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Transport equations with rough force fields and applications to

Vlasov-Poisson equation.

Delphine Salort

December 13, 2006

Abstract

In this article, we study the three dimensional Vlasov-Poisson equation. We give new
conditions on the initial data using low moments to control the force field E, the density ρ
in L∞ and to have information concerning the smoothness of the solution localy in time.
In particular, we introduce a new approach which consists in establishing moments effects
for linear transport equations with rough force fields.

1 Introduction

In this article, we study the three dimensional Vlasov-Poisson equation given by

{
∂tf + ξ∇xf ±E·∇ξf = 0

f(0, x, ξ) = f in(x, ξ)
(1)

where f in is a positive measurable function, with E = ϕ ∗ ρ,

ϕ(x) =
x

|x|3
and ρ(t, x) =

∫
f(t, x, ξ)dξ.

This equation models the evolution of a system of particles in gravitational (for sign −) or
coulombian (for sign +) interactions. The solution f(t, x, ξ) models the microscopic density of
particles which are, at time t, at position x with velocity ξ, and ρ(t, x) models the probability
of finding a particle at t at position x. Finally E(t, x) models the (electrostatic or gravitational,
depending on the sign) potential created by ρ.
Let x ∈ R. In this article, we use x + 0 and x − 0 to denote x + ε and x − ε where ε > 0 is
taken arbitrarily small.

Many articles have been devoted to the study of the Vlasov-Poisson equation in dimension
three. Concerning weak solutions, the reader can refer to the articles by A. A. Arsen’ev in
[1], [2], and by E. Hörst and R. Hunze in [14]. In the case of smooth initial data, the reader
can refer to the article by J. Batt in [5], J. Batt and G. Rein in [6], C. Bardos and P. Degond
in [4], of E. Hörst in [11], [12] and [13], of K. Pfaffelmoser in [18] and of J. Schaeffer in [20].
Concerning the study of the Vlasov-Poisson with propagation of moments, we refer the reader
to the articles by P.-L. Lions and B. Perthame in [15] (see also references therein), of F. Castella
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[8], of I. Gasser P.-E. Jabin and B. Perthame in [10] (see also the article by B. Perthame [17]
and references therein).

In this article we focus on the following problem, to which we will refer by P. Prove that :

• 1. E belongs to a certain space Cα with α ∈ [0, 1[

• 2. ρ belongs to L∞

• 3. the solution is smooth if the initial data is smooth using the boundedness condition
(see the article by E. Hörst [11])

using as little information as possible on the moments of the initial data.

Let us make two preliminary remarks about problem P .

• First, the three points above are related for two reasons. On the one hand, the relation
ρ = ∇(∆)−1E binds the force field E and ρ; on the other hand, enough smoothness in E
leads to precise information on the characteristics and hence on the solution by means of
the initial data.

• Secondly, by proving the second point for a given solution, we also gain uniqueness of
the solution to the Vlasov-Poisson equation. Indeed, G. Loeper showed in [16] that if the
density ρ is bounded, then uniqueness of weak solutions to the Vlasov-Poisson equation
follows. Note that this result does not provide any information pertaining to the existence
of such a solution.

To devise answers to problem P, we introduce a new approach to the study of the Vlasov-
Poisson equation. One of the key arguments we used involved a precise study of characteristics
using moments effects for transport equations with rough force fields. This approach brought
new answers to the question stated above with little constraints on the moments of the initial
data. Let us mention that I. Gasser P.-E. Jabin and B. Perthame in [10] studied the Vlasov-
Poisson’s equation by using moments effects established for the free transport equation.

Before stating our results, let us first recall the results obtained by P.-L. Lions et B. Perthame
in [15] conerning the problem P.

1.1 Known results concerning the problem P.

In the case where the initial data is bounded with more than 6 moments in L1
x,ξ, P.-L. Lions

and B. Perthame have shown in [15] the following result (among other properties of the solution
to the Vlasov-Poisson equation).

Theorem 1 [15]
Assume that f in ∈ L∞(R6) and that

‖(1 + |ξ|)mf in‖L1
x,ξ

< +∞ with m > 6.
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Then

E ∈ C(R+)(Cα(R3)) with α <
m− 6

3 +m
·

E belonging to L∞([0, T ] × R
3), they deduce that the characteristics (X,V ) are little pertur-

bations of the corresponding trajectories given by the free transport equation. Indeed,

X(t, x, ξ) = x+ tξ +R1(t, x, ξ) and V (t, x, ξ) = ξ +R2(t, x, ξ)

where here

R1(t, x, ξ) =

∫ t

0
(t− s)E(s,X(s))ds and R2(t, x, ξ) =

∫ t

0
E(s,X(s))ds.

They deduce the following control

‖R1‖L∞

x,ξ
≤ |t|2‖E‖L∞([0,T ]×R3) and ‖R1‖L∞

x,ξ
≤ |t|‖E‖L∞([0,T ]×R3).

This control on E and on the characteristics allows them to prove the following result which in
turn implies on the one hand sufficient conditions on the initial data to show that the density
ρ belongs to L∞([0, T ] × R

3) and on the other hand a result of propagation of smoothness of
the solution for smooth initial data.

Theorem 2 [15]
Assume that f in ∈ L∞(R6) and that

‖(1 + |ξ|)6+0f in‖L1
x,ξ

< +∞.

Then, the boundedness condition is satisfied (see E. Hörst [11] for the definition) which implies
that if f in is smooth, then the solution of the Vlasov-Poisson equation f is smooth.

Assume furthermore that for all R > 0 and for all T > 0

supess
{
f in(y + tξ, w), |x − y| ≤ Rt2, |ξ − w| ≤ Rt

}
∈ L∞([0, T ] × R

3
x(L1

ξ)). (2)

Then, there exists a solution of the Vlasov-Poisson equation (1) such that ρ ∈ L∞([0, T ]×R
3
x).

1.2 Results

We obtain two results.
The first one gives us the following controls on the force field E.

Theorem 3 Assume that
‖(1 + |ξ|)

5
2
+0f in‖L2

x,ξ
< +∞.

Let p ≥ 3. Then there exist T0 > 0, and C > 0, such that for all A > 0,

sup
|B|≤A

‖E‖
L

p
T0

(C
1− 3

p +0
(B))

≤ CA if ‖(1 + |ξ|)
3p−1
pp′

+0
f in‖

L
p+0
x,ξ

< +∞ (3)

with 1 − 3
p

+ 0 < 1 and

sup
|B|≤A

‖E‖L
p
T0

(C0+0(B)) ≤ CA
3
p if ‖(1 + |ξ|)2−

1
3p

+0
f in‖

L3+0
x,ξ

< +∞.
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Remark 1 In Theorem 3, the moments condition on the initial data is weaker than that in
Theorem 1. Conversely, the control of E given by Theorem 3 only holds over compact sets for
the space variable and after averaging over small time intervals.

Theorem 3 does not give control over E in L∞([0, T ] × R
3); so we cannot follow the same

strategy as that adopted by P.-L. Lions and B. Perthame in [15] to prove that the trajectories
are a small perturbation of those given by the free transport equation. To obtain a good
approximation of the characteristics by free transport, we will prove the following weaker
condition using moments effect

sup
(x0,ξ0)∈R6

∫ t

0
|E(s,X(s, x0, ξ0))|

pds < +∞ where p ≥ 1. (4)

We shall see that to obtain a formal estimate such as (4), bounded initial data with strictly
less than 6 moments in L1 are allowed. In counterpart, estimate (4) gives us weaker control on
R1 and R2 when t is small than was obtained by P.-L. Lions and B. Perthame in [15].
The second result provides conditions on the initial data to obtain smooth solutions for smooth
initial data and also a bound on the density of probability ρ in L∞([0, T0] × R

3) for T0 small
enough.

Theorem 4 Let α = 19
21 and p ≥ 3. Assume that

‖(1 + |ξ|)
5
2
+0f in‖L2

x,ξ
< +∞.

Then, if
‖(1 + |ξ|)2α+0f in‖

L3+0
x,ξ

< +∞,

there exists T0 > 0 such that the boundedness condition is satisfied (see E. Hörst [11] for the
definition) which implies that if the initial data is smooth, then the solution of (1) is smooth
on [0, T0].

Let p ≥ 3. Assume that

‖(1 + |ξ|)2(1+
3
p
(α−1))+0

f in‖
L3+0

x,ξ
< +∞

and that for all R > 0, for all t ∈ [0, T0],

supess
{
f in(y + tξ, w), |x − y| ≤ Rtp

′+1, |ξ − w| ≤ Rtp
′

}
∈ L∞([0, T0] × R

3
x(L1

ξ)). (5)

Then, there exists T0 > 0, such that there exists a unique solution of the Vlasov-Poisson
equation (1) such that the density of probability ρ ∈ L∞([0, T0] × R

3
x).

Remark 2 Theorem 4 shows, in particular that ρ ∈ L∞([0, T0]×R
3), for bounded initial data

satisfying condition (5) and which have strictly less than 6 moments in L1. The control of
characteristics being worse than if E ∈ L∞([0, T0] × R

3), one is forced to add an additional
constraint when compared to condition (2), namely condition (5). On the other hand, to obtain
the smoothness propagation for the solution to (1), formal control that one obtains on the
trajectories with the approach using moments effects is enough to obtain the same conclusions
locally in time as if one had from the beginning E ∈ L∞([0, T0] × R

3) as in Theorem 2.
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The remainder of the article is organized as follows.
• In the second section, we reduce the proof of Theorems 3 and 4 to proving Theorems 6 and 7
over an approximate system which gives rigorous meaning to the formal computations on the
characteristics.
• In the third section, we study linear transport equations with a rough force field. This study
is crucial to the proof of Theorems 6 and 7.
• In the fourth section, we use the results obtained in the third section to prove Theorem 6.
• The last section is devoted to the proof of Theorem 7. This proof is based on the preceding
section results and on a new moment effect along characteristics.

2 Reduction to an approximate system.

We consider for all n ∈ N
∗ the following equation

{
∂tfn + ξ∇xfn ±En·∇ξfn = 0

fn(0, x, ξ) = f in(x, ξ)
(6)

where En = ϕn ∗ ρn with

ϕn =
x

(|x|2 + 1
n
)

3
2

and ρn =

∫
fn(t, x, ξ)dξ.

The following theorem proved by E. Hörst in [11] allows for an explicit representation of the
solution using characteristics.

Theorem 5 Let I be a time interval containing 0. Then, there exists a unique solution fn of
equation (6) with

• En continuous on I × R
3

• En(t, .) ∈ L∞ ∩ Lip

• En ∈ L∞([0, T ] × R
d).

The solution fn can be written in terms of the initial data as

fn(t, x, ξ) = f in(Xn, Vn) where

{
Ẋn = Vn

V̇n = En

(7)

Let t0 ∈ I. We denote by (X(t0, t, x, ξ), V (t0, t, x, ξ)) the solution to equation (7) with (x, ξ)
as initial data at time t0. In particular

(X(t0, t, x, ξ), V (t0, t, x, ξ))
−1 = (X(t, t0, x, ξ), V (t, t0, x, ξ)).

To prove Theorems 3 and 4, it suffices to prove the following estimates on the approximate
system (6), which are uniform with respect to n ∈ N

∗.
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Theorem 6 Let p ≥ 3. Assume that

‖(1 + |ξ|)
5
2
+0f in‖L2 < +∞.

Then, there exist T0 in ]0, 1], and a constant C > 0 such that for all n ∈ N
∗, for all A > 0

sup
|B|≤A

‖En‖
L

p
T0

(C
1− 3

p +0
(B))

≤ CA if ‖(1 + |ξ|)
3p−1
pp′

+0
f in‖

L
p+0
x,ξ

< +∞ (8)

with 1 − 3
p

+ 0 < 1 and

sup
|B|≤A

‖En‖L
p
T0

(C0+0(B)) ≤ CA
3
p if ‖(1 + |ξ|)

2− 1
3p

+0
f in‖L3+0

x,ξ
< +∞. (9)

Moreover, there exists a constant C such that ∀n ∈ N
∗

‖∂tEn‖L∞

[0,T0]
(L2(R3)) ≤ C. (10)

Theorem 6 allows us to prove Theorem 3. Indeed, estimate (9) gives us uniform estimates on
En with some smoothness in space and estimate (10) gives us uniform estimates on En with
some smoothness in time, allowing us to pass to the limit to the Vlasov-Poisson equation.
The following Theorem, obtained using Theorem 6, implies Theorem 4. It states that the
characteristics are a little perturbation of those arising from the free transport equation; and
the perturbation is uniform with respect to n ∈ N

∗.

Theorem 7 Let α = 19
21 and p ≥ 3. Assume that

‖(1 + |ξ|)
5
2
+0f in‖L2 < +∞ and ‖(1 + |ξ|)2(1+

3
p
(α−1))+0

f in‖
L3+0

x,ξ
< +∞.

Then, there exists T0 > 0, there exists C > 0 such that for all n ∈ N
∗, for all (t1, t2) ∈ [0, T0]

2,
for all (x, ξ) ∈ R

3 × R
3 the following estimate holds

|Xn(t1, t2, x, ξ)−x+(t1 − t2)ξ| ≤ C|t1 − t2|
p′+1 and |Vn(t1, t2, x, ξ)− ξ| ≤ C|t1 − t2|

p′ . (11)

To prove the first point of Theorem 4, we use a result from E. Hörst in [11] which states that
propagation of smoothness is a consequence of the result that characteristics are a uniformly
bounded ( with respect to n ∈ N

∗) perturbation of the characteristics of free transport equation.
Taking p = 3 in Theorem 7, we obtain that if the initial data has 2α+ 0 moments in L3+0

x,ξ the
characteristics satisfy Hörst’s condition for propagation of smoothness for the solution to (1).

To prove the second point of Theorem 4, we follow the strategy adopted by P.-L. Lions and B.
perthame in [15]. We observe that

f(t, x, ξ) ≤ sup
(y,w)

{f in(y + tξ, w), |y − x| ≤ R|t|
1+ 1

p′ , |w − ξ| ≤ R|t|
1
p′ }

and so ρ ∈ L∞([0, T0] × R3).

In the following, we first study the linear transport equation with rough force field, and then
use this study to prove Theorems 6 and 7.
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3 Linear transport equation with rough force field.

In this section, we assume that we are in dimension d ≥ 1 and we consider the linear transport
equation with a rough force field F (t, x) given by

{
∂tf + ξ∇xf + F ·∇ξf = 0

f(0, x, ξ) = f in(x, ξ).
(12)

Later on En is substituted with F , in equation (12) to get equation (6). In particular, in this
section, we never use the fact that, for the approximate system (6), En can be written explicitly
with respect to the density ρn.
If the force field F is smooth enough, then, there exists a unique solution of equation (12)
which can be written explicitly in terms of the initial data by

f(t, x, ξ) = f in(X(t, 0, x, ξ), V (t, 0, x, ξ))

where for all (t1, t2) ∈ R
2, (X(t1, t2, x, ξ), V (t1, t2, x, ξ)) is the solution of the system

{
Ẋ(t2) = V (t2, X(t2))

V̇ (t2) = F (t2, X(t2))
(13)

with
X(t1, t1, x, ξ) = x and V (t1, t1, x, ξ) = ξ

as initial data.

In this section we endeavour to study this equation qualitatively using only weak norms on the
force field F . More precisely, given p ≥ 1, and T > 0, constants involving F will only depend
on

ST,p = sup
|B|≤1

‖F‖L
p

[0,T ]
(L∞(B)) (14)

where B is a ball of R
d of size 1.

We will first explain what are the motivations behind the study of this equation to show
Theorems 6 and 7, then proceed to state the results obtained on equation (12) and finally
prove them.

3.1 Motivations.

Reasons to study this equation to prove Theorem 6 and 7 are twofold.

• First, it provides us with information on the characteristics in terms of the smoothness
of F ; which will be later useful to prove theorem 7 and gain uniform control on the
characteristics.

• Also, such a study enables us to control the force field En which is directly related to the
density ρn by studying ρn, seen as the density corresponding to the solution of the linear
transport equation (12). This allows us to apply the study made on (12) and hence prove
a uniform bound on En needed for Theorem 6.
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More precisely, we focus here on the study of the characteristics and on moments effects regard-
ing equation (12). Indeed, one of the key estimates that we have to prove to obtain Theorem 6
is that for all p ≥ 3, for T small enough, there exists a constant C independent of n ∈ N

∗ such
that

‖En‖L
p
T

(L∞

B
) ≤ C(|B|).

To control ‖En‖L
p
T

(L∞

B
), the idea is the following. First, we split the force field En in two parts.

Let γ ∈ D(R3) be a function such that 0 ≤ γ ≤ 1 and γ ≡ 1 on B(0, 1). Let n ∈ N
∗. We write

for all (t, x) ∈ R × R
3

En(t, x) = E1
n(t, x) +E2

n(t, x)

with

E1
n(t, x) =

∫
ϕn(y)(1 − γ)(y)ρn(t, x− y)dy.

This decomposition has been used for the study of the Vlasov-Poisson equation by P.-L. Lions
and B. Perthame in [15] and by F. Castella in [8].

Study of E1
n. E1

n is the convolution between a uniformly (with respect to n ∈ N
∗) smooth

function and the density of probability ρn. Moreover, there exists a constant C such that for
all n ∈ N

∗,
‖(1 − γ)ρn‖L2 ≤ C.

Hence, E1
n is easily estimated by

‖E1
n‖L∞(R×R3) ≤ sup

(t,x)∈R×R3

∣∣∣
∫
ϕn(y)(1 − γ(y))ρn(x− y)dy

∣∣∣ ≤ C‖(1 + |ξ|)
3
2
+0f in‖L2

x,ξ
. (15)

Study of E2
n. E2

n is harder to deal with because it is the convolution between ρn and the
function γϕn which becomes rough when n → +∞. To tackle this difficulty, we shall make
use of the fact that for each x ∈ R

3 the density function ρn(· )γ(x−· ) involved is truncated
in space to a ball of fixed size. More precisely, we observe that if the trajectories do not
remain for too long in a compact set, then truncation in space of the density ρn (recall that
ρn can be written using characteristics) provides additional moments over Hölder inequalities,
averaging over time. Let us note that moments effects have been established for the free
transport equation for the Euclidean metric (see B. Perthame [17] and references therein) and
for non-trapped metrics in [19]. The setting is different here since we add a rough force field
term of the transport equation. Indeed, we only have an a priori estimate on En in the space
L

p
t (L

∞
B ) where B is a ball of fixed size. To address the difficulty of a rough force field, we use

estimates on the characteristics in term of measures, which do not require assumptions on the
smoothness of these characteristics (see [19] for a similar strategy).

Remark 3 We estimate En on balls and not on the whole space R
3. This is due to the fact

the moments effects disappearing when we consider supx∈R3 ρn(· )γ(x−· ) .
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3.2 Results obtained.

The fundamentals properties that we will use on the transport equation (12) are given by the
following propositions. The first one gives the following approximation on the characteristics.

Proposition 1 Let T > 0 et p ≥ 1. Then, for all (t1, t2), for all (x, ξ) ∈ R
d × R

d,

|X(t1, t2, x, ξ) − x+ (t1 − t2)ξ| ≤ C(Sp,T , T )(1 + |ξ|)
1
p (16)

and
|V (t1, t2, x, ξ) − ξ| ≤ C(Sp,T , T )(1 + |ξ|)

1
p . (17)

Remark 4 • This proposition, gives us an approximation of the characteristics by those
given by the free transport equation which is enough precise to allow us to obtain moments
effects and propagation of moments on the solution of 12.

• However this approximation of the characteristics by those of the free transport equation
gets worse as ξ grows, and it is still a long way from providing enough control over
characteristics to prove Theorem 7. This first approximation will nevertheless be crucial
to prove Theorem 7.

The second proposition establishes that the solution effectively propagates moments, and a
local in time moments effect.

Proposition 2 Let T > 0, p ≥ 1 and α ≥ 0. Then, for all q ≥ 1, there exists a constant C
such that for all t ∈ [0, T ] the following estimate holds

‖(1 + |ξ|)αf(t)‖L
q
x,ξ

≤ C(α, T, ST,p)‖(1 + |ξ|)αf in‖L
q
x,ξ
.

Moreover, the following moments effects occur. Let γ ∈ D(Rd). Then, for all q ≥ 1, for all
α ≥ 0, there exists a constant C such that for all ball B ⊂ R

d of size 1 the following estimate
holds

‖ sup
x∈B

γ(x−· )(1 + |ξ|)
α+ 1

qp′ f(t)‖L
q
T,x,ξ

≤ C(α, Sp,T , T, q)‖(1 + |ξ|)αf in‖L
q
x,ξ
. (18)

Remark 5 We gain 1
qp′

moments in Lq with respect to the Hölder inequalities and propagation
of moments.

3.3 Qualitative study of equation (12).

This part is devoted to the proof of Propositions 1 and 2. Given a certain p ≥ 1, to make
notations clearer, in both of the proofs we will choose T ≤ 1 such that Sp,T ≤ 1; the general
case can be treated similarly.
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3.3.1 Proof of Proposition 1.

We first study characteristics on small time intervals whose length is inversely proportional to
|ξ|, to make sure that X(t, x, ξ) stays in a ball of size 1. Then, using a time-velocity splitting,
we prove that the characteristics (X,V ) are a perturbation of those given by the free transport
equation as stated in Proposition 1.

Remark 6 Let us note that the idea of splitting in time and frequency or in time and velocity
has been used in many contexts. We refer to the article by H. Bahouri and J.-Y. Chemin in
[3] for the wave equation, to the article by N. Burq, P. Gérard and N. Tzvetkov in [7] for the
Schrödinger equation and to [19] for the Liouville equation.

Local study in time and velocity of characteristics. The following Lemma holds

Lemma 1 Let p ≥ 1 and T ≤ 1 such that Sp,T ≤ 1. Then, for all (t0, t1, ξ) ∈ [0, T ]×[0, T ]×Rd,
for all t2 ∈ [0, T ] with |t2 − t0| ≤ min(T

4 ,
1

|4ξ|), for all x ∈ R
d

X(t1, t2, x, ξ) ∈ B(X(t1, t0, x, ξ), 1).

Proof of Lemma 1. Applying Taylor’s formula at order two with integral remainder, we
obtain that for all (t1, t2, x, ξ) ∈ [0, T ] × [0, T ] × R

d × R
d

X(t1, t2, x, ξ) = x+ (t2 − t1)ξ +

∫ t2

t1

(t2 − s)F (s,X(t1, s, x, ξ))ds.

We deduce that

X(t1, t2, x, ξ)−X(t1, t0, x, ξ) = (t2− t0)ξ+(t2− t0)

∫ t0

t1

F (s,X(s))ds+

∫ t2

t0

(t2−s)F (s,X(s))ds.

Using the fact that |t2 − t0| ≤ min(T, 1
|4ξ|), we obtain

∣∣∣X(t1, t2, x, ξ) −X(t1, t0, x, ξ)
∣∣∣ ≤ 1

4
+

1

2
Sp,T ≤

3

4

which proves Lemma 1. �.

Splitting in time and velocity. We have

X(t1, t2, x, ξ) = x+ (t2 − t1)ξ +

∫ t2

t1

(t2 − s)F (s,X(t1, s, x, ξ))ds.

To obtain Proposition 1, it suffices to prove that there exists a constant C such that for all
(t1, t2, x, ξ) ∈ [0, T ] × [0, T ] × R

d × R
d the following estimate holds

∥∥∥
∫ t2

t1

F (s,X(t1, s, x, ξ))ds
∥∥∥

L∞(Rd)
≤ C(1 + |ξ|)

1
p . (19)
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To prove (19), we split the integral with little time interval of length less than min( T
4 ,

1
|4ξ|) for

which we know that X(t1, t2, x, ξ) stay in a ball of size 1. We obtain

∣∣∣
∫ t

0
F (s,X(t1, s))ds

∣∣∣ ≤
∫ t2

t1

|F (s,X(t1, s))|ds =
N∑

k=0

∫ tk+1

tk
|F (s,X(t1, s))|ds

where N ∼ |ξ| and |tk − tk+1| ∼ 1
|4ξ| . On each time interval [tk, tk+1], the trajectory X staying

in a ball of size 1, we deduce that

∫ tk+1

tk
|F (s,X(t1, s))|ds ≤ |tk − tk+1|

1
p′ Sp,T .

Hence we have ∫ t

0
|F (s,X(t1, s))|ds ≤

N∑

k=0

|tk − tk+1|
1
p′ ≤ (1 + |ξ|)

1
p

and Proposition 1 follows. �

3.3.2 Proof of Proposition 2.

The proof of Proposition 2 follows from the properties in Proposition 1 on the characteristics.

Propagation of moments. For all p ≥ 1, the following estimate holds

‖(1 + |ξ|)αf‖L
p
x,ξ

= ‖(1 + |ξ|)αf in(X,V )‖L
p
x,ξ
.

Using inequality (17), we obtain that

‖(1 + |ξ|)αf in(X,V )‖L
p
x,ξ

≤ C‖(1 + |V |)αf in(X,V )‖L
p
x,ξ
.

Making the change of variables (X,V ) → (x, ξ) we get propagation of moments as in Proposition
2.

Moments effects. Let us first prove the following lemma which states that the trajectories
do not stay a long time in a compact set and then prove estimate (18) of Proposition 2.

Lemma 2 There exists a constant C such that for all α > 0, for all t1 ∈ [0, T ], for all |ξ| ≥ 1,

µ{t2 ∈ [0, T ], X(t1, t2, x, ξ) ∈ B(α)} ≤
C(1 + |α|)

(1 + |ξ|)
1
p′

where µ denotes the Lebesgue measure.

Proof of Lemma 2. Let t0 and t1 in [0, T ]. According to estimate (16) of Proposition 1, there
exists a constant C such that for all t2 ∈ [0, T ] the following estimate

|X(t1, t2, x, ξ) −X(t1, t0, x, ξ)| ≥ |t2 − t0||ξ| − C(1 + |ξ|)
1
p holds

11



which proves Lemma 2. �

Let q ≥ 1, α ≥ 0 and B a ball of size 1. Let us define

D = ‖ sup
y∈B

γ(y−· )(1 + |ξ|α)fn‖
q

L
q
T,x,ξ

.

D =

∫ T

0

∫

x

∫

ξ

(1 + |ξ|)
1
p′

((1 + |ξ|)

1 + |V |

)αq− 1
p′

(1 + |V |)
αq− 1

p′ f q(X,V )
(

sup
y∈B

γ(y−· )
)q

dtdxdξ.

Making the change of variables (X,V ) → (x, ξ) which is a diffeomorphism of Jacobian equal to
1, we obtain that

D =

∫ T

0

∫

x

∫

ξ

(1 + |V |)
1
p′

(1 + |V |

1 + |ξ|

)αq− 1
p′

(1 + |ξ|)
αq− 1

p′ (f in)q(x, ξ)
(

sup
y∈B

γ(y −X)
)q

dtdxdξ.

Estimate (17) implies that

D ≤ C

∫ T

0

∫

x

∫

ξ

(1 + |ξ|)
1
p′ (1 + |ξ|)

αq− 1
p′ (f in)q(x, ξ)

(
sup
y∈B

γ(y −X)
)q

dtdxdξ.

We split the right hand side of the above estimate in two parts. In the first part given by

D1 =

∫ T

0

∫

x

∫

B(0,1)
(1 + |ξ|)

1
p′ (1 + |ξ|)

αq− 1
p′ (f in)q(x, ξ)

(
sup
y∈B

γ(y −X)
)q

dtdxdξ,

we integrate in ξ on the unit ball. We deduce immediatly that

D1 ≤ C‖f in‖q
Lq .

The second part is given by

D2 =

∫ T

0

∫

x

∫

cB(0,1)
(1 + |ξ|)

1
p′ (1 + |ξ|)

αq− 1
p′ (f in)q(x, ξ)

(
sup
y∈B

γ(y −X)
)q

dtdxdξ.

Using Lemma 2 which states that the trajectories do not stay a long time in a compact, we
deduce by first integrating with respect to the time at fixed x and ξ ∈ cB(0, 1) that there exists
a constant C such that

∫ T

0

(
sup
y∈B

γ(y −X(s, 0, x, ξ))
)q

ds ≤
C

1 + |ξ|
1
p′

·

Hence we deduce that
D2 ≤ C‖(1 + |ξ|)

α− 1
p′q f in‖q

L
q
x,ξ

which ends the proof of the moments effects in Proposition 2. �

We now use the preceding study on the linear transport equation (12) to prove the uniform
estimates given by Theorems 6 and 7 on the approximate system (6) of the Vlasov-Poisson
equation.

12



4 Proof of Theorem 6.

The proof proceeds in three steps.
First, we prove uniform estimates on

‖En‖L
p
T0

(L∞(B)).

using the moments effects in Proposition 2. Then, we show inequality (8) of Theorem 6 using
Littlewood-Paley theory. Finally, in the last step, we prove inequalities (9) and (10) of Theorem
6. The first one is obtained by interpolation between estimate (8) with p = 3 and an another
estimate which we will obtain without making use of dispersive effects and the second inequality
(10) is relatively classical.

Definition 1 Let n ∈ N
∗ and p ≥ 3. We define

T n
0 = sup

t≤1
{ sup
|B|≤1

‖En‖L
p
t (L∞(B)) ≤ 1}.

In particular, for all n ∈ N
∗, T n

0 is positive because En ∈ L∞
[0,T ](L

∞
x ) according to Theorem 5.

4.1 Estimates of ‖En‖L
p
T0

(L∞(B)).

Proposition 3 Let p ≥ 3 and f in an initial data such that

‖(1 + |ξ|)
3
2
+0f in‖L2

x,ξ
< +∞ and ‖(1 + |ξ|)

3p−1
pp′

+0
f in‖

L
p+0
x,ξ

< +∞.

Then, there exists T0 > 0 such that for all n ∈ N
∗ we have

sup
|B|≤1

‖En‖L
p
T0

(L∞(B)) ≤ 1.

Proof of Proposition 3. There exists a function γ̃ ∈ D(R3) such that

|E2
n(t, x)| ≤

∣∣∣
∫
γ̃(y)ϕn(y)γ(y)ρn(x− y)dy

∣∣∣ ≤ C‖γ̃ϕn‖Lp′−0‖γ(x−· )ρn‖Lp+0 .

As p ≥ 3, we know that there exists a constant C such that for all n ∈ N
∗,

‖γ̃ϕn‖Lp′−0 ≤ C,

we deduce that ∣∣∣
∫
ϕn(y)γ(y)ρn(x− y)dy

∣∣∣ ≤ C‖γ(x−· )ρn‖Lp+0 .

Using Hölder inequalities, we deduce that

‖γ(x−· )ρn‖Lp+0 = ‖γ(x−· )fn‖L
p+0
x (L1

ξ
) ≤ C‖γ(x−· )(1 + |ξ|

3
p′

+0
)fn‖L

p+0
x,ξ

.

13



Let B be a ball such that |B| ≤ 1. Then we have

‖E2
n‖L

p+0
Tn
0

(L∞

B
)
≤ C‖ sup

x∈B

γ(x−· )(1 + |ξ|
3
p′

+0
)fn‖L

p+0
Tn
0

,x,ξ

.

We now apply Proposition 2 with q = p+ 0 and α = 3
p′

+ 0 and we obtain that

‖E2
n‖L

p+0
Tn
0

(L∞

B
)
≤ C‖(1 + |ξ|)

3p−1
pp′

+0
f in‖

L
p+0
x,ξ

hence
sup
|B|≤1

‖E2
n‖L

p

Tn
0

(L∞(B)) ≤ C(0)(T n
0 )0+0

C‖(1 + |ξ|)
3p−1
pp′

+0
f in‖

L
p+0
x,ξ
. (20)

Observe that (T n
0 )0+0 → 0 when T n

0 → 0; we deduce by a bootstrap argument that

sup
n∈N∗

T n
0 > 0.

Combining this with estimate (15) which is independent of n ∈ N
∗, we obtain Proposition 3.

�

4.2 Proof of the estimate (8).

We assume to simplify the proof that |A| = 1, the general case can follows using the triangular
inequality. Let f ∈ Cα where 0 < α < 1. Then, there exists Cα > 0 such that

‖f‖Cα ≤ Cα sup
q∈N

2qα‖∆qf‖L∞

where ∆q is an operator of frequency localization in a ring of size 2q (see for example the
article by J.-Y. Chemin [9] for a precise definition of ∆q and for the proof of the above result).
Concerning the smooth part E1

n of the force field En, we have

‖E1
n‖L∞

[0,T0]
(C1) ≤ C‖(1 + |ξ|)

3
2
+0f in‖L2

x,ξ
. (21)

Let ψ ∈ D(B) where B is a ball of size 1. Let us estimate ψE2
n. let q ≥ 1, then

∆q(ψE
2
n)(x) = ψ∆qE

2
n(x) + [∆q(ψE

2
n) − ψ∆qE

2
n](x).

Consider the following Lemma which can be deduced from standard properties.

Lemma 3 Let a, b be two functions. Then, for all q ≥ 1, for all x ∈ R
d, for all α ≥ 0, there

exists a constant Cα such that
∣∣∣∆q(ab) − a∆qb

∣∣∣(x) . 2−q‖a‖C1‖b‖L∞(B(x,1)) + Cα2q( d
2
−1−α)‖a‖C1‖b‖L2

x
.
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Proof of Lemma 3. There exists a function h ∈ S(Rd) such that for all x ∈ R
d the

following equality holds

∆q(ab) − a∆qb(x) = 2qd

∫
h(2q(x− y))

(a(x) − a(y))

|x− y|
|x− y|b(y)dy.

We have
|∆q(ab) − a∆qb(x)| ≤ I1(x) + I2(x)

where

I1(x) = ‖a‖C12qd

∫

y∈B(x,1)
|x− y||h(2q(x− y))b(y)|dy and

I2(x) = ‖a‖C12qd

∫
|h(2q(x− y))||x− y||b(y)|dy.

We have
I1(x) ≤ C2−q‖a‖C1‖b‖L∞(B(x,1)).

To control the term I2, we multiply above and below by (2q|x−y|)α, and using Hölder inequal-
ities, we deduce that

I2(x) ≤ Cα2q( d
2
−1−α)‖∇a‖C1‖b‖L2

x
,

which proves Lemma 3. �

We deduce from Lemma 3 that
∣∣∣[∆q(ψE

2
n) − ψ∆qE

2
n](x)

∣∣∣ ≤ C2−q
(
‖∇ψ‖L∞‖E2

n‖L∞(B(x,1)) + ‖E2
n‖L2

)
.

The following Lemma allows us to control

‖E2
n‖L∞

[0,T0]
(L2

x).

Lemma 4 There exists a constant C such that for all n ∈ N
∗ the following estimate holds

‖E2
n‖L∞

[0,T0]
(L2

x) ≤ C‖(1 + |ξ|)
3
2
+0f in‖L2

x,ξ
.

Proof of Lemma 4. Using Young inequalities, we obtain that

‖E2
n‖L2

x
= ‖γϕn ∗ ρn‖L2

x
≤ C‖γϕn‖L1

x
‖ρn‖L2

x
.

Hölder inequalities ensure that

‖ρn‖L2
x
≤ C‖(1 + |ξ|)

3
2
+0fn‖L2

x,ξ
.

Using the fact that for all t ∈ [0, T0], the solution fn of equation (6) propagates moments
uniformly with respect to n ∈ N

∗, we deduce Lemma 4. �

Hence we only need to control

ψ∆qE
2
n(x) = ψ

[
∆̃q(γϕn) ∗ ∆q(γ̃(x−· )ρn)

]
,
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where ∆̃q is an operator of localization in frequency on a ring of size 2q and where γ̃ ∈ C∞
c (R3)

with γ̃ ≡ 1 on B(0, 2). Bernstein injections give us

‖∆qE
2
n‖L∞(B) ≤ ‖∆̃q(γϕn)‖L1 sup

x∈B

‖∆q(γ̃(x−· )ρn)‖L∞ ≤ 2
3q

p+0 sup
x∈B

‖γ̃(x−· )ρn‖Lp+0 .

The following Lemma holds.

Lemma 5 Let γ ∈ D(R3). Then, there exists a constant C which only depends of the measure
of the support of γ and of ‖γ‖C1 such that for all q ≥ 1

‖∆q(γ
x

|x|3
)‖L1 ≤ C2−q.

Proof of Lemma 5. We assume for example that γ ∈ D(B(0, 1)). We write

∆q(γ
x

|x|3
) = ∆q(

x

|x|3
)γ +

[
∆q(

x

|x|3
γ) − ∆q(

x

|x|3
)γ

]
.

We have ∥∥∥γ∆q(
x

|x|3
)
∥∥∥

L1
≤ C

∥∥∥∆q(
x

|x|3
)
∥∥∥

L1
≤ C2−q.

Thus only remains the study of the commutator

[
∆q(

x

|x|3
γ) − ∆q(

x

|x|3
)γ

]
= S(x).

There exists a function h ∈ S(R3) such that

S(x) = 2qd

∫
h(2q(x− y))[γ(x) − γ(y)]

y

|y|3
dy.

Let a ∈ D(R3) with a ≡ 1 on the ball B(0, 2). We split S in two parts

S(x) = S1(x) + S2(x)

with

S1(x) = 2qd

∫
h(2q(x− y))[γ(x) − γ(y)]a(y)

y

|y|3
dy.

Study of S1. We have

S1(x) = 2q(d−1)

∫
h(2q(x− y))

(γ(x) − γ(y))

|x− y|
2q|x− y|a(y)

y

|y|3
dy.

We deduce that

|S1(x)| ≤ 2q(d−1)‖γ‖C1

∫
|h|(2q(x− y))2q|x− y||a(y)

y

|y|3
|dy.
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Using Young inequalities, we get

‖S1‖L1 ≤ C2−q
∥∥∥a y

|y|3

∥∥∥
L1

≤ C2−q.

Study of S2. We have

S2(x) = 2qd

∫
h(2q(x− y))(γ(x) − γ(y))(1 − a(y))

y

|y|3
dy.

Here, in the integral, the truncated function 1−a implies that y leaves outside the ball B(0, 2).
So we have γ(y) ≡ 0 in the integral. If moreover x ∈ cB(0, 1) we also have γ(x) = 0 because
the support of γ is contained in the ball B(0, 1). Hence S2 is compactly supported in the ball
B(0, 1). So we have

‖S2‖L1 ≤ C‖S2‖L2 .

Multiplying above and below by |x− y|, we obtain that

|S2(x)| ≤ ‖γ‖C12q(d−1)

∫
|h|(2q(x− y))2q|x− y|

∣∣∣(1 − a(y))
y

|y|3

∣∣∣dy.

Applying Young inequalities, we obtain that

‖S2‖L1 ≤ C‖S2‖L2 ≤ C2−q
∥∥∥(1 − a(y))

y

|y|3

∥∥∥
L2

≤ C2−q

and Lemma 5 is proved. �

We write

γϕn(x) =
x

|x|

3
ψn where ψn(x) =

1

(1 + n|x|2)
3
2

γ.

The function ψn is uniformly bounded with respect to n ∈ N
∗ in C1 and has the same support

as γ; we deduce by Lemma 5 that there exists a constant C independent of n ∈ N
∗ such that

‖∆qE
2
n‖L∞(B) ≤ C2

q( 3
p
−1−( 3

p
− 3

p+0
))

sup
x∈B

‖(γ̃(x−· )ρn‖Lp+0 .

In particular, we remark that for all p ≥ 1, − 3
p

+ 1 + (3
p
− 3

p+0) < 1. So we have

‖E2
n‖

C
1− 3

p +0
(B)

≤ C sup
x∈B

‖(γ̃(x−· )ρn‖Lp+0 ≤ C sup
x∈B

‖γ̃(x−· )(1 + |ξ|)
3
p′

+0
fn‖Lp+0

with 1 − 3
p

+ 0 < 1. Combined with the moments effects in Proposition 2, we get the required
estimate. �
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4.3 Proof of estimates (9) and (10).

4.3.1 Proof of the estimate (9).

The proof of this estimate follows by interpolation between estimate (8) with p = 3 and the
estimate on E2

n given by the following Lemma.

Lemma 6 There exists a constant C such that for all n ∈ N
∗ we have

‖E2
n‖L∞

[0,T0]
(C0+0

x ) ≤ C‖(1 + |ξ|)2+0f in‖
L3+0

x,ξ
. (22)

Proof of Lemma 6. Let t ∈ [0, T0]. Using Hölder inequalities, we deduce that

‖E2
n(t)‖L∞

x
≤ C‖γρn‖L3+0‖ϕn‖

L
3
2−0 ≤ C‖(1 + |ξ|)2+0fn‖L3+0

x,ξ
.

Using the fact that the solution of equation (6) propagates moments uniformly with respect to
n ∈ N

∗, we deduce that

‖E2
n‖L∞([0,T ]×R3) ≤ C‖(1 + |ξ|)2+0f in‖L3+0

x,ξ
.

One can then rewrite the proof given to show estimate (8) using Littlewood-Paley theory,
substituting L∞ with the norm C0+0 for the space variable, which concludes the proof of
Lemma 6. �

We can now show inequality (9) by interpolation between estimate (22) and estimate (8) with
p = 3 and using the uniform bound obtained for E1

n in (21). �

4.3.2 Proof of estimate (10).

When we integrate with respect to the variable ξ the equation (6), we find that

∂tρn = ∇x

∫

ξ

fnξdξ.

Let us denote

gn(t, x) =

∫

ξ

fnξdξ.

Using Littlewood-Paley theory, we obtain that

‖∂tEn‖L2 ∼
(∑

q∈Z

‖∆q∂tEn‖
2
L2

) 1
2
.

We need only prove that there exists a sequence (cq)q∈Z in `2 such that

‖∆q∂tEn‖L2 ≤ cq.

We have
‖∆q∂tEn‖L2 ≤ C2q‖∆̃qϕn‖L1‖∆qgn‖L2 ≤ C‖∆qgn‖L2 .
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The last step consists in proving that

‖gn‖L2 < +∞.

Applying Hölder inequalities, we obtain that

‖gn‖L2 ≤ C‖(1 + |ξ|)
5
2
+0fn‖L2

x,ξ
.

Using propagation of moments, we deduce estimate (10). �

5 Proof of Theorem 7.

The idea behind our proof of Theorem 7 is to use the control on the trajectories given by
Proposition 1 during the study of the linear transport equation with a rough force field. Even
though this control is rather crude since the approximation gets worse as ξ grows, it provides
enough information to ensure that two trajectories with different initial velocity will end up
far from each other after a given time. This allows us to prove moments effects on the solution
along each trajectory and to have the following control on En who gives us Theorem 7 directly.

Proposition 4 Let p ≥ 3. Then, there exists a constant C, there exists T0 > 0, such that for
all n ∈ N

∗, the following estimate holds

sup
(x0,ξ0)∈R6

‖E2
n(s,Xn(s, x0, ξ0))‖Lp([0,T ]) ≤ C.

Proof of Proposition 4. We prove the estimate for p = 3. The case p ≥ 3 is obtained by
interpolation between the estimate of Lemma 6 obtained without dispersive properties and the
estimate of Proposition 4 obtained with p = 3.
Let (x0, ξ0) ∈ R

6. We have

|E2
n(s,Xn(s, x0, ξ0))| ≤ C‖γ(Xn(s, x0, ξ0)−· )ρn‖L3+0 . (23)

We are going to gain moments on the initial data using the fact that

s→ Xn(s, 0, x, ξ) −Xn(0, s, x0, ξ0)

do not stay a long time in a compact and uniformly with respect to x using the approximation
on trajectories given by Proposition 1. To understand what happens, let us place in a simpler
case where the characteristic Xn is that given by the free transport equation. We are reduced
to understand when we can say that the function

X̃(s, ξ, ξ0) : s→ x− x0 + s(ξ + ξ0)

do not stay a long time in a compact set uniformly with respect to the variable x. We observe
in particular that the more ξ is near −ξ0, the more the trajectory X̃ stay a long time in a
compact set. In our context, we must furthermore manage the fact that the trajectories are
a perturbation about |ξ|

1
3 of those given by the free transport equation. Hence, we are going

to split the integral
∫
fn(t, x, ξ)dξ = ρn(t, x) in two areas which will be later optimized. Let

1 > α ≥ 1
3 be a parameter which will be later optimized.
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• The first part is localized in the ball B(−ξ0, β|ξ0|
α) where β is a constant taken large

enough. In this area, the dispersion is bad. In this area, to gain moments, hence we have
interest to use the fact that the size of the ball B(−ξ0, β|ξ0|

α) where velocities leave are
relatively small. Hence, here the estimate is done by using Hölder inequalities.

• The second area is localized outside the ball B(−ξ0, β|ξ0|
α). In this area where −ξ0 is far

enough of ξ, we can use some moments effects in order to control the term of the estimate
(23).

Definition 2 Let (x0, ξ0) ∈ R
3 × R

3. We denote by

Aξ0 = B(−ξ0, β|ξ0|
α)

where β is a large enough constant and Bξ0 = cAξ0 . Let A ⊂ R
3 be a subset of velocity. We

denote by

ΓA(x0, ξ0) =

∫ T

0

∫

x

∫

A

(1 + |ξ|)6+0(f in)3+0(x, ξ)γ(Xn(s, 0, x, ξ) −Xn(0, s, x0, ξ0))dtdxdξ.

In the following, we assume that |ξ0| ≥ 1. To deal with the case where |ξ0| ≤ 1, the splitting
is not necessary and it suffices to apply the same strategy that the one adopted below for the
area with dispersion. We split the density ρn as follows

ρn(t, x) = ρ1
n(t, x) + ρ2

n(t, x) with ρ1
n(t, x) =

∫

Aξ0

fn(t, x, ξ)dξ.

The area Aξ0 without dispersion. The area where ξ leaves in Aξ0 is estimate without using
dispersive effects. We obtain using Hölder estimates that

‖γ(Xn(s, x0, ξ0)−· )ρ1
n‖L3+0(R3) ≤ C‖fn‖L3+0

R3×Aξ0

(1 + |ξ0|)
2α ≤ C‖(1 + |ξ|)2αfn‖L3+0

R3×Aξ0

.

Using the propagation of moments given by Proposition 2, we obtain that

‖γ(Xn(s)−· )ρ1
n‖L3+0(R3) ≤ C‖(1 + |ξ|)2αf in‖L3+0

x,ξ
. (24)

We have now to estimate

‖γ(Xn(s, x0, ξ0)−· )ρ2
n‖L3+0([0,T0]×R3).

Applying Hölder inequalities and the change of variable (Xn, Vn) → (x, ξ), as it been done
previously, we deduce that

‖γ(Xn(s, x0, ξ0)−· )ρ2
n‖

3+0
L3+0([0,T0]×R3)

≤ CΓV −1
n (cAξ0

)(x0, ξ0). (25)

Insofar as Vn is a perturbation about |ξ|
1
3 of the identity, we deduce that we can replace in the

integral (25) the velocity domain of integration V −1
n (cAξ0) by the domain cAξ0 at the cost of

decreasing the constant β. We are reduced to estimate ΓcAξ0
(x0, ξ0) = ΓBξ0

(x0, ξ0).

The area Bξ0 with dispersion. In the case where ξ leaves in Bξ0 , the following Lemma gives
us a dispersive effect and moments effect which allow us to control E along trajectories.
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Lemma 7 There exists a constant C such that for all n ∈ N
∗, (x0, ξ0) ∈ R

3 × R
3, ξ ∈ Bξ0

µ
{
s, X̃n(s, x, ξ) = Xn(s, 0, x, ξ) −Xn(0, s, x0, ξ0) ∈ B(0, 1)

}
≤

C

max(|ξ|, |ξ0|)
α− 1

3

(26)

where µ denotes the Lebesgue measure; and

ΓBξ0
(x0, ξ0) ≤ C‖(1 + |ξ|)2+

1
9
−α

3 f in‖3+0
L3+0

x,ξ

.

Proof of Lemma 7. To simplify calculations, we assume that x = x0; the case when x 6= x0

follows essentially by translation, which does not affect dispersion phenomena. Using Proposi-
tion 1, we obtain that

∣∣∣X̃n(s, x, ξ)
∣∣∣ ≥ s|ξ + ξ0| − Cmax(|ξ|, |ξ0|)

1
3 .

As ξ ∈ Bξ0 , we have
|ξ + ξ0| ≥ max(|ξ0|, |ξ|)

α.

We deduce that ∣∣∣X̃n(s, x, ξ)
∣∣∣ ≥ smax(|ξ0|, |ξ|)

α − Cmax(|ξ|, |ξ0|)
1
3

which proves the first point of Lemma 7. By first integrating with respect to time in ΓBξ0
(x0, ξ0)

and then applying estimate (26), we prove the second part of the Lemma. �

Optimizing the parameter α so that the loss of moments between 2α and 2 + 1
9 − α

3 being
optimal, we obtain that α = 19

21 ; which proves Proposition 4 for p = 3. By interpolating
between the estimate given by Proposition 4 with p = 3 and the estimate given by Lemma 6,
and using estimate (21), we obtain Proposition 4. �.
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