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This paper is devoted to a precise description of the singularity near the diagonal of the Green function associated to a hypoelliptic operator using a probabilistic approach. Examples and some applications to potential theory are given.

Introduction

Let X 1 , . . . , X m be smooth vector fields on IR d , d ≥ 3 such that the Lie algebra generated by X 1 , . . . , X m is of full rank at every point:

(1. [START_REF] Ben Arous | Flots et séries de Taylor stochastiques[END_REF] ∀x ∈ IR d , dim Lie (X 1 , . . . , X m )(x) = d .

We are interested on the behaviour of the Green function G of the hypoelliptic operator

(1.2) L = 1 2 m j=1 X 2 j
on a smooth bounded domain Ω of IR d . G is smooth off the diagonal and we give in this paper a precise description of its singularity near the diagonal.

From the work of Nagel, Stein and Wainger [START_REF] Nagel | Balls and metrics defined by vector fields I. Basic properties[END_REF] or Sánchez-Calle [START_REF] Sánchez-Calle | Fundamental solutions and geometry of the sum of square of vector fields[END_REF], it is known that the Green function can be estimated in terms of the natural sub-Riemannian distance ρ: |G(x, y)| ≤ c ρ(x, y) 2 vol(B ρ (x, ρ(x, y)) .

To state a more precise form of these upper bound, let us introduce some notations. For a multi-index J = (j 1 , . . . , j p ) ∈ {1, . . . , m} p , we shall write |J| = p, and

X J = [X j1 , [X j2 , . . . , [X jp-1 , X jp ] . . .]]
will denote the Lie bracket of the vector fields X j1 , . . . , X jp . For any k ∈ IN * and any x ∈ IR d , we consider

C k (x) = Span {X J (x) , |J| ≤ k} and (1.3) r(x) = inf{k : dim C k (x) = d} .
By (1.1), r(x) is finite.

Let us denote by Q(x) the graded dimension at x:

(1.4) Q(x) = r(x) k=1 k (dim C k (x) -dim C k-1 (x)) .
We shall assume that the geometry of the brackets is locally constant near x, that is, for every k ∈ IN * and every y in a neighbourhood A(x) of x, dim C k (y) = dim C k (x). Then, of course, r(y) and Q(y) are constant on this neighbourhood. Since we want to exclude the trivial elliptic cases where d = Q = 2 and d = Q = 3, we assume Q ≥ 4.

Following [START_REF] Ben Arous | Développement asymptotique du noyau de la chaleur hypoelliptique sur la diagonale[END_REF], we shall introduce a useful coordinate chart. For a fixed x ∈ Ω we choose a family of multi-indices B = {J 1 , . . . , J d }, such that {X J (x) : J ∈ B} is a triangular basis. That is, for every k ≤ r, {X J (x) : J ∈ B , |J| ≤ k} generates C k (x). We shall denote the length |J j | = l j , j = 1, . . . , d. There exists a neighbourhood W of 0 such that the mapping (1.5) u → ϕ x (u) = exp

  d j=1 u j X Jj   (x)
defines a diffeomorphism of W on ϕ x (W ). There exists a neighbourhood U of x such that U ⊂ ϕ x (W ) ∩ A(x).

For y ∈ U , y = ϕ x (u) we shall denote (1.6)

|y| x =    r k=1   j,lj =k u 2 j   Q 2k    1 Q
and we shall show that the estimate of Nagel, Stein and Wainger [START_REF] Nagel | Balls and metrics defined by vector fields I. Basic properties[END_REF], can be written as 2

(1.7)

|G(x, y)| ≤ c |y| Q(x)-2 x
.

We want to give a sharper description of the singularity of G(x, y) when y → x. For this purpose we introduce the homogeneous angular variable, for y ∈ U \ {x}, y = ϕ x (u), (1.8)

θ x (y) = u 1 |y| l1 x , . . . , u d |y| l d x .
Then our main result will be:

(1.9) THEOREM. There exists a smooth function Φ x > 0 such that, (1.10) lim ε↓0 sup

x-y <ε G(x, y) |y| Q(x)-2

x -Φ x (θ x (y)) = 0 .

Here and elsewhere • denotes the Euclidian norm on IR d . This new geometric coefficient Φ will be described in §5 as the density of the occupation measure for a process (u t ), that we call tangent process. This process, non-markovian in general, will be seen as a projection of a left invariant diffusion process on a free nilpotent Lie group.

It must be noticed that, in general, computing Φ is not easy. The value of Φ is computable in some examples (see §9), for instance on Heisenberg groups.

Theorem (1.9) shows that, in general, the limit lim y→x G(x, y) |y| Q(x)-2 x does not exist; it exists only "radially", that is, if y approaches x in such a way that the angular variable θ x (y) tends to a limit. This is in contrast with the elliptic situation, the Heisenberg group situation or the "curved" Heisenberg group situation studied by Chaleyat-Maurel and Le Gall [START_REF] Chaleyat-Maurel | Green function, capacity and sample paths properties for a class of hypoelliptic diffusions processes[END_REF], where Φ x is constant.

Our approach for the proof of the Theorem (1.9) is probabilistic. It relies on results on stochastic Taylor expansion of paths of the diffusion generated by L and on the a priori estimate given by Nagel, Stein and Wainger [START_REF] Nagel | Balls and metrics defined by vector fields I. Basic properties[END_REF]. We follow and extend the strategy given by Chaleyat-Maurel and Le Gall [START_REF] Chaleyat-Maurel | Green function, capacity and sample paths properties for a class of hypoelliptic diffusions processes[END_REF] in a simple context.

One must also notice that the behaviour of the heat kernel p Ω t (x, y) on the diagonal has been studied using the same probabilistic tools in [START_REF] Ben Arous | Développement asymptotique du noyau de la chaleur hypoelliptique sur la diagonale[END_REF] or Léandre [START_REF] Léandre | Développement asymptotique de la densité d'une diffusion dégénéré[END_REF]. The results can be compared with the Theorem (1.9):

(1.11)

p Ω t (x, x) ∼ c 0 (x) √ t Q(x) ,
where c 0 (x) is the density of the law of the tangent process (u t ) taken at time 1. An example of different behaviour near the diagonal of the Green function in presence of a drift was studied in [START_REF] Gradinaru | Fonctions de Green et support de diffusions hypoelliptiques[END_REF]. The result could be compared with the results in [START_REF] Ben Arous | Décroissance exponentielle du noyau de la chaleur sur la diagonale' I,II[END_REF] and give an idea of the pathologies for the behaviour which could appear in presence of a drift.

The plan of the paper is as follows: in §2 we introduce the stochastic Taylor expansion and the tangent process, which we study in §3. In §4 -6 we prove the Theorem (1.9) except for some technical lemmas postponed to the Appendix. We then apply our results to some potential theoretical problems in §7 -8: estimates of the capacities of small sets, of the volume of the Wiener sausage of small radius, double points. In §9 we give examples where direct computations illustrate our general theorem and even two examples where the conclusion of the theorem is valid though our hypothesis of locally constant geometry fail.

Taylor stochastic expansion

Let (B 1 , . . . , B m ) be a m-dimensional Brownian motion and consider (x t ) the solution of the Stratonovich equation

(2.1) dx t = m j=1 X j (x t ) • dB j t , x 0 = x , killed at the first exit time from Ω, τ = inf{t > 0 , x t / ∈ Ω}. It is known that τ < ∞, P x -a.s., for every x ∈ IR d .
By hypoellipticity, for every x ∈ Ω, t > 0, the law of x t under P x has, on Ω, a density with respect to the Lebesgue measure, p Ω t (x, y). It is the heat kernel associated to L on Ω and the Green function is

(2.2) G(x, y) = ∞ 0 p Ω t (x, y)dt , x, y ∈ Ω .
G is the density of occupation measure of (x t ), that is, for every positive measurable function f ,

(2.3) E x τ 0 f (x t )dt = Ω f (y)G(x, y)dy .
(2.4) REMARK. We note that for the study of the singularity of G near the diagonal it suffices to consider Ω as a bounded neighbourhood of x, Ω ⊂ U . Indeed, if we denote by G V the Green function of L on a neighbourhood V of x, then the singular behaviour near the diagonal of G and G V is the same, because L(G -G V ) = 0. From now on we shall assume that Ω ⊂ U .

We are interested in the study of the process in short time, (x ε 2 t ), ε > 0.

For every x ∈ Ω, it has the same law under P x as the solution of the equation

(2.5) dx ε t = ε m j=1 X j (x ε t ) • dB j t , x ε 0 = x , killed at the first exit time from Ω, τ ε = τ /ε 2 .
Let us consider, for λ > 0, the dilation defined on IR d , (2.6)

T λ (u) = (λ l1 u 1 , . . . , λ l d u d ) .
For 0 ≤ t < τ ε , we define the diffusion (v

(ε,x) t
), starting from 0,

(2.7) v (ε,x) t = (T 1 ε • ϕ -1 x )(x ε t ) .
We shall introduce a new process, called tangent process. For a multi-index J = (j 1 , . . . , j p ), we denote by B J t the Stratonovich iterated integral (2.8)

B J t = 0<t1<...<tp<t dB j1 t1 • . . . • dB jp tp
and by c J t the completely explicit linear combination of Stratonovich iterated integrals (2.9)

c J t = τ ∈σ |J| (-1) e(τ ) |J| 2 |J| -1 e(τ ) B J•τ -1 t .
Here, for a permutation τ ∈ σ p , of order p, we denoted e(τ ) the number of errors in ordering τ (1), . . . , τ (p) and

J • τ = (j τ (1) , . . . , j τ (p) ) .
Recall that {X J (y) : J ∈ B} is a triangular basis for y close to x. So, for any multi-index L, there exists smooth functions, defined on a neighbourhood of x, (a L J ) J∈B , such that (2.10)

X L = J∈B a L J X J .
DEFINITION. We shall call tangent proces, the process,

(2.11) u (x) t =   L,|L|=|J| a L J (x)c L t   J∈B .
(2.12) PROPOSITION. Let fix T > 0. Then, for any bounded Lipschitz continuous function f on IR d and for sufficiently small ε > 0, there exists a positive constant c, such that,

(2.13)

E 0 1I (T <τε) T 0 f (v (ε,x) t )dt -E 0 T 0 f (u (x) t )dt ≤ c f Lip T ε .
Here we denoted

f Lip = sup x∈IR d |f (x)| + sup x =y |f (x) -f (y)| x -y .
To prove this result, we shall use the results of [START_REF] Ben Arous | Flots et séries de Taylor stochastiques[END_REF] or [START_REF] Castell | Asymptotic expansion of stochastic flows[END_REF] on the asymptotic expansion in small time of x t in terms of Lie brackets and iterated Stratonovich integrals. According to the Theorem 4.1 [START_REF] Castell | Asymptotic expansion of stochastic flows[END_REF], p. 234, for t ≤ T , (2.14)

x ε t = exp   r k=1 ε k L,|L|=k c L t X L   (x) + ε r+1 R r+1 (ε, t) .
Here R r+1 (ε, t) is bounded in probability. More precisely, there exists α, c > 0 such that, for every R > c

(2.15) lim ε↓0 P sup 0≤t≤T R r+1 (ε, t) ≥ R ≤ exp - R α c T .
Proof of the Proposition (2.12). We can write

E 0 1I (T <τε) T 0 f (v (ε,x) t )dt -E 0 T 0 f (u (x) t )dt ≤ E 0 1I (T <τε) T 0 f (v (ε,x) t )dt -E 0 1I (T <τε) T 0 f (u (x) t ) dt + f Lip T P (T ≥ τ ε ) .
By the classical exponential inequality we know that, there exists two positive constants c, c ′ , such that

P (T ≥ τ ε ) ≤ c e -c ′ ε 2 T .
We shall study only the first term. Let us consider ψ x the diffeomorphism

ψ x ((v L ) |L|≤r ) = exp   L,|L|≤r v L X L   (x)
and we denote (2.16)

T ε Ω = inf{t > 0 : (ε |L| c L t ) |L|≤r / ∈ ψ -1 x ( Ω)} .
We can write,

E 0 1I (T <τε) T 0 f (v (ε,x) t )dt -E 0 1I (T <τε) T 0 f (u (x) t ) dt ≤ E 0 1I (T <τε∧T ε Ω ) T 0 f (v (ε,x) t )dt -E 0 1I (T <τε∧T ε Ω ) T 0 f (u (x) t ) dt +2 f Lip T P (T ≥ T ε Ω) .
As in [START_REF] Castell | Asymptotic expansion of stochastic flows[END_REF], p. 238, we have that, for sufficiently small ε, (2.17)

P (T ≥ T ε Ω) ≤ L,|L|≤r exp - c L ε 2|L| T .
So, it remains to consider the first term:

E 0 1I (T <τε∧T ε Ω ) T 0 f (v (ε,x) t )dt -E 0 1I (T <τε∧T ε Ω ) T 0 f (u (x) t ) dt ≤ f Lip T E 0 1I (T <τε∧T ε Ω ) sup 0≤t≤T v (ε,x) t -u (x) t .
Hence, to finish the proof of (2.13), it suffices to prove the following:

(2.18) LEMMA. There exists a positive constant c, such that for any sufficiently small ε > 0,

(2.19) E 0 1I (T <τε∧T ε Ω ) sup 0≤t≤T v (ε,x) t -u (x) t ≤ c ε .
Proof. For J ∈ B and t < T ε Ω, we denote

u J (ε, t, x) = (ϕ -1 x • ψ x ) J ((ε |L| c L t ) |L|≤r ) .
We have that, for J ∈ B and t < T ε Ω,

(∂ ε ) k u J (ε, t, x) |ε=0 = 0 , if k < |J| .
Indeed, by the triangularity of the basis {X J (y) : J ∈ B}, for y close to x, we have, for

J ∈ B, a L J ≡ 0 , if |L| < |J| , on a neighbourhood of x. So, for J ∈ B, [∂(ϕ -1 x • ψ x ) J /∂v L ] |v=0 = a L J (x) = 0 , if |L| < |J| .
Moreover, by the last equality we also have that, for J ∈ B and t < T ε Ω,

(∂ ε ) |J| u J (ε, t, x) |ε=0 = L,|L|=|J| a L J (x)(∂ ε ) |L| (ε |L| c L t ) |ε=0 ,
because the terms coresponding to L, with |L| > |J|, are zero having the factor ε |L| (see also [START_REF] Ben Arous | Développement asymptotique du noyau de la chaleur hypoelliptique sur la diagonale[END_REF], pp. 93-94).

Hence, the Taylor expansion around ε = 0 of u J (ε, t, x), for J ∈ B and t < T ε Ω, can be written,

u J (ε, t, x) = ε |J| |J|! (∂ ε ) |J| u J (ε, t, x) |ε=0 + ε |J|+1 R J,|J|+1 (ε, t, x) , or 1 ε |J| u J (ε, t, x) = L,|L|=|J| c L t a L J (x) + ε R J,|J|+1 (ε, t, x) .
Here, for J ∈ B and t < T ε

Ω, R J,|J|+1 (ε, t, x) = 1 0 (∂ ε ) |J|+1 u J (ε ξ, t, x) (1 -ξ) |J| |J|! dξ .
Using properties (P1), (P2) in [START_REF] Castell | Asymptotic expansion of stochastic flows[END_REF], p. 238, we see that, for every J ∈ B, there exists α J , c J > 0, such that, for any R > c J and for ε > 0 sufficiently small, (2.20)

P sup 0≤t≤T |R J,|J|+1 (ε, t, x)| ≥ R ; T < T ε Ω ≤ exp - R α J c J T .
Indeed, B J t satisfies (2.20) and we get the same thing for u J (ε, t, x), using its definition in terms of (ε |L| c L t ). Then we obtain (2.20). By (2.14), we have, for t < T ∧ T ε Ω,

(T 1 ε • ϕ -1 x )(x ε t -ε r+1 R r+1 (ε, t)) =   L,|L|=|J| c L t a L J (x) + ε R J,|J|+1 (ε, t, x)   J∈B .
We note that, for any 0 < ε < 1 and any u ∈ IR d , T 1 ε (u) ≤ 1 ε r u . Therefore, by the Lipschitz property of ϕ -1

x , we can write, for

t ≤ T ∧ τ ε ∧ T ε Ω, v (ε,x) t -u (x) t ≤ v (ε,x) t -(T 1 ε • ϕ -1 x )(x ε t -ε r+1 R r+1 (ε, t)) + (T 1 ε • ϕ -1 x )(x ε t -ε r+1 R r+1 (ε, t)) -u (x) t ≤ c 1 ε r ε r+1 R r+1 (ε, t) + ε (R J,|J|+1 (ε, t, x)) J∈B . Hence, for t ≤ T ∧ τ ε ∧ T ε Ω, (2.21) v (ε,x) t -u (x) t ≤ ε R(ε, t) ,
where, for

t ≤ T ∧ τ ε ∧ T ε Ω, (2.22) R(ε, t) = c R r+1 (ε, t) + (R J,|J|+1 (ε, t, x)) J∈B .
Using (2.15) and (2.20) we prove the existence of positive constants α ′ , c ′ , such that, for any R > c ′ and for ε > 0 sufficiently small, (2.23)

P sup 0≤t≤T R(ε, t) ≥ R ; T < τ ε ∧ T ε Ω ≤ exp - R α ′ c ′ T .
Finally, by (2.21), we can write,

E 0 1I (T <τε∧T ε Ω ) sup 0≤t≤T v (ε,x) t -u (x) t ≤ ε E 0 1I (T <τε∧T ε Ω ) sup 0≤t≤T R(ε, t) = ε ∞ 0 P sup 0≤t≤T R(ε, t) ≥ R ; T < τ ε ∧ T ε Ω dR .
Now, (2.19) follows from this, using (2.23) and the lemma is proved. This also ends the proof of the Proposition (2.12).

Study of the tangent process

The process (u

(x)
t ) is not necessarily a diffusion process. However, we shall prove that it is the image by a projection of a left invariant diffusion on a nilpotent group.

We denote by g(m, r) the free r-nilpotent Lie algebra with m generators Y 1 , . . . , Y m . We shall identifie g(m, r) and the associated simple connected nilpotent Lie group N (m, r), which is nothing but g(m, r) with the multiplication given by the Campbell-Hausdorff formula. We denote, by a clear abuse of notation, Y j the left invariant vector field on N (m, r) defined by the generator Y j of g(m, r).

Let us consider (G t ) the invariant diffusion on N (m, r). That is the solution, starting from the unit element, e ∈ N (m, r), of the Stratonovich equation

(3.1) dG t = m j=1 Y j (G t ) • dB j t , G 0 = e .
(3.2) PROPOSITION. There exists a unique linear projection, π x , such that

(3.3) u (x) t = π x (G t ) .
Proof. According to the result of the Proposition 3.1 [START_REF] Castell | Asymptotic expansion of stochastic flows[END_REF], p. 228,

G t = exp   L,|L|≤r c L t Y L   (e) .
Let {Y K : K ∈ A} be a Hall basis of g(m, r). Then, for every multi-index L,

(3.4) Y L = K∈A,|K|=|L| c L K Y K , with universal constants c L K . Let us denote, for K ∈ A, b K t = L,|L|=|K| c L K c L t .
and then, by a simple calculation, we get that

G t = exp K∈A b K t Y K (e) .
We note that, by the properties of vector fields, (3.4) it is also true with X j instead Y j . By the fact that {X J (x) : J ∈ B} is a basis, we see that u (x) t can be written:

u (x) t =   K∈A,|K|=|J| a K J (x)b K t   J∈B .
Put n = dim g(m, r)d and A = {K i : i = 1, . . . , d + n}. There exists a diffeomorphism between IR d+n , and N (m, r),

w → φ e (w) = exp d+n i=1 w i Y Ki (e) .
Let us denote by p x : IR d+n → IR d the projection

p x (w) =   i,|Ki|=|Jj | a i j (x) w i   j=1,...,d = M (x) w .
Here we denoted a i j (x) = a Ki Jj (x), j = 1, . . . , d, i = 1, . . . , d + n and M (x) is the matrix with elements a i j (x) if |J j = |K i | and zero otherwise. Hence, taking (3.5)

π x = p x • φ -1 e ,
we obtain (3.3).

(3.6) COROLLARY. For every t > 0, the law of u (x) t has a smooth density with respect to the Lebesgue measure, q (x) t (0, u).

Proof. We show that the Malliavin covariance matrix of u (x) t is not degenerate for every t > 0. It is known that the Malliavin covariance matrix of G t is not degenerate for t > 0. The same thing is true for b

t = φ -1 e (G t ). But, by (3.3), u (x) t = M (x) b t ,
and we conclude, noting that M (x) is a full rank matrix.

Let us denote, for u ∈ IR d \ {0},

(3.7) g (x) (0, u) = ∞ 0 q (x) t (0, u)dt ,
the density of the occupation measure of the process (u

(x) t ). That is, for ev- ery positive measurable function f , (3.8) E 0 ∞ 0 f (u (x) t )dt = IR d g (x) (0, u)f (u)du .
(3.9) PROPOSITION. g (x) (0, •) is a strictly positive smooth function on IR d \{0}.

Proof. The fact that g (x) is smooth follows from (3.7). We show now that g (x) is a strictly positive function. We denote by G (N ) the Green function of the diffusion (G t ). Then, for every positive measurable function f ,

E e ∞ 0 f (G t )dt = N (m,r) G (N ) (e, g)f (g)dg ,
where dg denotes the Haar measure on N (m, r).

It is known that G (N ) is a strictly positive function (see for instance [START_REF] Gallardo | Capacités, mouvement brownien et problème de l'épine de Lebesgue sur les groupes de Lie nilpotents[END_REF], p. 102). Using again (3.3), we shall write g (x) in terms of G (N ) as an integral on a fiber of the projection map π x , and we shall conclude. We prove:

(3.10) g (x) (0, u) = c IR n G (N ) (φ e (0, 0), φ e (u -M (x)h, h)dh .
Here c > 0 and M (x) is the block of the matrix M (x), having d lines indexed by B and n columns indexed by A \ B. Indeed, we have

IR d g (x) (0, u)f (u)du = E 0 ∞ 0 f (u (x) t )dt = E e ∞ 0 (f • π x )(G t )dt = N (m,r) G (N ) (e, g)(f • π x )(g)dg = c IR d ×IR n G (N ) (φ e (0, 0), φ e (u, h)(f • π x )(φ e (u, h)du dh ,
where c > 0 is the absolute value of the jacobian of φ e . In the latter integral we perform the change of variables v = u + D(x)h. Since f was an arbitrary function we get (3.10) and the proposition is proved.

We show now that the time spent by (u

(x)
t ) in a Euclidian ball is finite:

(3.11) PROPOSITION. For every ρ > 0, (3.12) E 0 ∞ 0 1I B(0,ρ) (u (x) t )dt < ∞ .
Before proving this result we shall make a useful remark. We note that, in this nilpotent context, the estimate of the Green function (1.7), can be written:

(3.13) |G (N ) (e, g)| ≤ c |g| Q N -2 N , g = e ,
where the homogeneous norm of g = φ e (w), w ∈ IR d+n , is

(3.14) |g| N =    r k=1   i,|Ki|=k w 2 i   Q N 2k    1 Q N .
Here Q N is the homogeneous dimension of N (m, r),

(3.15) Q N = r k=1 k dimV k , with V k = Span{Y J : |J| = k} , k = 1, . . . , r . V k 's form the natural graduation of the Lie algebra, g(m, r) = V 1 ⊕ . . . ⊕ V r .
Proof of the Proposition (3.11). By (3.10), we can write

E 0 ∞ 0 1I B(0,ρ) (u (x) t )dt = B(0,ρ) g (x) (0, u)f (u)du = c B(0,ρ) du IR n G (N ) (φ e (0, 0), φ e (u -M (x)h, h)dh = c Fx(B(0,ρ)×IR n ) G (N ) (φ e (0, 0), φ e (v, h)dv dh ,
where we denoted F x (u, h) = (p x (u, h), h). So, by (3.13),

E 0 ∞ 0 1I B(0,ρ) (u (x) t )dt ≤ c πx(g) <ρ dg |g| Q N -2 N .
The right hand side of this last inequality is finite (see Lemma (A.7)).

(3.16) COROLLARY. For every ρ > 0, for every continuous function f on IR d , bounded by 1, with support in B(0, ρ), and for every δ > 0, there exists T (δ) > 0 such that,

(3.17) E 0 ∞ T (δ) f (u (x) t )dt ≤ δ .
(3.18) COROLLARY. For t > 0, we denote by µ

(x) t the law of u (x)
t . Then, for every ρ > 0 and for every δ > 0, there exists T (δ) > 0 such that,

(3.19) µ (x) T (δ) (B(0, ρ)) ≤ δ .
Proof. We get the convergence of the integral

∞ 0 P 0 (u (x) t
∈ B(0, ρ))dt, using (3.12). Hence, lim t↑∞ µ

(x)
t (B(0, ρ)) = 0.

Study of the rescaled diffusion

We shall analyse now the diffusion (v

(ε,x) t
). We shall prove the following:

(4.1) PROPOSITION. For every 0 < ρ < 1 and for every continuous function f on IR d , bounded by 1, with support in B(0, ρ),

(4.2) lim ε↓0,T ↑∞ E 0 1I (T <τε) τε T f (v (ε,x) t )dt = 0 .
Proof. Let G (ε,x) be the Green function of (v

(ε,x) t
). For every positive measurable f ,

(4.3) E 0 τε 0 f (v (ε,x) t )dt = (T 1 ε •ϕ -1 x )(Ω) G (ε,x) (0, u)f (u)du .
We can write

E 0 1I (T <τε) τε T f (v (ε,x) t )dt = E 0 1I (T <τε) E v (ε,x) T τε 0 f (v (ε,x) t )dt = E 0   1I (T <τε) (T 1 ε •ϕ -1 x )(Ω) G (ε,x) (v (ε,x) T , u)f (u)du   = (T 1 ε •ϕ -1 x )(Ω) dµ (ε,x) T (v) (T 1 ε •ϕ -1 x )(Ω) G (ε,x) (v, u)f (u)du .
Here µ

(ε,x) T
denotes the measure having the density 1I (T <τε) with respect to the law of v

(ε,x) T . We shall estimate the integral of G (ε,x) . It is a simple calculation to show that, for v, u ∈ (T 1 ε • ϕ -1 x )(Ω), (4.4) G (ε,x) (v, u) = ε Q-2 G(v x ε , u x ε ) ,
Here we denoted

u x ε = (ϕ x • T ε )(u), for x ∈ Ω, ε > 0 sufficiently small and u ∈ IR d .
Therefore, by (1.8), we get (4.5)

B(0,ρ) G (ε,x) (v, u)du ≤ B(0,ρ) c ε Q-2 du |u x ε | Q-2 v x ε , for ε > 0 sufficiently small and u ∈ (T 1 ε • ϕ -1 x )(Ω).
(4.6) LEMMA. For any v ∈ IR d and for ε > 0 sufficiently small, there exists a constant c > 0, such that (4.7)

B(0,ρ) ε Q-2 du |u x ε | Q-2 v x ε < c .
Moreover,

(4.8) lim v ↑∞ B(0,ρ) ε Q-2 du |u x ε | Q-2 v x ε = 0 , uniformly in ε > 0.
Proof. For the first part we write the integral as

ε -2 (ϕx•Tε)(B(0,ρ)) dy ′′ |y ′′ | Q-2 z x ε . (4.7
) is a particular case of the following estimate: there exists a positive constant c such that, for ε > 0 sufficiently small (4.9)

sup z |y|z<ε dy |y| Q-2 z < c ε 2 ,
with the supremum taken for z in a neighbourhood of x. We shall now prove (4.9). Firstly, by the change of variables

v = (T 1 ε • ϕ -1 x )(y), we get that |y|x<ε dy |y| Q-2 x = c ε 2 |v| h <1 dv |v| Q-2 h < c ε 2 ,
as follows from the Lemma (A.1) of the Appendix. Here and elsewhere |u| h denotes the homogeneous norm of u ∈ IR d :

|u| h =    r k=1   j,lj =k u 2 j   Q 2k    1 Q
.

To get (4.9) it suffices to note that the bound in Lemma (A.1) depends only on the radius of the homogeneous ball (here equal to 1). Since {X Jj (z) : j = 1, . . . , d}, is a triangular basis, for z close enough to x, we conclude by a smooth change of coordinates.

In proving (4.8) we use some simple properties of the locally homogeneous norm (see (6.9), (6.11)). There exists some constants c 0 , c ′ , c ′′ > 0, such that sup

u <ρ ε Q-2 |u x ε | Q-2 v x ε ≤ sup u <ρ 1 1 c0 |v| h -|u| h Q-2 ≤ 1 c ′ c0 v -c ′′ ρ 1 r Q-2 .
From this, (4.8) is easily obtained and the lemma is proved.

Now we can complete the proof of the Proposition (4.1). By (4.5) and (4.7) we can write, for every R > 0, (4.10)

E 0 1I (T <τε) τε T f (v (ε,x) t )dt . ≤ c µ (ε,x) T (B(0, R)) + sup v ≥R B(0,ρ) G (ε,x) (v, u)du
(with the convention that G(z, y) = 0 if z or y / ∈ Ω). We can make small the second term in (4.10) by choosing a large R, as follows from (4.5) and (4.8). Hence, to finish the proof of (4.2), it suffices to prove the following: Proof. Noting the result of the Corollary (3.18), the conclusion is obtained as soon as we show that, for every R > 0, (4.13) lim

ε↓0 µ (ε,x) T (B(0, R)) = µ (x)
T (B(0, R)) .

For this, we write

E 0 1I (T <τε) 1I B(0,R) (v (ε,x) T ) -E 0 1I B(0,R) (u (x) T ) ≤ E 0 1I (T <τε∧T ε Ω ) 1I B(0,R) (v (ε,x) T ) -1I B(0,R) (u (x) T ) + P (T ≥ τ ε ) + 2 P (T ≥ T ε Ω) .
As in the proof of the Proposition (2.12), it suffices to study the first term. But, the result of the Lemma (2.18) allows us to control this term, using the fact that u x T does not charge the boundary of the ball, and (4.13) follows. This also ends the proof of the Proposition (4.1).

Proof of the Theorem (1.9)

To prove the Theorem (1.9) we need the following important: Proof. We shall show that, for ε ↓ 0, (5.3) G (ε,x) (0, u)du → g (x) (0, u)du , vaguely , and then, that there exists ε 0 > 0, such that {G (ε,x) (0, •), ε ∈ (0, ε 0 ]} is a relatively compact subset of the set of continuous functions on H.

For the proof of (5.3), we denote Lip ρ (IR d ) the set of all bounded Lipschitz continuous functions f on IR d , with support in B(0, ρ), such that f Lip ≤ 1. By (4.3) and (3.8), for every f ∈ Lip ρ (IR d ),

(T 1 ε •ϕ -1 x )(Ω) G (ε,x) (0, u)f (u)du - IR d g (x) (0, u)f (u)du ≤ E 0 1I (T <τε) T 0 f (v (ε,x) t )dt -E 0 T 0 f (u (x) t )dt + E 0 1I (T <τε) τε T f (v (ε,x) t )dt + T P (T ≥ τ ε ) + E 0 ∞ T f (u (x) t )dt ≤ c T ε + E 0 1I (T <τε) τε T f (v (ε,x) t )dt + c T e -c ′ ε 2 T + E 0 ∞ T f (u (x) t )dt ,
as follows from (2.13) and from the classical exponential inequality. We can make small the last term by choosing a large T , as in (3.17). To control the second term we use (4.2). Doing so we get (5.3). Now, we shall show that there exists ε 0 > 0, such that the functions G (ε,x) (0, •), ε ∈ (0, ε 0 ], are uniformly equicontinuous, provided they are restricted to the compact set H.

We prove the existence of a constant c > 0, such that, for every u ∈ H, and ε ∈ (0, ε 0 ], (5.4)

|X Jj G (ε,x) (0, u)| ≤ c , j = 1, . . . , d . By (4.4), for u ∈ (T 1 ε • ϕ -1 x )(Ω), we have X Jj G (ε,x) (0, u) = ε Q-2 X Jj G(x, u x ε ) = ε Q-2+lj (X Jj G)(x, u x ε ) .
To obtain (5.4), we use another important estimate. It is similar to (1.7), but on the derivatives of G (see §6):

(5.5) |X i1 . . . X iq G(x, y)| ≤ c |y| Q-2+q x , y = x close enough .
Hence, for j = 1, . . . , d,

ε Q-2+lj (X Jj G)(x, u x ε ) ≤ c ε Q-2+lj |u x ε | Q-2+lj x = c |u| Q-2+lj h
, which is bounded when u lies in a compact set, and (5.4) is verified.

Using the weak convergence in (5.3) and the relatively compacteness of {G (ε,x) (0, •), ε ∈ (0, ε 0 ]} on H, we can identifie the limit of G (ε,x) (0, •). This ends the proof of (5.2).

Proof of the Theorem (1.9). We take

H = {u ∈ IR d : sup(|u j | : j = 1, . . . , d) = 1} and ε y = sup(|u j | 1 l j : j = 1, . . . , d) ,
with y ∈ Ω, y = ϕ x (u). Clearly,

T 1 εy • ϕ -1 x (y) ∈ T 1 εy • ϕ -1 x (Ω) ∩ H .
For every δ > 0 and for every y sufficiently close to x, there exists ε(δ) > 0, such that ε y ≤ ε(δ) and, by (5.1),

G (ε,x) 0, T 1 εy • ϕ -1 x (y) -g (x) 0, T 1 εy • ϕ -1 x (y) ≤ δ .
We note that, u

ε 2 t and T ε (u

(x)
t ) have the same law. Hence, by (3.8), we get

(5.6) g (x) 0, T 1 ε (u) = ε Q-2 g (x) (0, u) .
Then, using (4.4) and (5.6), for every δ > 0 and for every y sufficiently close to x, y = ϕ x (u),

(5.7) ε Q-2 y G(x, y) -ε Q-2 y g (x) (0, u) ≤ δ .
Moreover, we can replace here ε y by |y| x because, there exists c > 0 such that, (5.8) |y| x ≤ c ε y .

Finally, let us denote, for θ ∈ IR d \ {0},

(5.9) Φ x (θ) = g (x) (0, θ) .
As a consequence of the Proposition (3.9), Φ x is a strictly positive smooth function on IR d \ {0}. By (1.8), for y = x,

θ x (y) = T 1 |y|x • ϕ -1 x (y) .
So, we conclude that, for every δ > 0 and for every y sufficiently close to x,

|y| Q-2 x G(x, y) -Φ x (θ x (y)) ≤ δ ,
that is, (1.10).

The proof of the Theorem (1.9) is complete, except for the proof of Lemmas (A.1) and (A.7) of the Appendix and of the estimates (1.7), (3.13) and (5.5), which are simple consequences of [START_REF] Nagel | Balls and metrics defined by vector fields I. Basic properties[END_REF] estimates, as we show in the following section.

Locally homogeneous norm associated to L

In this section we shall study the locally homogeneous norm | • | x and we shall then justify the estimates (1.7), (3.13) and (5.5). It suffices to prove the following: (6.1) PROPOSITION. There exists some positive constants c, c ′ , such that, for y = x close enough,

(6.2) |G(x, y)| ≤ c |y| 2 x m(B h (x, |y| x )) , |X i1 . . . X iq G(x, y)| ≤ c ′ |y| 2-q x m(B h (x, |y| x )) .
The estimates are then obtained using the simple calculation of the volume of a small homogeneous ball, B h (x, ε) = {y : |y| x < ε}:

(6.3) m(B h (x, ε)) = |y|x<ε dy = c ε Q |v| h <1 dv = c ′ ε Q .
Here we performed the change of variables v = (T 1 ε • ϕ -1 x )(y) and c ′ denotes a positive constant.

Proof of the Proposition (6.1). Noting the result of the Corollary in [START_REF] Nagel | Balls and metrics defined by vector fields I. Basic properties[END_REF], p. 117, it is enough to show that there exists a positive constant c, such that, for y sufficiently close to x,

(6.4) ρ(x, y) ≤ c |y| x .
Recall that ρ(x, y) is the distance introduced by [START_REF] Nagel | Balls and metrics defined by vector fields I. Basic properties[END_REF], p. 107. But by the Theorem 3 in [START_REF] Nagel | Balls and metrics defined by vector fields I. Basic properties[END_REF], p. 112, is locally equivalent to the pseudodistance ρ 3 . So, there exists a positive constant c, such that, for y sufficiently close to x, (6.5) ρ(x, y) ≤ c ρ 3 (x, y) .

Recall that, 

ρ 3 (x, y) = inf{δ > 0 : ∃f ∈ C 3 (δ), f (0) = x, f (1) 
f ′ (t) = J∈D c J X J (f (t)) , with |c J | < δ |J| , J ∈ D .
We shall introduce a slight modification of the pseudo-distance ρ 3 . We denote by C(δ, B) the set of

C 1 -functions f : [0, 1] → IR d , such that f ′ (t) = j=1,...,d c j X Jj (f (t)) , with r k=1   j,lj =k c 2 j   Q 2k < δ Q .
Then we define,

d B (x, y) = inf{δ > 0 : ∃f ∈ C(δ, B), f (0) = x, f (1) = y} ∧ 1 . But r k=1   j,lj =k c 2 j   Q 2k < δ Q ⇒ |c j | < δ lj , j = 1, . . . , d , so, C(δ, B) ⊂ C 3 (δ)
. It follows that, for y sufficiently close to x, (6.6)

ρ 3 (x, y) ≤ d B (x, y) .
Moreover, by the definitions of |y| x and of d B (x, y), and by our assumptions on Ω, it is a simple observation that, for x, y ∈ Ω, (6.7)

d B (x, y) = |y| x .
This ends the proof of (6.4) and of the proposition.

(6.8) REMARK. Clearly, d B (x, y) is a pseudo-distance in the sense of [START_REF] Nagel | Balls and metrics defined by vector fields I. Basic properties[END_REF], p. 109. From this, by (6.7), we see that there exists a constant c 0 ≥ 1, such that, for every x, y, z ∈ Ω, (6.9) 

|y| x ≤ c 0 (|z| x + |z| y ) .

Capacity of small compact sets

In this section we shall estimate the capacity (relative to the kernel G) of small compact sets.

To apply the theory of Blumenthal and Getoor [START_REF] Blumenthal | Markov processes and potential theory[END_REF] for Markov processes in duality, we must consider the process (x t ) killed at an independent exponential random time ξ, of parameter λ > 0, which we denote by (x

(λ) t ). The Green function of (x (λ) t ) is the λ-potential of (x t ): (7.1) G λ (x, y) = ∞ 0 e -λt p Ω t (x, y)dt .
(7.2) REMARK. The result of the Theorem (1.9) still holds with G replaced by G λ . Indeed, we have

G λ (x, y) |y| Q-2 x -Φ x (θ x (y)) ≤ G λ (x, y) G(x, y) -1 • G(x, y) |y| Q-2 x + G(x, y) |y| Q-2 x -Φ x (θ x (y)) .
The conclusion follows as soon as we show that,

lim ε↓0 sup y-x <ε G λ (x, y) G(x, y) -1 = 0 ,
which can be done as in [START_REF] Chaleyat-Maurel | Green function, capacity and sample paths properties for a class of hypoelliptic diffusions processes[END_REF], p. 241. Therefore, for every η > 0 and for every y = x close enough,

(7.3) -η + Φ x (θ x (y)) |y| Q-2 x ≤ G λ (x, y) ≤ η + Φ x (θ x (y)) |y| Q-2 x .
Now, let us recall some definitions. By choosing λ > 0 large enough, we can apply the theory of [START_REF] Blumenthal | Markov processes and potential theory[END_REF] to the process (x

(λ) t ). For a compact subset H in Ω, we denote T (λ) H = inf{t > 0 : x (λ) t ∈ H} . Let µ (λ)
H the equilibrium measure of H, that is the unique finite measure supported by H such that, for every x ∈ Ω, (7.4)

P x (T (λ) H < ∞) = G λ µ (λ) H (x) = IR d G λ (x, y)µ (λ)
H (dy) .

The λ-capacity of H will be denoted by c λ (H), and is the total mass of µ

(λ)
H , or, equivalently

(7.5) c λ (H) = sup{|µ| : µ ∈ M(H), G λ µ ≤ 1 on Ω} .
Here M(H) is the set of all positive finite measures supported on H. Let H be a compact subset of IR d containing 0. We shall describe the capacity of a small compact set. The natural dilation of H is H x ε = (ϕ x •T ε )(H). We shall study the asymptotic behaviour of c λ (H x ε ) as ε → 0. To write down the statement we need the following: (7.6) LEMMA. There exists

(7.7) lim ε↓0 |v x ε | u x ε ε = α(u, v) > 0 and (7.8) lim ε↓0 θ u x ε (v x ε ) = β(u, v) = 0 , for u = v ∈ IR d \ {0}.
Proof. We have to calculate |v x ε | u x ε . Since {X Jj (y) : j = 1, . . . , d} is a basis for y close to x, we have,

v x ε = exp(Z ε )(x) = exp(W ε )(u x ε ) , u x ε = exp(Y ε )(x) ,
with,

Z ε = j=1,...,d ε lj v j X Jj , Y ε = j=1,...,d ε lj u j X Jj , W ε = j=1,...,d w ε j X Jj .
By the Campbell-Hausdorff formula we get,

Z ε = W ε + Y ε + 1 2 [W ε , Y ε ] + . . . , so, w ε j = ε lj b j (u, v) + O(ε lj +1 ) , j = 1, . . . , d , b j (u, v) = 0 . Using (1.5), we get (7.9) |v x ε | u x ε = ε α(u, v) + O(ε 1+δ ) , δ ∈ (0, 1) .
with,

(7.10) α(u, v) =    r k=1   j,lj =k b j (u, v) 2   Q 2k    1 Q
.

This proves (7.7).

On the other hand, by (1.8) and the preceding calculation, we can write,

θ u x ε (v x ε ) = w ε j |v x ε | |J| u x ε j=1,...,d = b j (u, v) + O(ε) α(u, v) lj + O(ε δ ) j=1,...,d , δ ∈ (0, 1) .
Taking,

(7.11) β(u, v) = b j (u, v) α(u, v) lj j=1,...,d
we get (7.8) and the lemma is proved.

We denote (7.12)

r x (u, v) = Φ x (β(u, v)) α(u, v) Q(x)-2 , q x (H) = m(H) max u∈∂H H r x (u, v)dv .
We can state now the main result of this section:

(7.13) PROPOSITION. Let H be the closure of a bounded domain in IR d containing 0, and x ∈ Ω. Then

(7.14) lim ε↓0 c λ (H x ε ) ε Q(x)-2 = q x (H) .
Proof. We consider ν, the measure with the density 1I H with respect to the Lebesgue measure and ν x ε , the image measure of ν through ϕ x • T ε . A lower bound for c λ (H x ε ) is obtained as soon as we can obtain a uniform bound on G λ ν x ε . By the maximum principle of Bony [START_REF] Bony | Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés[END_REF], for hypoelliptic operators, it suffices to bound

G λ ν x ε on H x ε . Take u x ε ∈ H x ε . Then, G λ ν x ε (u x ε ) = IR d G λ (u x ε , v)ν x ε (dv) = H G λ (u x ε , v x ε )dv .
Then, by (7.3) and (7.9),

G λ ν x ε (u x ε ) ≤ H η + Φ u x ε (θ u x ε (v x ε )) |v x ε | Q-2 u x ε dv = H η + Φ u x ε (θ u x ε (v x ε )) ε Q-2 (α(u, v) Q-2 + O(ε δ ))
dv .

Using (7.5), for all u ∈ H,

c λ (H x ε ) ε Q-2 ≥ m(H) H η+Φ u x ε (θ u x ε (v x ε )) α(u,v) Q-2 +O(ε δ ) dv .
Hence, by the continuity of Φ x (θ) and by (7.11), we get,

(7.15) lim inf ε↓0 c λ (H x ε ) ε Q-2 ≥ q x (H) .
On the other hand,

ν x ε G λ (u x ε ) = IR d G λ (v, v x ε )ν x ε (dv) = H G λ (v x ε , u x ε )dv = H G λ (u x ε , v x ε )dv ,
so, again by (7.3) and (7.9),

ν x ε G λ (u x ε ) ≥ H -η + Φ u x ε (θ u x ε (v x ε )) |v x ε | Q-2 u x ε dz = H -η + Φ u x ε (θ u x ε (v x ε )) ε Q-2 (α(u, v) Q-2 + O(ε δ ))
dv .

We denote by µ λ,x ε,H , the equilibrium measure of H x ε . We can write,

|µ λ,x ε,H | • H -η + Φ u x ε (θ u x ε (v x ε )) ε Q-2 (α(u, v) Q-2 + O(ε δ )) dv ≤ IR d µ λ,x ε,H (du x ε )ν x ε G λ (u x ε ) = IR d ν x ε (dv)G λ µ λ,x ε,H (v) ≤ |ν x ε | = m(H) .
Hence, for all u ∈ H,

c λ (H x ε ) ε Q-2 • H -η + Φ u x ε (θ u x ε (v x ε )) α(u, v) Q-2 + O(ε δ ) dv ≤ m(H) ,
from which we get, by (7.11), (7.16) lim sup

ε↓0 c λ (H x ε ) ε Q-2 ≤ q x (H) .

Applications: various sample path properties

As was said in [START_REF] Chaleyat-Maurel | Green function, capacity and sample paths properties for a class of hypoelliptic diffusions processes[END_REF], p. 222, as soon as we dispose of the results on the Green function on the capacity of small compact we can derive some sample path properties. The general methods used in [START_REF] Chaleyat-Maurel | Green function, capacity and sample paths properties for a class of hypoelliptic diffusions processes[END_REF], §7 and §8, can be applied.

We note that, for certain properties we do not need the exact behaviour of G, but only the estimates

(8.1) c ′ |y| Q-2 x ≤ G(x, y) ≤ c |y| Q-2 x
, with x = y close enough , c, c ′ being positive constants. The right hand is (1.7) and the left hand can be obtained in a similar way as (1.7), that is, using the estimate on the volume of homogeneous small balls, (6.3) and the Theorem I (ii) in [START_REF] Fefferman | Fundamental solutions for second order subelliptic operators[END_REF], p. 248. We shall emphasize only the differences with respect to the case considered by [START_REF] Chaleyat-Maurel | Green function, capacity and sample paths properties for a class of hypoelliptic diffusions processes[END_REF].

(a) Hitting probabilities of small compact sets.

For ε > 0 sufficiently small, we denote,

T H x ε = inf{t > 0 : x t ∈ H x ε } . (8.2) PROPOSITION.
For n ≥ 1 integer, for x 0 , x 1 , . . . , x n distinct points of Ω and for t ≥ 0,

(8.3) lim ε↓0 1 ε Q(x)-2 n P x0 (T H x 1 ε ≤ . . . ≤ T H xn ε ≤ t) = q x1 (H) . . . q xn (H) . × 0≤s1≤...≤sn≤t ds 1 . . . ds n p Ω s1 (x 0 , x 1 )p Ω s2-s1 (x 1 , x 2 ) . . . p Ω sn-sn-1 (x n-1 , x n ) .
Moreover, there exists constants c, c n,t > 0, independent of x 0 , x 1 , . . . , x n , such that, whenever

|x j | xj-1 ≥ c ε, j = 1, . . . , n (8.4) 1 ε Q(x)-2 n P x0 (T H x 1 ε ≤ . . . ≤ T H xn ε ≤ t) ≤ c n,t n j=1 1 |x j | Q(x)-2 xj-1 .
For the proof we use the result on the capacity (7.11) and we repeat the arguments in pp. 250-252, [START_REF] Chaleyat-Maurel | Green function, capacity and sample paths properties for a class of hypoelliptic diffusions processes[END_REF].

(b) Wiener sausage.

We shall analyse the asymptotic behaviour of the volume of the Wiener sausage of small radius. For 0 ≤ t < τ , let us denote

(8.5) S H x ε (0, t) = 0≤s≤t H xs ε ,
the "sausage" associated to (x t ) and to H x ε , H ⊂ IR d , containing 0. By a similar proof as in [START_REF] Chaleyat-Maurel | Green function, capacity and sample paths properties for a class of hypoelliptic diffusions processes[END_REF], pp. 253-257, we could obtain:

(8.6) PROPOSITION. Let µ(dx) = f (x) dx, where f is a bounded measur- able function on Ω. Then, for every p ≥ 1, 0 < T < τ , x 0 ∈ Ω, (8.7) lim ε↓0 E x0 sup 0≤t≤T 1 ε Q(x)-2 µ S H x ε (0, t) - t 0 f (x s )q xs (H)ds p = 0 .
(8.8) REMARK. Recall that (G t ) denote the invariant diffusion on N (m, r).

Let us denote, for ε > 0, t ≥ 0, (8.9)

S N ε (0, t) = {g ∈ N (m, r) : |g • G -1 s | N ≤ ε , for some s ≤ t} .
If µ denotes the Haar measure on the group, by the Theorem (4.9) in [START_REF] Gallardo | Capacités, mouvement brownien et problème de l'épine de Lebesgue sur les groupes de Lie nilpotents[END_REF], we get, (8.10) lim

t↑∞ 1 t µ(S N 1 (0, t)) = c , P e -a.s.
From this we obtain a similar result as (7.q) in [START_REF] Chaleyat-Maurel | Green function, capacity and sample paths properties for a class of hypoelliptic diffusions processes[END_REF], p. 258:

(8.11) lim ε↓0 1 ε Q N -2 µ(S N ε (0, 1)) = c, in probability .
Indeed, if δ ε denotes the image on N (m, r) of the dilation on the algebra g(m, r)

(see [START_REF] Ben Arous | Développement asymptotique du noyau de la chaleur hypoelliptique sur la diagonale[END_REF], p. 88), then (δ ε (G s )) and (G ε 2 s ) have the same law. By scaling and homogeneity properties we can show that µ(S N ε (0, 1)) and ε Q N µ(S N 1 (0, 1 ε 2 )) have the same law.

(c) Double points.

We could prove the same result as the Theorem 8.2 in [START_REF] Chaleyat-Maurel | Green function, capacity and sample paths properties for a class of hypoelliptic diffusions processes[END_REF], p. 261: (8.12) PROPOSITION. For every x ∈ Ω, with P x probability one, the process {x s : 0 ≤ s < τ } does not have double points.

In proving this, we use the Hausdorff measure with respect to the homogeneous norm | • | x and the estimates for G, (8.1). The difference with respect to [START_REF] Chaleyat-Maurel | Green function, capacity and sample paths properties for a class of hypoelliptic diffusions processes[END_REF] is that, instead (8.d), p. 262, we prove:

E x sup s<δ∧τ |x s | Q(x)-2 x ≤ c δ Q(x)-2 2
, for every x ∈ Ω, δ ∈ (0, 1), c being a positive constant. For this, we use the Taylor stochastic expansion and the fact that, for every multi-index J, there exists a constant c(J) > 0, such that, E(|B J t | 2 ) ≤ c(J) t |J| (see [START_REF] Ben Arous | Flots et séries de Taylor stochastiques[END_REF], p. 34).

(d) Wiener and Poincaré tests.

The result which we formulate is similar to the classical Wiener test. For another form we refer to [START_REF] Biroli | The Wiener Test for Poincaré-Dirichlet Forms[END_REF], p. 98.

Let us consider a constant α greather than the constant c 0 ≥ 1, which appears in the triangular inequality for the homogeneous norm | • | x , (6.9). For B a Borel set contained in U we denote (8.13) B n = {y ∈ B : 1 = 0) = 0 or 1 according as the series n α n(Q(x)-2) c λ (B n ) converges or diverges.

α n+1 ≤ |y| x ≤ 1 α n } , n ≥ 1 .
We show that, for n ≥ 1,

c ′ α n(Q-2) c λ (B n ) ≤ P x (T (λ) Bn < ∞) ≤ c α (n+1)(Q-2) c λ (B n ) ,
using the estimates in (8.1). Then we conclude as in [START_REF] Gallardo | Capacités, mouvement brownien et problème de l'épine de Lebesgue sur les groupes de Lie nilpotents[END_REF], pp. 108-110.

This result could be applied to obtain the cone test of Poincaré. A homogeneous cone with vertex 0 is a Borel set C with non-empty interior, which is stable for the dilations T α and such that 0 ∈ ∂C. 

B = 0) = 1.
We note that C n+1 = T 1/α (C n ), n ≥ 1, so, by a simple property of the capacity (see [START_REF] Gallardo | Capacités, mouvement brownien et problème de l'épine de Lebesgue sur les groupes de Lie nilpotents[END_REF] Proposition (4.7)), we get, c λ (C n ) = cα -n(Q-2) , c > 0. Then we can conclude, using the Proposition (8.14), since

ϕ x ((N ∩ C) n ) ⊂ B n and c λ (ϕ x (N ∩ C)) = c c λ (N ∩ C), c
> 0, (see also the Corollary (5.4) [START_REF] Gallardo | Capacités, mouvement brownien et problème de l'épine de Lebesgue sur les groupes de Lie nilpotents[END_REF]).

Examples

In this section we shall describe some concrete examples, where we can perform more calculations. Firstly, let us point out some simple cases.

We consider on IR 3 the vector fields

X 1 = ∂ x1 + 2x 2 ∂ x3 , X 2 = ∂ x2 -2x 1 ∂ x3 . Then [X 1 , X 2 ] = -4 ∂ x3 and the operator L = 1 2 (X 2 1 + X 2 2
) is hypoelliptic. This case is called the Heisenberg case and in [START_REF] Folland | A fundamental solution for a subelliptic operator[END_REF], p. 375 (see also [START_REF] Gaveau | Principe de moindre action, propagation de la chaleur et estimées souselliptiques sur certains groupes nilpotents[END_REF], p. 101) was calculated the Green function on IR 3 with pole 0:

(9.1) G H (0, y) = 1/(4π) (y 2 1 + y 2 2 ) 2 + y 2 3 4-2 = 1/(4π) |y| Q H -2 0 .
In [START_REF] Chaleyat-Maurel | Green function, capacity and sample paths properties for a class of hypoelliptic diffusions processes[END_REF] a more general situation is treated. Consider two smooth vector fields X 1 , X 2 on IR 3 , such that for every x ∈ Ω, X 1 (x), X 2 (x), [X 1 , X 2 ](x) span IR 3 . Then the Green function satisfies: It is also shown that the pseudo-distance d(x, y) is equivalent to |y| x . We firstly treat the following:

(a) Curved Heisenberg case.

For n ≥ 1 integer, we take m = 2n and d = 2n+1. Suppose that X 1 , . . . , X 2n are smooth vector fields on IR 2n+1 , such that,

(9.3) [X 2k-1 , X 2k ] = [X 1 , X 2 ] , k = 1, . . . , n ,
all other brackets being zero. Let us consider Ω a bounded domain in IR 2n+1 . We shall suppose that, for every x ∈ Ω, the vectors

X 1 (x), . . . , X 2n (x), [X 1 , X 2 ](x) span IR 2n+1 .
It is a particular case because we consider only two order brackets and a single one is not zero. In this case r = 2 and Q = 2n + 2. The basis is indexed by B = {1, 2, . . . , 2n, (1, 2)}.

The diffusion associated to the vector fields, starting from a fixed point

x ∈ Ω, is

(9.4) x t = exp   2n j=1 B j t X j - 1 2 n k=1 t 0 (B 2k s dB 2k-1 s -B 2k-1 s dB 2k s )[X 1 , X 2 ]   (x)
. +t

3 2 R 3 (t) ,
as we can see by (2.14). We must compare (x t ) to the left invariant diffusion on the Heisenberg group, H 2n+1 , with its usual structure on IR 2n+1 . The left invariant vector fields are defined by

Y 2k-1 = ∂ x 2k-1 -2 x 2k ∂ x2n+1 , Y 2k = ∂ x 2k + 2 x 2k-1 ∂ x2n+1 , k = 1, . . . , n ,
so, the invariant diffusion started from 0 is

(9.5) G t = exp   2n j=1 B j t Y j - 1 2 n k=1 t 0 (B 2k s dB 2k-1 s -B 2k-1 s dB 2k s )[Y 1 , Y 2 ]   (0) .
In this case we do not need any projection, and (u

(x) t ) is the diffusion (9.6) B 1 t , . . . , B 2n t , - 1 2 
n k=1 t 0 (B 2k s dB 2k-1 s -B 2k-1 s dB 2k s ) .
Its Green fonction, g (x) , is the invariant Green function on the Heisenberg group. By the result of [START_REF] Folland | A fundamental solution for a subelliptic operator[END_REF], p. 375, we get (9.7)

g (x) (0, y) = 1/c n 2n j=1 y 2 j 2 + y 2 2n+1 n 2 , c n = 2 n-1 Γ( n 2 ) π n+1 .
For y = ϕ x (y 1 , . . . , y 2n+1 ), we denote (9.8)

|y| x =      2n j=1 y 2 j   n+1 + |y 2n+1 | n+1    1 2n+2
.

Then, applying the Theorem (1.9), we obtain (9.9) lim

ε↓0 sup x-y <ε G(x, y) |y| 2n x -Φ x (θ x (y)) = 0 .
Here , c x > 0 .

(9.12) REMARK. Noting the symetry of the first 2n coordinates, we can write a simpler form of (9.9). Put (9.13)

ϑ(y) = |y 2n+1 | 2n j=1 y 2 j , Ψ(t) = 1 c n (1 + t n+1 ) n n+1 (1 + t 2 ) n 2
.

Then, by (9.9), we get We also note that, for n = 1, Ψ = 1 cn is constant and we can compare (9.14) with the result obtained by [START_REF] Chaleyat-Maurel | Green function, capacity and sample paths properties for a class of hypoelliptic diffusions processes[END_REF], (9.2).

(9.15) REMARK. In this particular case we could easily write the result on the capacity of small compact sets. Now, we shall study a slight extension of the last model. Let us replace (9.3) by the following assumption:

(9.16) [X 2k-1 , X 2k ] = a k [X 1 , X 2 ] , a k ∈ IR * , k = 1, . . . , n ,
all other hypothesis on the vector fields being the same.

The associated diffusion can be written as in (9.4), using the Taylor stochastic expansion. It will be compared to the diffusion (ũ x t ) generated by the following vector fields:

Y 2k-1 = ∂ x 2k-1 + 2 a k x 2k ∂ x2n+1 , Y 2k = ∂ x 2k -2 a k x 2k-1 ∂ x2n+1 , k = 1, . . . , n , that is, (9.17) B 1 t , . . . , B 2n t , - 1 2 n k=1 a k t 0 (B 2k s dB 2k-1 s -B 2k-1 s dB 2k s ) .
The Green function associated to (ũ x t ) was pointed out by [START_REF] Greiner | On second order hypoelliptic differential operators and the ∂-Neumann problem[END_REF], p. 136:

(9.18) g(x) (0, y) = c n IR A(s) ds n k=1 b k (s)(y 2 2k-1 + y 2 2k ) + i s y 2n+1 n , where i = √ -1, c n = (n-1)! 2π
and of order 2 p in this points. This time r(0, 0, x 3 ) = 2 p and Q(0, 0, x 3 ) = 2 p + 2.

Clearly, the geometry of the brackets is not locally constant around the point (0, 0, x 3 ). Operators like L occur in the study of the boundary of the Cauchy-Riemann complex (see [START_REF] Greiner | On the solvability of some differential operators of type b , In: Several complex variables[END_REF]). Precisely, let us consider the domain

D = {(z 1 , z) ∈ C  2 , Im z 1 > |z| 2p } .
If p = 1, D is the generalized upper half plane in C  2 . The vector field ∂ z -2 i z ∂ z1 is the unique holomorphic vector field which is tangent to the boundary bD of D. In the tangential coordinate system (see [START_REF] Greiner | On the solvability of some differential operators of type b , In: Several complex variables[END_REF]: coordinates ρ = Im z 1 -|z| 2 , z, z and x 3 = Re z 1 ) this vector field takes the form

Z = ∂ z + i z ∂ x3 .
Z is left-invariant with respect to the nilpotent group structure, the Heisenberg group, on IR 3 = bD.

In the case p > 1, we have

Z = ∂ z + i p z p-1 zp ∂ x3
and there is no group structure on IR 3 with respect to which Z is left-invariant. We also note that Z

= 1 2 X 1 -i 2 X 2 and L is of the type -b , precisely, L = Z Z + Z Z .
Recall that in the Heisenberg case, the Green function on IR 3 is known. By left-invariance it suffices to know the Green function with pole (0, 0, 0) (see (9.1)).

In [START_REF] Greiner | A fundamental solution for a nonelliptic partial differential operator[END_REF] the case p = 2 is considered and the expression of the Green function on IR 3 with arbitrary pole is given.

Here we consider an arbitrary p. As was said, the case when the pole is outside of the axis {x 1 = x 2 = 0} was treated. It is plausible that the method of [START_REF] Greiner | A fundamental solution for a nonelliptic partial differential operator[END_REF] can give an exact formula for the Green function with arbitrary pole.

the calculation seems to be more delicate (see also [START_REF] Greiner | On the solvability of some differential operators of type b , In: Several complex variables[END_REF], p. 157). Nevertheless, we can give an exact formula for the Green function with pole on the axis {x 1 = x 2 = 0}: (9.26) PROPOSITION. The Green function on IR 3 , associated to the vector fields X 1 , X 2 , with pole (0, 0, x 3 ), is

(9.27) G((0, 0, x 3 ), (y 1 , y 2 , y 3 )) = 1/(4 p π) (y 2 1 + y 2 2 ) 2p + (y 3 -x 3 ) 2 .
Proof. We denote w = y 1 + i y 2 , σ 2 = |w| 4p + (y 3x 3 ) 2 and we must show that Green function is G((0, x 3 ), (w, y 3 )) = 1 4 p π σ .

and then,

p π ǫ 2p IR 2 |w| 2p-2 dv(w) (|w| 2p + ǫ 2p ) 2 = 2 p ǫ 2p ∞ 0 r 2p-1 dr (r 2p + ǫ 2p ) 2 = 1 .
Now we consider an arbitrary φ ∈ C ∞ 0 (IR 3 ). Then, for any neighbourhood U of (0, x 3 ), we can write,

< G((0, x 3 ), •), L φ >= lim ǫ↓0 IR 3 G ǫ ((0, x 3 ), (w, y 3 ))L φ(w, y 3 )dv(w, y 3 ) = lim ǫ↓0 φ(0, x 3 ) IR 3 L G ǫ ((0, x 3 ), (w, y 3 ))dv(w, y 3 ) + lim ǫ↓0 IR 3 L G ǫ ((0, x 3 ), (w, y 3 ))(φ(w, y 3 ) -φ(0, x 3 ))dv(w, y 3 ) = φ(0, x 3 ) + lim ǫ↓0 IR 3 \U L G ǫ ((0, x 3 ), (w, y 3 ))(φ(w, y 3 ) -φ(0, x 3 ))dv(w, y 3 ) + lim ǫ↓0 U L G ǫ ((0, x 3 ), (w, y 3 ))(φ(w, y 3 ) -φ(0, x 3 ))dv(w, y 3 ) = φ(0, x 3 ) .
This proves the fact that G is the Green function of L on IR 3 with pole (0, x 3 ). (9.28) REMARK. In the Heisenberg case, the Green function with arbitrary pole is given by (9.27). For the case treated in [START_REF] Greiner | A fundamental solution for a nonelliptic partial differential operator[END_REF], p = 2, the Green function with arbitrary pole has two terms, the first being the right hand of (9.27). In the general case we should attempt to find p terms for the Green function with arbitrary pole, the first being the right hand of (9.30).

The diffusion started from (0, 0, 0) ∈ {x 1 = x 2 = 0}, generated by X 1 , X 2 is (9.29)

x t = B 1 t , B 2 t , 4 p t 0 R 2(p-1) s dS s , where (9.30) R 2 t = (B 1 t ) 2 + (B 2 t ) 2 , S t = 1 2 t 0 B 2 s dB 1 s -B 1 s dB 2 s .
We denote, for y = ϕ (0,0,0) (y 1 , y Clearly, we could use the symmetry of the first two coordinates to write another expression for the Green function (see [START_REF] Gradinaru | Fonctions de Green et support de diffusions hypoelliptiques[END_REF] ).

Finally, we shall consider the:

(c) Grushin case.
Let us consider on IR 2 the vector fields (9.35)

X 1 = ∂ x1 , X 2 = x 1 ∂ x2 . Then [X 1 , X 2 ] = ∂ x2 and the operator L = 1 2 (X 2 1 + X 2 2
) is hypoelliptic on the axis {x 1 = 0} and elliptic elsewhere.

We consider the point x = (0, 0), which lies on the axis {x 1 = 0}. Clearly, r(0, 0) = 2, Q(0, 0) = 3 and B = {1, (12)}.

The diffusion started from x is (9.36)

x t = B 1 t , t 0 B 1 s dB 2 s = B 1 t , B 1 t B 2 t 2 -S t ,
where S t is as in (9.30).

The left invariant diffusion started from 0 on the Heisenberg group H 3 is (9.37)

G t = (B 1 t , B 2 t , -S t ) .
Therefore, (9.38)

x t = π x (G t ) , π x (a, b, c) = (a, a b 2 + c) .
From this it is not difficult to see that the Green function of (x t ) is

(9.39) G((0, 0), (y 1 , y 2 )) = IR G H (0, 0, 0), (y 1 , h, y 2 - y 1 h 2 ) dh ,
or, by (9.1)

Proof. In estimating I we shall use the following simple observation. Let us denote, for n ≥ 1, p, q > 0 and σ > 0,

(A.3) Λ n,p,q (σ) = σ 0 ρ n-1 (ρ q + 1) p dρ .
Clearly, Λ n,p,q is increasing and we see that, there exists c 1 > 0, depending only on n, p, q, such that (A.4) lim σ↑∞ Λ n,p,q (t) < c 1 , provided pqn > 0 .

Also, for S, R > 0, we have (A.5) S 0 ρ n-1 (ρ q + R) p dρ = R n-pq q Λ n,p,q S R 1 q

.

We shall denote, for k = 1, . . . , r, 

(s Q 1 + R 1 ) Q 1 -2 Q = (2π) d1-1 S 0 ρ d1-1 dρ (ρ Q + R 1 ) Q 1 -2 Q = (2π) d1-1 R d 1 -Q 1 +2 Q 1 Λ d1, Q 1 -2 Q ,Q   S R 1 Q 1   .
We have

Q • Q1-2 Q -d 1 = Q 2 -2.
The case r = 2, d 2 = 1 will be considered separately. For r = 2 and d 2 > 1, by (A.4) we get (s

I < c {|s2|<S 1 2 } du ′′ s Q 2 • Q 2 -2 Q 2 = c
Q 2 2 + R 2 ) Q 2 -2 Q
, where, this time du ′ = j,lj =2 du j , du ′′ = j,3≤lj ≤r du j and R 2 = r k=3 s Q k k . By a similar calculation: To finish the proof we must treat the case r = 2, d 2 = 1. We have 

{|s2|<S 1 2 } du ′ (s Q 2 2 + R 2 ) Q 2 -2 Q = (2 π) d2-1 S 1 2 0 ρ d2-1 dρ (ρ Q 2 + R 2 ) Q 2 -2 Q = (2 π) d2-1 R 2 d 2 -Q 2 +2 Q 2 Λ d2, Q 2 -2 Q , Q 2 S 1 2 R 2/Q 2 . Since Q • Q2-2 Q -2 d 2 = Q 3 -2 > 0,
I ≤ {|s1|<S,|s2|<S

= 2π

(0,S)×(0,S

ρ dρ dz

ρ 4 + z 2 ≤ (2π) 2 √ 2S .
This ends the proof of (A.2).

Before stating the second result of this section we introduce some notations. 

|(u, h)| Q N -2 N < c U 2 r 2 .
So, it suffices to prove that, for every S, T > 0, there exists a constant c > 0, such that (A.11)

J = {|s k |<S 1 k ,|t k |≥T 1 k ,k=1,...,r} du dh [ r k=1 (s 2 k + t 2 k ) Q N 2k ] Q N -2 Q N < c
We see that, for S, T > 0, b ≥ 1 and for a ≥ 2 and p ≥ 2 or a = 1 and p ≥ 3, there exists a constant c 2 > 0, such that ≤ c 2 .

Indeed, we have to study only the integral in t and, clearly, 

t
Q N 2 + R 1 Q N,1 -2 Q N
, where du ′ = j,lj =1 du j , dh ′ = i,mi=1 h i , du ′′ = j,2≤lj ≤r du j , dh ′′ = i,2≤mi≤r dh i , R 

(ρ Q N + R 1 ) Q N,1 -2 Q N < c c 1 {|s k |<S 1 k ,|t k |≥T 1 k ,k=2,...,r} du ′′ dh ′′ R d 1 +e 1 -Q N,1 +2 Q N 1 .

( 4 .

 4 [START_REF] Folland | A fundamental solution for a subelliptic operator[END_REF] LEMMA. For every R > 0

( 5 . 1 )

 51 PROPOSITION. Let H be a compact subset of IR d \ {0}. Then (5.2) lim ε↓0 sup u∈H |G (ε,x) (0, u)g (x) (0, u)| = 0 .

  = y} . Here C 3 (δ) = ∪ D C 3 (δ, D), where, for each d-tuple D of multi-indices J, with |J| ≤ r, C 3 (δ, D) denote the class of smooth curves f : [0, 1] → IR d , such that

( 6 .

 6 10) REMARK. We can check another simple property of | • | x . For every x, y ∈ Ω, y = ϕ x (u), there exists two positive constants, c ′ , c ′′ , such that (6.11) c ′ u ≤ |y| x ≤ c ′′ u 1 r .

( 8 .

 8 14) PROPOSITION. The probability P x (T (λ) B

( 8 .

 8 [START_REF] Greiner | A fundamental solution for a nonelliptic partial differential operator[END_REF] COROLLARY. Consider C a homogeneous cone with vertex 0 and N a neighbourhood of 0. If B is a Borel set such that ϕ x (N ∩ C) ⊂ B ⊂ U , then P x (T (λ)

(9. 2 )

 2 G(x, y) d(x, y) 4-2c → 0 , as y → x .

  G(x, y) |y| 2nxc x Ψ(ϑ(y)) = 0 .

,

  where du ′ = j,lj =1 du j , du ′′ = j,2≤lj ≤r du j and R 1 = a simple change of variables and by (A.5), we get {|s1|<S} du ′

1 2

 1 , c = (2π) d1+d2-2 c 1 .36For r ≥ 3, again by (A.4), we can write

we get I < c {|s k |<S 1 kQ 3 - 2 Q 2 du 1 . 2 9c 2 1 .

 1322121 ,k=3,...,r} R -′′ , c = (2π) d1+d2-2 c 2 For r = 3, d 3 = 1, we have I < c S , with c = 3(2π) d1+d2-2 c 2 1 , and for r = 3, d 3 > 1, For r ≥ 4 we repeat the reasoning and (A.2) is obtained in a finite number of steps.

7 )(

 7 Recall that n = dim g(m, r)d = card Acard B. Put A \ B = {L 1 , . . . , L n }, m i = |L i |, i = 1, . . . , n and e k = card{i : m i = k}, k = 1, . . . , r. So, n = r k=1 e k and Q N = r k=1 k(d k + e k ). For a point (u, h) ∈ IR d × IR n we denote |(u, h)| N = LEMMA.For every S > 0, there exists a positive constant c, such that (A.8){|u| h <S}×IR n du dh |(u, h)| Q N -2 N < cProof. Let us denote, for k = 1, . . . , r i + e i ) .Replacing in (A.2), d by d + n and |u| h by |(u, h)| N , we get the existence of a constant c > 0, such that for every U > 0, (A.10) |(u,h)| N <U du dh

t b- 1 (s 2 + t 2 )

 122 

< c {|s k |<S 1 k ,|t k |≥T 1 k 0 ρ

 110 again (A.5) and (A.4), we getJ ,k=2,...,r} du ′′ dh ′′ ∞ d1+e1-1 dρ

  We proceed as in the proof of the Lemma (A.1):

				p(a+b)-2 2p	∼	1 t 1+a-2	
	J =	{|s k |<S	1 k ,|t k |≥T	1 k ,k=2,...,r}	du ′′ dh ′′	|s1|<S,|t1|≥T	(s 2 1 + t 2 1 )	du ′ dh ′

b-1 (s 2 + t 2 ) p , as t ↑ ∞ .

(9.20) REMARK. When (y 1 , . . . , y 2n+1 ) = (0, . . . , 0, y 2n+1 ), with y 2n+1 = 0, we must integrate in (9.19) on IR + i q, q > 0 (see also [START_REF] Beals | Lectures at the Seminar on Analysis[END_REF]).

We can obtain the behaviour of the Green function G, associated to the vector fields X j , as in the first case. We use the same homogeneous norm, given by (9.8), and we get the same relation as (9.9), with Φ x replaced by: (9.21) Φx (t 1 , . . . , t 2n+1 ) = c x c n IR A(s) ds

(9.22) REMARK. We can simplify the result again, using the symetry of the pairs of coordinates.

(9.23) REMARK. We can find again the result of [START_REF] Chaleyat-Maurel | Green function, capacity and sample paths properties for a class of hypoelliptic diffusions processes[END_REF], for n = 1. Also, we could formulate the result on the capacity.

(9.24) REMARK. A more general situation can be obtained assuming that m = 2n, d = 2n + p (p missing directions, p ≥ 1, integer) and r = 2. Using some recent results of [START_REF] Beals | Lectures at the Seminar on Analysis[END_REF] we could write similar results.

As was said, we shall describe a case when the condition that the geometry of the brackets is locally constant fails: (b) A case at step larger than two.

Let us consider on IR 3 the vector fields (9.25)

The operator L is nowhere elliptic, but is hypoelliptic. Indeed, for p > 1 and for x /

So, for p > 1 and for x / 3 . This situation was already treated. On the other hand we see that for the points on the axis {x 1 = x 2 = 0}, to span IR 3 we need to go up to the brackets Clearly, this function is a C ∞ -function of (w, y 3 ), as long as (w, y 3 ) = (0, x 3 ).

We consider, for ǫ > 0, the C ∞ -function on IR 3 , G ǫ ((0, x 3 ), (w,

where

Then, G ǫ ((0, x 3 ), (w, y 3 )) → G((0, x 3 ), (w, y 3 )), pointwise as ǫ ↓ 0, as long as (w, y 3 ) = (0, x 3 ). In fact, we can show that G((0, x 3 ), (w, y 3 )) = lim ǫ↓0 G ǫ ((0, x 3 ), (w, y 3 )) , as a distribution in IR 3 .

Indeed, we see that there exists a positive constant c, independent of ǫ, such that |G ǫ | ≤ c σ . If we show that 1 σ is locally integrable, then, by the Lebesgue dominated convergence theorem we get

We study the integrability at (w, y 3 ) = (0, x 3 ) and we may suppose that x 3 = 0. We shall estime 1 σ on the domain |w| ≤ 1, |y 3 | ≤ 1. We have,

The first term is clearly integrable on |w| ≤ 1, as for the second, |w|≤1 | log |w|| ×dv(w) = 2 π 1 0 r log rdr < ∞. After some calculations, we get

Hence, we have, LG = 0 , as long as (w, y 3 ) = (0, x 3 ) and

LG ǫ ((0, x 3 ), (w, y 3 )) → 0 , as ǫ ↓ 0 , uniformly on compact subsets of IR 3 which do not contain the point (0, x 3 ). We show that

LG ǫ ((0, x 3 ), (w, y 3 ))dv(w, y 3 ) = 1 .

Indeed,

Let us denote (9.41)

If we take (9.42)

(9.45) REMARK. We could take as angular variable ϑ 0 (y 1 , y 2 ) = y2 y 2 1 to write another expression for the Green function (see [START_REF] Gradinaru | Fonctions de Green et support de diffusions hypoelliptiques[END_REF] ). (9.46) REMARK. In this case several of our hypothesis fail: d = 2, Q(x) = 3, the geometry of the brackets is not locally constant in x and the estimates of [START_REF] Nagel | Balls and metrics defined by vector fields I. Basic properties[END_REF] are not proved. Nevertheless, the result obtained by a direct calculation, (9.44) is quite close to the result of the Theorem (1.9).

Appendix

We prove here the integral estimates which we used in the proof of the Theorem (1.9).

We shall denote d k = card{j :

(A.1) LEMMA. There exists two positive constants c 0 , c 1 , such that, for every S > 0, (A.2)

where c = c 0 (2π) l-r c r-1

Here we used the fact that

-2 > 0, excepting the case when r = 2, d 2 = 1 and e 2 = 0 which will be treated separately.

For r = 2, d 2 > 1 and e 2 ≥ 1, we can write, by (A.12),

For r ≥ 3 we repeat the reasoning:

. Then, by (A.5) and (A.4), we get < c 2 .

For r ≥ 4 we repeat the calculation and (A.11) is obtained in a finite number of steps. Finally we treat the case r = 2, d 2 = 1, e 2 = 0:

This ends the proof of (A.8).