Green fonction, g(x), is the invariant Green function on the Heisenberg group.
By the result of [11], p. 375, we get

(9.7) g(x)(0, y) =
1/cn

[

(

∑2n
j=1 y

2
j

)2

+ y2
2n+1

]
n
2
, cn =

2n−1Γ(n
2 )

πn+1
.

For y = ϕx(y1, . . . , y2n+1), we denote

(9.8) |y|x =











2n
∑

j=1

y2
j





n+1

+ |y2n+1|n+1







1
2n+2

.

Then, applying the Theorem (1.9), we obtain

(9.9) lim
ε↓0

sup
‖x−y‖<ε

∣

∣G(x, y) |y|2n
x − Φx(θx(y))

∣

∣ = 0 .

Here,

(9.10) θx(y) =

(

y1
|y|x

, . . . ,
y2n

|y|x
,
y2n+1

|y|2x

)

28



and

(9.11) Φx(t1, . . . , t2n+1) =
cx/cn

[

(

∑2n
j=1 t

2
j

)2

+ t22n+1

]
n
2
, cx > 0 .

(9.12) REMARK. Noting the symetry of the first 2n coordinates, we can write
a simpler form of (9.9). Put

(9.13) ϑ(y) =
|y2n+1|
∑2n

j=1 y
2
j

, Ψ(t) =
1

cn

(1 + tn+1)
n

n+1

(1 + t2)
n
2

.

Then, by (9.9), we get

(9.14) lim
ε↓0

sup
‖y−x‖<ε

∣

∣G(x, y) |y|2n
x − cxΨ(ϑ(y))

∣

∣ = 0 .

We also note that, for n = 1, Ψ = 1
cn

is constant and we can compare (9.14)
with the result obtained by [9], (9.2).

(9.15) REMARK. In this particular case we could easily write the result on
the capacity of small compact sets.

Now, we shall study a slight extension of the last model. Let us replace (9.3)
by the following assumption:

(9.16) [X2k−1, X2k] = ak[X1, X2] , ak ∈ IR∗ , k = 1, . . . , n ,

all other hypothesis on the vector fields being the same.
The associated diffusion can be written as in (9.4), using the Taylor stochas-

tic expansion. It will be compared to the diffusion (ũx
t ) generated by the fol-

lowing vector fields:

Y2k−1 = ∂x2k−1
+ 2 ak x2k ∂x2n+1

, Y2k = ∂x2k
− 2 ak x2k−1 ∂x2n+1

, k = 1, . . . , n ,

that is,

(9.17)

(

B1
t , . . . , B

2n
t ,−1

2

n
∑

k=1

ak

∫ t

0

(B2k
s dB2k−1

s −B2k−1
s dB2k

s )

)

.

The Green function associated to (ũx
t ) was pointed out by [16], p. 136:

(9.18) g̃(x)(0, y) = cn

∫

IR

A(s) ds
(
∑n

k=1 bk(s)(y2
2k−1 + y2

2k) + i s y2n+1

)n ,

where i =
√
−1, cn = (n−1)!

2π and
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(9.19) A(s) =
1

(4π)n

n
∏

k=1

4aks

sinh(4aks)
, bk(s) = (aks) coth(4aks) .

(9.20) REMARK. When (y1, . . . , y2n+1) = (0, . . . , 0, y2n+1), with y2n+1 6= 0,
we must integrate in (9.19) on IR + i q, q > 0 (see also [4]).

We can obtain the behaviour of the Green function G̃, associated to the
vector fields Xj , as in the first case. We use the same homogeneous norm, given
by (9.8), and we get the same relation as (9.9), with Φx replaced by:

(9.21) Φ̃x(t1, . . . , t2n+1) = cx cn

∫

IR

A(s) ds
(
∑n

k=1 bk(s)(t22k−1 + t22k) + i s t2n+1

)n .

(9.22) REMARK. We can simplify the result again, using the symetry of the
pairs of coordinates.

(9.23) REMARK. We can find again the result of [9], for n = 1. Also, we
could formulate the result on the capacity.

(9.24) REMARK. A more general situation can be obtained assuming that
m = 2n, d = 2n + p (p missing directions, p ≥ 1, integer) and r = 2. Us-
ing some recent results of [4] we could write similar results.

As was said, we shall describe a case when the condition that the geometry
of the brackets is locally constant fails:

(b) A case at step larger than two.

Let us consider on IR3 the vector fields

(9.25) X1 = ∂x1
+ 2 p x2(x

2
1 + x2

2)
p−1∂x3

, X2 = ∂x2
− 2 p x1(x

2
1 + x2

2)
p−1∂x3

,

with p ≥ 1, integer, and L = 1
2 (X2

1 + X2
2 ). The case p = 1 is the classical

Heisenberg case H3 = N (2, 2).
The operator L is nowhere elliptic, but is hypoelliptic. Indeed, for p > 1

and for x /∈ {x1 = x2 = 0}, we have

[X1, X2] = −8 p (x2
1 + x2

2)
p−1∂x3

.

So, for p > 1 and for x /∈ {x1 = x2 = 0}, X1(x), X2(x) and [X1, X2](x) span
IR3. This situation was already treated. On the other hand we see that for the
points on the axis {x1 = x2 = 0}, to span IR3 we need to go up to the brackets
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of order 2 p in this points. This time r(0, 0, x3) = 2 p and Q(0, 0, x3) = 2 p+ 2.
Clearly, the geometry of the brackets is not locally constant around the point
(0, 0, x3).

Operators like L occur in the study of the boundary of the Cauchy-Riemann
complex (see [17]). Precisely, let us consider the domain

D = {(z1, z) ∈ C
 2 , Im z1 > |z|2p} .

If p = 1, D is the generalized upper half plane in C
 2. The vector field

∂z − 2 i z̄ ∂z1 is the unique holomorphic vector field which is tangent to the
boundary bD of D. In the tangential coordinate system (see [17]: coordinates
ρ = Im z1 − |z|2, z, z̄ and x3 = Re z1) this vector field takes the form

Z = ∂z + i z̄ ∂x3
.

Z is left-invariant with respect to the nilpotent group structure, the Heisenberg
group, on IR3 = bD.

In the case p > 1, we have

Z = ∂z + i p zp−1z̄p ∂x3

and there is no group structure on IR3 with respect to which Z is left-invariant.
We also note that Z = 1

2 X1 − i
2 X2 and L is of the type − b, precisely,

L = Z Z̄ + Z̄ Z .

Recall that in the Heisenberg case, the Green function on IR3 is known.
By left-invariance it suffices to know the Green function with pole (0, 0, 0) (see
(9.1)).

In [15] the case p = 2 is considered and the expression of the Green function
on IR3 with arbitrary pole is given.

Here we consider an arbitrary p. As was said, the case when the pole is
outside of the axis {x1 = x2 = 0} was treated. It is plausible that the method
of [15] can give an exact formula for the Green function with arbitrary pole.
However, the calculation seems to be more delicate (see also [17], p. 157). Nev-
ertheless, we can give an exact formula for the Green function with pole on the
axis {x1 = x2 = 0}:

(9.26) PROPOSITION. The Green function on IR3, associated to the vector

fields X1, X2, with pole (0, 0, x3), is

(9.27) G((0, 0, x3), (y1, y2, y3)) =
1/(4 p π)

√

(y2
1 + y2

2)2p + (y3 − x3)2
.

Proof. We denote w = y1 + i y2, σ
2 = |w|4p +(y3 −x3)

2 and we must show that
the Green function is

G((0, x3), (w, y3)) =
1

4 p π σ
.
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Clearly, this function is a C∞-function of (w, y3), as long as (w, y3) 6= (0, x3).
We consider, for ǫ > 0, the C∞-function on IR3,

Gǫ((0, x3), (w, y3)) =
1

4 p π σǫ
,

where σ2
ǫ = (|w|2p + ǫ2p)2 + (y3 − x3)

2.
Then, Gǫ((0, x3), (w, y3)) → G((0, x3), (w, y3)), pointwise as ǫ ↓ 0, as long as

(w, y3) 6= (0, x3). In fact, we can show that

G((0, x3), (w, y3)) = lim
ǫ↓0

Gǫ((0, x3), (w, y3)) , as a distribution in IR3 .

Indeed, we see that there exists a positive constant c, independent of ǫ, such
that |Gǫ| ≤ c

σ . If we show that 1
σ is locally integrable, then, by the Lebesgue

dominated convergence theorem we get

Gǫ((0, x3), ·) → G((0, x3), ·) , inD′(IR3) , as ǫ ↓ 0 .

We study the integrability at (w, y3) = (0, x3) and we may suppose that x3 = 0.
We shall estime 1

σ on the domain |w| ≤ 1, |y3| ≤ 1. We have,

∫ 1

−1

dy3
σ

= 2 log [1 + (1 + |w|4p)1/2] − 4 p log |w| .

The first term is clearly integrable on |w| ≤ 1, as for the second,
∫

|w|≤1
| log |w||

×dv(w) = 2π
∫ 1

0
r log rdr <∞.

After some calculations, we get

L

(

1

4 p π σǫ

)

=
p

2π
· ǫ

2p |w|2p−2

σ3
ǫ

.

Hence, we have,
LG = 0 , as long as (w, y3) 6= (0, x3)

and
LGǫ((0, x3), (w, y3)) → 0 , as ǫ ↓ 0 ,

uniformly on compact subsets of IR3 which do not contain the point (0, x3).
We show that

∫

IR3

LGǫ((0, x3), (w, y3))dv(w, y3) = 1 .

Indeed,

p

2π
ǫ2p |w|2p−2

∫

IR

dy3

[(|w|2p + ǫ2p)2 + (y3 − x3)2]
3/2

=
p

π
· ǫ2p |w|2p−2

(|w|2p + ǫ2p)2
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and then,

p

π
ǫ2p

∫

IR2

|w|2p−2 dv(w)

(|w|2p + ǫ2p)2
= 2 p ǫ2p

∫ ∞

0

r2p−1 dr

(r2p + ǫ2p)2
= 1 .

Now we consider an arbitrary φ ∈ C∞
0 (IR3). Then, for any neighbourhood

U of (0, x3), we can write,

< G((0, x3), ·), L φ >= lim
ǫ↓0

∫

IR3

Gǫ((0, x3), (w, y3))Lφ(w, y3)dv(w, y3)

= lim
ǫ↓0

φ(0, x3)

∫

IR3

LGǫ((0, x3), (w, y3))dv(w, y3)

+ lim
ǫ↓0

∫

IR3

LGǫ((0, x3), (w, y3))(φ(w, y3) − φ(0, x3))dv(w, y3)

= φ(0, x3) + lim
ǫ↓0

∫

IR3\U

LGǫ((0, x3), (w, y3))(φ(w, y3) − φ(0, x3))dv(w, y3)

+ lim
ǫ↓0

∫

U

LGǫ((0, x3), (w, y3))(φ(w, y3) − φ(0, x3))dv(w, y3) = φ(0, x3) .

This proves the fact that G is the Green function of L on IR3 with pole (0, x3).

(9.28) REMARK. In the Heisenberg case, the Green function with arbitrary
pole is given by (9.27). For the case treated in [15], p = 2, the Green function
with arbitrary pole has two terms, the first being the right hand of (9.27). In
the general case we should attempt to find p terms for the Green function with
arbitrary pole, the first being the right hand of (9.30).

The diffusion started from (0, 0, 0) ∈ {x1 = x2 = 0}, generated by X1, X2 is

(9.29) xt =

(

B1
t , B

2
t , 4 p

∫ t

0

R2(p−1)
s dSs

)

,

where

(9.30) R2
t = (B1

t )2 + (B2
t )2 , St =

1

2

∫ t

0

B2
sdB

1
s −B1

sdB
2
s .

We denote, for y = ϕ(0,0,0)(y1, y2, y3),

(9.31) |y|0 =
[

(y2
1 + y2

2)p+1 + |y3|
p+1

p

]
1

2p+2

,

(9.32) θ0(y) =

(

y1
|y|0

,
y2
|y|0

,
y3

|y|2p
0

)

,
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and

(9.33) Φ0(t1, t2, t3) =
1

4 p π
· 1
√

(t21 + t22)
2p + t23

.

Then, by (9.27),

(9.34) G(0, y) =
Φ0(θ

1
0(y), θ

2
0(y), θ

3
0(y))

|y|2p
0

.

Clearly, we could use the symmetry of the first two coordinates to write an-
other expression for the Green function (see [14] ).

Finally, we shall consider the:

(c) Grushin case.

Let us consider on IR2 the vector fields

(9.35) X1 = ∂x1
, X2 = x1∂x2

.

Then [X1, X2] = ∂x2 and the operator L = 1
2 (X2

1 + X2
2 ) is hypoelliptic on

the axis {x1 = 0} and elliptic elsewhere.
We consider the point x = (0, 0), which lies on the axis {x1 = 0}. Clearly,

r(0, 0) = 2, Q(0, 0) = 3 and B = {1, (12)}.
The diffusion started from x is

(9.36) xt =

(

B1
t ,

∫ t

0

B1
sdB

2
s

)

=

(

B1
t ,
B1

tB
2
t

2
− St

)

,

where St is as in (9.30).
The left invariant diffusion started from 0 on the Heisenberg group H3 is

(9.37) Gt = (B1
t , B

2
t ,−St) .

Therefore,

(9.38) xt = πx(Gt) , πx(a, b, c) = (a,
a b

2
+ c) .

From this it is not difficult to see that the Green function of (xt) is

(9.39) G((0, 0), (y1, y2)) =

∫

IR

GH

(

(0, 0, 0), (y1, h, y2 −
y1 h

2
)

)

dh ,

or, by (9.1)
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(9.40) G((0, 0), (y1, y2)) =
1

4π

∫

IR

dh
√

(y2
1 + h2)2 + (y2 − y1 h

2 )2
.

Let us denote

(9.41) |(y1, y2)|0 =
3

√

|y1|3 + |y2| 32 .

If we take

(9.42) θ0(y1, y2) =

(

y1
|(y1, y2)|0

,
y2

|(y1, y2)|20

)

and

(9.43) Φ0(t1, t2) =
1

4π

∫

IR

dh
√

(t21 + h2)2 + (t2 − t1 h
2 )2

,

then

(9.44) G((0, 0), (y1, y2)) =
Φ0(θ0(y1, y2))

|(y1, y2)|3−2
0

.

(9.45) REMARK. We could take as angular variable ϑ0(y1, y2) = y2

y2
1

to write

another expression for the Green function (see [14] ).

(9.46) REMARK. In this case several of our hypothesis fail: d = 2, Q(x) = 3,
the geometry of the brackets is not locally constant in x and the estimates of
[19] are not proved. Nevertheless, the result obtained by a direct calculation,
(9.44) is quite close to the result of the Theorem (1.9).

Appendix

We prove here the integral estimates which we used in the proof of the
Theorem (1.9).

We shall denote dk = card{j : lj = k}, k = 1, . . . , r. So, d =
∑r

k=1 dk and
Q =

∑r
k=1 kdk. We assume that r ≥ 2, d1 ≥ 2 and dk ≥ 1, k = 2, . . . , r.

(A.1) LEMMA. There exists two positive constants c0, c1, such that, for ev-

ery S > 0,

(A.2) I =

∫

|u|h<S

du

|u|Q−2
h

< cS
2

r2 ,

where c = c0(2π)l−rcr−1
1 except for r = 2, d2 = 1 where c =

√
2(2π)2.
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Proof. In estimating I we shall use the following simple observation. Let us
denote, for n ≥ 1, p, q > 0 and σ > 0,

(A.3) Λn,p,q(σ) =

∫ σ

0

ρn−1

(ρq + 1)p
dρ .

Clearly, Λn,p,q is increasing and we see that, there exists c1 > 0, depending
only on n, p, q, such that

(A.4) lim
σ↑∞

Λn,p,q(t) < c1 , provided pq − n > 0 .

Also, for S,R > 0, we have

(A.5)

∫ S

0

ρn−1

(ρq +R)p
dρ = R

n−pq
q Λn,p,q

(

S

R
1
q

)

.

We shall denote, for k = 1, . . . , r,

(A.6) s2k =
∑

j,lj=k

u2
j , Qk =

r
∑

i=k

i di .

Then

I ≤
∫

{u:|sk|<S
1
k ,k=1,...,r}

du
(

∑r
k=1 s

Q
k

k

)
Q−2

Q

=

∫

{|sk|<S
1
k ,k=2,...,r}

du′′
∫

{|s1|<S}

du′

(sQ
1 +R1)

Q1−2

Q

,

where du′ =
∏

j,lj=1 duj , du
′′ =

∏

j,2≤lj≤r duj and R1 =
∑r

k=2 s
Q
k

k . By a simple

change of variables and by (A.5), we get

∫

{|s1|<S}

du′

(sQ
1 +R1)

Q1−2

Q

= (2π)d1−1

∫ S

0

ρd1−1dρ

(ρQ +R1)
Q1−2

Q

= (2π)d1−1R
d1−Q1+2

Q

1 Λ
d1,

Q1−2

Q
,Q





S

R
1
Q

1



 .

We have Q · Q1−2
Q − d1 = Q2 − 2.

The case r = 2, d2 = 1 will be considered separately. For r = 2 and d2 > 1,
by (A.4) we get

I < c

∫

{|s2|<S
1
2 }

du′′

s
Q
2 ·

Q2−2

Q

2

= c

∫ S
1
2

0

ρd2−1dρ

ρ
2 d2−2

2

= c S
1
2 , c = (2π)d1+d2−2c1 .
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For r ≥ 3, again by (A.4), we can write

I < c

∫

{|sk|<S
1
k ,k=3,...,r}

du′′
∫

{|s2|<S
1
2 }

du′

(s
Q
2
2 +R2)

Q2−2

Q

,

where, this time du′ =
∏

j,lj=2 duj , du
′′ =

∏

j,3≤lj≤r duj and R2 =
∑r

k=3 s
Q
k

k .
By a similar calculation:

∫

{|s2|<S
1
2 }

du′

(s
Q
2
2 +R2)

Q2−2

Q

= (2π)d2−1

∫ S
1
2

0

ρd2−1dρ

(ρ
Q
2 +R2)

Q2−2

Q

= (2π)d2−1R
2 d2−Q2+2

Q

2 Λ
d2,

Q2−2

Q
, Q
2

(

S
1
2

R
2/Q
2

)

.

Since Q · Q2−2
Q − 2 d2 = Q3 − 2 > 0, we get

I < c

∫

{|sk|<S
1
k ,k=3,...,r}

R
−

Q3−2

Q

2 du′′ , c = (2π)d1+d2−2c21 .

For r = 3, d3 = 1, we have I < cS
2
9 , with c = 3(2π)d1+d2−2c21, and for

r = 3, d3 > 1,

I < c

∫

{|s3|<S
1
3 }

du′′

s
Q
3 ·

Q3−2

Q

3

= (2π)d3−1c

∫ S
1
3

0

ρd3−1dρ

ρ
3 d3−2

3

= c S
2
9 ,

with c = 3
2 (2π)d1+d2+d3−3c21.

For r ≥ 4 we repeat the reasoning and (A.2) is obtained in a finite number
of steps.

To finish the proof we must treat the case r = 2, d2 = 1. We have

I ≤
∫

{|s1|<S,|s2|<S
1
2 }

du1du2du3
√

s41 + s22
= 2π

∫

(0,S)×(0,S
1
2 )

ρ dρ dz
√

ρ4 + z2
≤ (2π)2

√
2S .

This ends the proof of (A.2).

Before stating the second result of this section we introduce some notations.
Recall that n = dim g(m, r) − d = cardA− cardB. Put A \B = {L1, . . . , Ln},
mi = |Li|, i = 1, . . . , n and ek = card{i : mi = k}, k = 1, . . . , r. So, n =
∑r

k=1 ek and QN =
∑r

k=1 k(dk + ek). For a point (u, h) ∈ IRd × IRn we denote

|(u, h)|N =







r
∑

k=1





∑

j,lj=k

u2
j +

∑

i,mi=k

h2
i





QN
2k







1
QN

.
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(A.7) LEMMA. For every S > 0, there exists a positive constant c, such that

(A.8)

∫

{|u|h<S}×IRn

du dh

|(u, h)|QN−2
N

< c

Proof. Let us denote, for k = 1, . . . , r

(A.9) t2k =
∑

i,mi=k

h2
i , QN,k =

r
∑

i=k

i (di + ei) .

Replacing in (A.2), d by d+ n and |u|h by |(u, h)|N , we get the existence of
a constant c > 0, such that for every U > 0,

(A.10)

∫

|(u,h)|N <U

du dh

|(u, h)|QN−2
N

< cU
2

r2 .

So, it suffices to prove that, for every S, T > 0, there exists a constant c > 0,
such that

(A.11) J =

∫

{|sk|<S
1
k ,|tk|≥T

1
k ,k=1,...,r}

du dh

[
∑r

k=1(s
2
k + t2k)

QN
2k ]

QN −2

QN

< c

We see that, for S, T > 0, b ≥ 1 and for a ≥ 2 and p ≥ 2 or a = 1 and p ≥ 3,
there exists a constant c2 > 0, such that

(A.12)

∫ S

0

ds

∫ ∞

T

dt
sa−1tb−1

(s2 + t2)
p(a+b)−2

2p

≤ c2 .

Indeed, we have to study only the integral in t and, clearly,

tb−1

(s2 + t2)
p(a+b)−2

2p

∼ 1

t1+a− 2
p

, as t ↑ ∞ .

We proceed as in the proof of the Lemma (A.1):

J =

∫

{|sk|<S
1
k ,|tk|≥T

1
k ,k=2,...,r}

du′′ dh′′
∫

|s1|<S,|t1|≥T

du′ dh′

[

(s21 + t21)
QN
2 +R1

]

QN,1−2

QN

,

where du′ =
∏

j,lj=1 duj , dh
′ =

∏

i,mi=1 hi, du
′′ =

∏

j,2≤lj≤r duj , dh
′′ =

∏

i,2≤mi≤r dhi, R1 =
∑r

k=2(s
2
k + t2k)

QN
2k . Using again (A.5) and (A.4), we get

J < c

∫

{|sk|<S
1
k ,|tk|≥T

1
k ,k=2,...,r}

du′′ dh′′
∫ ∞

0

ρd1+e1−1dρ

(ρQN +R1)
QN,1−2

QN

< c c1

∫

{|sk|<S
1
k ,|tk|≥T

1
k ,k=2,...,r}

du′′ dh′′R

d1+e1−QN,1+2

QN

1 .
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Here we used the fact that QN · QN,1−2
QN

− (d1 + e1) = QN,2 − 2 > 0, excepting
the case when r = 2, d2 = 1 and e2 = 0 which will be treated separately.

For r = 2, d2 > 1 and e2 ≥ 1, we can write, by (A.12),

∫

|s2|<S
1
2 ,|t2|≥T

1
2

du′′ dh′′

(s22 + t22)
QN
4 ·

QN,2−2

QN

=

∫ S
1
2

0

ds

∫ ∞

T
1
2

dt
sd2−1te2−1

(s2 + t2)
2 (d2+e2)−2

4

< c2 .

For r ≥ 3 we repeat the reasoning:

J < c c1

∫

{|sk|<S
1
k ,|tk|≥T

1
k ,k=3,...,r}

du′′ dh′′

×
∫

|s2|<S
1
2 ,|t2|≥T

1
2

du′ dh′

[

(s22 + t22)
QN
4 +R2

]

QN,2−2

QN

,

where du′ =
∏

j,lj=2 duj , dh
′ =

∏

i,mi=2 hi, du
′′ =

∏

j,3≤lj≤r duj , dh
′′ =

∏

i,3≤mi≤r dhi, R2 =
∑r

k=3(s
2
k + t2k)

QN
2k . Then, by (A.5) and (A.4), we get

J < c c1

∫

{|sk|<S
1
k ,|tk|≥T

1
k ,k=3,...,r}

du′′ dh′′
∫ ∞

0

ρd2+e2−1dρ

(ρ
QN
2 +R2)

QN,2−2

QN

< c c21

∫

{|sk|<S
1
k ,|tk|≥T

1
k ,k=3,...,r}

du′′ dh′′R

2(d2+e2)−QN,2+2

QN

2 ,

since QN

2 · QN,2−2
QN

− (d2 + e2) = QN,3 − 2 > 0.

If r = 3, we have, by (A.12),

∫

|s3|<S
1
3 ,|t3|≥T

1
3

du′′ dh′′

(s23 + t23)
QN
6 ·

QN,3−2

QN

=

∫ S
1
3

0

ds

∫ ∞

T
1
3

dt
sd3−1te3−1

(s2 + t2)
3 (d3+e3)−2

6

< c2 .

For r ≥ 4 we repeat the calculation and (A.11) is obtained in a finite number
of steps.

Finally we treat the case r = 2, d2 = 1, e2 = 0:

J = c

∫ S

0

∫ ∞

T

∫ S
1
2

0

sd1−1te1−1ds dt dz

[(s2 + t2)
QN
2 + z

QN
2 ]

QN −2

QN

< c c2S
1
2 .

This ends the proof of (A.8).
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Cauchy pour les opérateurs elliptiques dégénérés’, Ann. Inst. Fourier 19 (1969), 277-304.

8. Castell, F.: ’Asymptotic expansion of stochastic flows’, Probab. Th. Rel. Fields 96

(1993), 225-239.
9. Chaleyat-Maurel, M. and Le Gall, J.-F.: ’Green function, capacity and sample paths

properties for a class of hypoelliptic diffusions processes’, Probab. Th. Rel. Fields 83

(1989), 219-264.
10. Fefferman, C.L. and Sánchez-Calle, A.: ’Fundamental solutions for second order

subelliptic operators’, Ann. Math. 124 (1986), 247-272.
11. Folland, G.B.: ’A fundamental solution for a subelliptic operator’, Bull. Amer. Math.

Soc. 79 (1973), 373-376.
12. Gallardo, L.: Capacités, mouvement brownien et problème de l’épine de Lebesgue sur
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