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Abstract. Precession and nutation of the Earth depend on the Earth’s dynamical flattening, H , which is closely
related to the second degree zonal coefficient, J2 of the geopotential. A small secular decrease as well as seasonal
variations of this coefficient have been detected by precise measurements of artificial satellites (Nerem et al.
1993, Cazenave et al. 1995) which have to be taken into account for modelling precession and nutation at a
microarcsecond accuracy in order to be in agreement with the accuracy of current VLBI determinations of the
Earth orientation parameters. However, the large uncertainties in the theoretical models for these J2 variations (for
example a recent change in the observed secular trend) is one of the most important causes of why the accuracy
of the precession-nutation models is limited (Williams 1994, Capitaine et al. 2003). We have investigated in this
paper how the use of the variations of J2 observed by space geodetic techniques can influence the theoretical
expressions for precession and nutation. We have used time series of J2 obtained by the “Groupe de Recherches
en Géodésie spatiale” (GRGS) from the precise orbit determination of several artificial satellites from 1985 to 2002
to evaluate the effect of the corresponding constant, secular and periodic parts of H and we have discussed the
best way of taking the observed variations into account. We have concluded that, although a realistic estimation
of the J2 rate must rely not only on space geodetic observations over a limited period but also on other kinds of
observations, the monitoring of periodic variations in J2 could be used for predicting the effects on the periodic
part of the precession-nutation motion.
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1. Introduction

Expressions for the precession of the equator rely on
values for the precession rate in longitude that have
been derived from astronomical observations (i.e. obser-
vations that were based upon optical astrometry until the
IAU 1976 precession, and then on Very Long Baseline
Interferometry (VLBI) observations for more recent mod-
els). The IAU 2000 precession-nutation model provided
by Mathews et al. (2002) (denoted MHB 2000 in the
following), that was adopted by the IAU beginning on
1 January 2003, includes a new nutation series for a non-
rigid Earth and corrections to the precession rates in lon-
gitude and obliquity that were estimated from VLBI ob-
servations during a 20-year period. The precession in lon-
gitude for the equator being a function of the Earth’s dy-
namical flattening H , observed values for this precession
quantity are classically used to derive a realistic value for
H . Such a global dynamical parameter of the Earth is
generally considered as a constant, except in a few re-
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cent models for precession (Williams 1994, Capitaine et
al. 2003) or nutation (Souchay & Folgueira 1999, Mathews
et al. 2002, Lambert & Capitaine 2004) in which either
the secular or the zonal variations of this coefficient are
explicitly considered through simplified models.

The recent implementation of the IAU 2000A
precession-nutation model guarantees an accuracy of
about 200 µas in the nutation angles, and all the pre-
dictable effects that have amplitudes of the order of 10 µas
have therefore to be considered. One of these effects is the
influence of the variations (∆H) in the Earth’s dynami-
cal flattening, which are not explicitly considered in the
IAU 2000A precession-nutation model. Furthermore, the
IAU 2000 precession is based on an improvement of the
precession rates values derived from recent VLBI measure-
ments, but it does not improve the higher degree terms in
the polynomials for the precession angles ψA, ωA of the
equator (see Fig. 1). This precession model is not dynami-
cally consistent because the higher degree precession terms
are actually dependent on the precession rates (Capitaine
et al., 2003) and need to be improved, even though VLBI
observations are unable to discriminate between recent
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solutions due to the limited span of the available data
(Capitaine et al., 2004). One alternative way for such an
improvement is to improve the model for the geophysical
contributions to the precession angles and especially the
influence of ∆H (or equivalently ∆J2).

The H parameter is linked to the dynamical form-
factor, J2 for the Earth (i.e. the C20 harmonic coefficient
of the geopotential) which is determined by space geodetic
techniques on a regular basis. Owing to the accuracy now
reached by these techniques, the temporal variation of a
few Earth gravity field coefficients, especially ∆C20, can
be determined (for early studies, see for example Nerem et
al. (1993), Cazenave et al. (1995) or Bianco et al. (1998)).
They are due to Earth oceanic and solid tides, as well
as mass displacements of geophysical reservoirs and post-
glacial rebound for ∆C20. This coefficient C20 can be
related to the Earth’s orientation parameters and more
particularly to the Earth precession-nutation, through H .
The purpose of this paper is to use space geodetic deter-
mination of the geopotential to estimate ∆H , in order to
investigate its influence on the precession-nutation model.
The C20 data used in this study have been obtained from
the positioning of several satellites between 1985 and 2002.
We estimate also the constant part of H , based on such
space geodetic measurements, and compare its value and
influence on precession results with respect to those based
on VLBI determinations.

In Sect. 2 we recall the equations expressing the equa-
torial precession angles as a function of the dynamical flat-
tening H . We provide the numerical values implemented
in our model, compare the values obtained for H by var-
ious studies and discuss the methods on which they rely.
In Sect. 3 the relationship between ∆H and ∆C20 is dis-
cussed, depending on the method implemented. We ex-
plain how these geodetic data are taken into account in
Sect. 4. We present our results in Sect. 5, and discuss them
in the last part. We investigate how the use of a geodetic
determination of the variable geopotential can influence
the precession-nutation results, considering first the pre-
cession alone, and second the periodic contribution.

In the whole study, the time scale for t is TT Julian
centuries since J2000, which will be denoted cy.

2. Theoretical effect of ∆H on precession

This section investigates the theoretical effect of the vari-
ations ∆H in the Earth’s dynamical flattening on the pre-
cession expressions.

2.1. Relationship between H and the precession of the

equator

The two basic angles ψA and ωA (see Fig. 1) for the preces-
sion of the equator are provided by the following differen-
tial equations (see Eq. (29) of Williams (1994) or Eq. (24)
of Capitaine et al. (2003)):

sinωA
dψA
dt

= (rψ sin ǫA) cosχA − rǫ sinχA

γ

γ
0

m

ψA

     Ecliptic of date

χ
A

ε

ε 0

A

 ω A

Mean equator of date

Mean equator of epoch

Ecliptic of 
epoch J2000.

Fig. 1. Angles ψA and ωA for the precession of the equa-
tor: γm is the mean equinox of the date and γ0 is the
equinox of the epoch J2000.0.

dωA
dt

= rǫ cosχA + (rψ sin ǫA) sinχA (1)

where rψ and rǫ are respectively the precession rates in
longitude and obliquity, ǫA is the obliquity of the eclip-
tic of date and χA the planetary precession angle, de-
termining the precession of the ecliptic. Updated expres-
sions for these precession quantities are given in Capitaine
et al. (2003). An expression for the precession rates, rψ
in longitude and rǫ in obliquity, is provided in detail in
Williams (1994) and Capitaine et al. (2003) as a function
of various contributions. The precession rate in longitude
can be written as rψ = r0 + r1 t + r2 t2 + r3 t3 where
the largest first-order term in r0 is the luni-solar contribu-
tion denoted f01|LS

cos ǫ0, where ǫ0 is the obliquity of the
ecliptic at J2000. It is such that (Kinoshita 1977, Dehant
& Capitaine 1997):

f01|LS
= km M0 + ks S0 (2)

in which M0 and S0 are the amplitudes of the zero-
frequency Moon and Sun attractions, respectively, and:

km = 3 H
mm

mm +m⊕

1

F2
3

n2
m

Ω
= H Km (3)

ks = 3 H
m⊙

m⊙ +mm +m⊕

n2
⊙

Ω
= H Ks (4)

In the above expressions, H is the Earth’s dynamical flat-
tening, mm, m⊙ and m⊕ are the masses of the Moon, the
Earth and the Sun, respectively, nm is the Moon mean
motion around the Earth, n⊙ the Earth mean motion
around the Sun, Ω is the mean angular velocity of the
Earth and F2 a factor for the mean distance of the Moon.
Current numerical values for such a problem are (Souchay
& Kinoshita, 1996):

M0 = 496303.66× 10−6

S0 = 500210.62× 10−6

km = 7546′′.7173289 /cy (5)

ks = 3475′′.1883295 /cy

f01|LS
cos ǫ0 = 5040′′.6445 /cy

and (see Kinoshita, 1977):

F2 = 0.999093142
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Hence, the link between the precession of the equator
(ψA and ωA angles) and the Earth’s dynamical flattening
(H) is shown by Eq. (1), Eq. (2), Eq. (3), (4) and Eq. (7)
of Sect. 2.2. Classically,H is related to f01|LS

derived from
observations by:

H =
f01|LS

Km M0 +Ks S0

(6)

2.2. Astronomical determination of H

We can write r0 as:

r0 = f01|LS
cos ǫ0 + f01|PL

cos ǫ0 (7)

+ H × lunisolar second order effects

+ H × (J2 and planetary) tilt effects

+ J4 lunisolar effect

− geodesic precession

+ non-linear effects (Mathews et al., 2002)

where f01|P L
is the first order term of the planetary con-

tribution (also proportional to H). Classically, H is de-
rived from observationally determined values of r0. The
measurement of r0 should be corrected by removing the
modelled contributions other than the lunisolar first order
effect (see Eq. (7)). Hence, we obtain a value for f01|LS

,
which is the only term with sufficiently large amplitude
(of the order of 5000′′/cy) to be sensitive to small changes
in the value of the dynamical ellipticity H of the Earth
(see Eq. (6)). So, given the other contributions provided
by the theory, we can derive the value of H from the ob-
served value of r0 and the model for the lunisolar first
order effects.

A major problem consists in choosing the constant
value of H . Indeed, depending on the authors, it differs
by about 10−7 (Table 1). This is due to the different mea-
surements and models implemented (see Fig. 1 of Dehant
& Capitaine (1997); Fig. 5 of Dehant et al. (1999)). On
the one hand the optical measurements give values of the
general precession in longitude pA referred to the eclip-
tic of date, whereas VLBI gives measurements relative to
space. On the other hand, the various constants and mod-
els used for obtaining the value for H from a measured
value (optical, Lunar laser ranging or VLBI) are different
depending on the study considered (see Eq. (7)).

Classically, ψA is developed in a polynomial form of
t as: ψA = ψ0 + ψ1 t + ψ2 t2 + ψ3 t3. In Table 1, we
recall the different values used (i) for ψ1 (i.e. the precession
rate in longitude, ψ1 = r0), directly obtained from VLBI
measurements, and (ii) for p1 which is the observationally
determined value of precession in the optical case: ψ1 =
p1 + χ1 cos ǫ0 (Lieske et al., 1977).

The computation of the IAU 2000 precession-nutation
model by Mathews et al. (2002) is based on a new method
which uses geophysical considerations. They adjust nine
Basic Earth Parameters (BEP), including the Earth dy-
namical flattening H .

2.3. Method and parameters used in this study

Based on the paper by Capitaine et al. (2003), denoted
hereafter P03, we use differential equations (1) in which
H has been replaced by H + ∆H (using Eq. (2), Eq. (3),
Eq. (4) and Eq. (7)). We start from the P03 initial values
for the variables ωA, ψA, ǫA, χA and pA, that are repre-
sented as polynomials of time and rely on the numerical
values given in Table 2. We solve Eq. (1) together with the
other precession equations (e.g. see Eq. (26) and Eq. (28)
of P03) with the software GREGOIRE (Chapront, 2003)
that can process Fourier and Poisson expressions. We it-
erate this process until we obtain a convergence of the
solution.

Table 2. Numerical values used in this study. H , ψ1 and
ω1 are integration constants.

Initial values at J2000.0

H HMHB = 3.27379492 × 10−3

ψ1 5038′′.481507/cy

ω1 −0′′.02575/cy

p1 5028′′.796195/cy

χ1 10′′.556403/cy

ǫ0 84381′′.406 = 23◦26′21′′.406

Contributions to the precession rate in longitude (in ′′/cy)

Lunisolar first order 5494.062986 × cos ǫ0 ≃ 5040.7047
Planetary first order 0.031
Geodesic precession −1.919882

3. Relationship between C20 and H

3.1. Relation

From the geodetic C20 variation series we can derive the
corresponding variations of the dynamical flattening H .
Indeed, knowing that J2 = − C20 = −

√
5 C̄20, in the

case of a rigid Earth, we can write (see Lambeck, 1988):

H =

(

C − A+B

2

)

/C =
M Re

2

C
J2 (8)

= −M Re
2

C
C20

= −
√

5
M Re

2

C
C̄20

where A, B and C are the mean equatorial and polar mo-
ments of inertia of the Earth. M and Re are respectively
the mass and the mean equatorial radius of the Earth. C̄20

is the normalized Stokes coefficient (of degree 2 and order
0) of the geopotential.

But the Earth is elastic, so let us consider small varia-
tions of H , C20 and the third principal moment of inertia
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Table 1. Comparison between constants used for different determinations of the dynamical flattening (H): (1) the
precession rate in longitude (ψ1), (2) the speed of the general precession in longitude (p1), (3) the geodesic precession
(pg) and (4) the obliquity of the ecliptic at J2000.0 (ǫ0). The observational value actually used for each study is written
in bold.

(1) (2) (3) (4)
Sources H ψ1 p1 pg ǫ0

(× 103) (———————– in ”/cy ———————)

Lieske et al., 1977 5038.7784 5029.0966 -1.92 23◦26′21′′.448

Kinoshita, 1977 and Seidelmann, 1982 3.2739935 5038.7784 5029.0966 -1.92 23◦26′21′′.448

Williams, 1994 3.2737634 5038.456501 5028.7700 -1.9194 23◦26′21′′.409

Souchay & Kinoshita, 1996 3.2737548 - 5028.7700 -1.9194 23◦26′21′′.448

Bretagnon et al., 1997 3.2737671 5038.456488 5028.7700 -1.919883 23◦26′21′′.412

Bretagnon et al., 2003 - 5038.478750 5028.792262 -1.919883 23◦26′21′′.40880

Fukushima, 2003 3.2737804 5038.478143 5028.7955 -1.9196 23◦26′21′′.40955

Capitaine et al., 2003 3.27379448 5038.481507 5028.796195 -1.919883 23◦26′21′′.406

Mathews et al., 2002 3.27379492 5038.478750 5028.7923 -1.9198 23◦26′21′′.410

of the Earth (C being its constant part and c33 its variable
part). Then we obtain:

H total =
M Re

2

C

1

1 + c33
C

J2 total (9)

c33/C being a small quantity of the order of 10−6, we

consider the Taylor development of (1 + c33/C)−1. Then
the total expression of H can be written as:

H total =
MRe

2

C
J2 total

(

1 − c33
C

+
(c33
C

)2

+ ...

)

(10)

where MRe
2/C × (c33/C)

n
J2 for n ≥ 1 is smaller than

10−11. So, in Eq. (10), considering (i) constant and vari-
able parts separately and (ii) Eq. (8), we obtain:

∆H =
MRe

2

C
∆J2 = −

√
5
MRe

2

C
∆C̄20 (11)

where ∆J2 = −∆C20 = −
√

5 ∆C̄20 corresponds to the
variations of the Stokes coefficient J2. Generally, we can
write: ∆J2 ∝ c33/C (Lambeck, 1988).

3.2. Computation of the ratio MRe

2/C

The coefficient MRe
2/C is usually obtained from the H

and J2 values (see Eq. (8)). In order to determine the
constant part of H , we can use (i) the Re, M and C values
or (ii) the Clairaut theory (see Table 3).

First, recall the Earth geometrical flattening ǫ:

ǫ =
Re −Rp
Re

(12)

where Rp and Re are respectively the polar and equatorial
mean radii of the Earth. Second, recall the assumptions
that the Earth (i) is in hydrostatic equilibrium and (ii)
is considered as a revolutional ellipsoid. Hence, the first

Clairaut equation gives the Earth geometrical flattening
as a function of J2 and q. The approximations to the first
and second order are respectively:

ǫ =
q

2
+

3

2
J2 (13)

ǫ =
q

2
+

3

2
J2 +

9

8
J2

2 − 3

14
J2 q −

11

56
q2 (14)

where the geodynamical constant is:

q =
ω2Re

3

GM
(15)

= 3.461391× 10−3 , IAG (Groten, 1999).

Then, the following Radau equation can help us to deter-
mine the expression of MRe

2/C:

ǫ− q/2

H
= 1 − 2

5

√

1 + η =
1

λ
(16)

where λ is the d’Alembert parameter and η the Radau
parameter, as:

η =
5q

2ǫ
− 2 (17)

Hence, replacing ǫ with Eq. (13) in Eq. (16) and using
Eq. (8) gives the Darwin-Radau relation as following:

C

MRe
2

=
2

3λ
=

2

3

(

1 − 2

5

√

1 + η

)

(18)

Our tests have shown that Eq. (14) for ǫ, in the expression
(17) of η, gives more reliable results.

In Table 3 we compare the various H values obtained.
We denote (i) H∗ the value obtained with the Clairaut
method and (ii) H∗∗ the value obtained using directly the
Re, C and M values. Both are computed with Eq. (8) and
a value for J2 of 1.0826358× 10−3. Note that in contrast,
IAG or MHB values (usually used) are determined from
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astronomical precession observations and can be used to
compute the C/MRe

2 value. We can add that the differ-
ences with HMHB come from (i) the hydrostatic equilib-
rium hypothesis in Clairaut’s theory for the value H∗ and
(ii) the poorly determined Re, C and M values, for the
value H∗∗. This will introduce errors in the ∆H determi-
nation, which we will study in Sect. 3.3.

In the following, we will use the C/
(
MRe

2
)

value de-
termined with the Clairaut theory, noted with a (*) in
Table 3, which corresponds to a value for H of: H∗ =
3.26715240× 10−3.

3.3. Error estimation

We can estimate the error that the use of the Clairaut the-
ory introduces into the ∆H results. Indeed, if we consider
the MHB value as the realistic H value (see Table 3), the
relative error made is:

σH =
HMHB −H∗

HMHB

≃ 2 × 10−3 (19)

We estimate that the error is about 0.2 %. So, comput-
ing the variable part of H with the C20 data results in a
maximum error of about:

|∆Hreal − ∆H∗| ≃
(
2 × 10−3

)
×

(
6 × 10−9

)

≃ 1.2 × 10−11 (20)

assuming that the maximum value for ∆H is of the order
of 6×10−9. Then, regarding the values of the ∆H data and
of their precision, we can consider this error as negligible.

4. Time series of ∆C20 used in this study

The geodetic data used are the time series (variable part)
of the spherical harmonic coefficient C20 of the geopo-
tential, obtained by the GRGS (Groupe de Recherche en
Géodésie Spatiale, Toulouse) from the precise orbit deter-
mination of several satellites (like LAGEOS, Starlette or
CHAMP) from 1985 to 2002 (Biancale et al., 2002). The
combination of these satellites allows the separation of the
different zonal geopotential coefficients, more particularly
of J2 and J4. This series includes (i) a model part for
the atmospheric mass redistributions (Chao & Au, 1991;
Gegout & Cazenave, 1993) and for the oceanic and solid
Earth tides (McCarthy, 1996), and (ii) a residual part (see
Fig. 2) obtained as difference of the space measurements
with respect to a model. These various changes in the
Earth system are modelled as variations in the standard
geopotential coefficient C20 and we note the different con-
tributions ∆C20atm

, ∆C20oc
, ∆C20soltid

and ∆C20res
, re-

spectively.

4.1. ∆C20 residuals and its secular trend: observed

part

Earlier studies already took into account the effect of the
secular variation of C20 on the precession of the equator.

1985 1990 1995 2000
-4e-10

-3e-10

-2e-10

-1e-10

0

1e-10

2e-10

3e-10 C20 residuals without constant part

1985 1990 1995 2000
Years

-2e-10

-1e-10

0

1e-10

2e-10
Filtered C20 residuals without constant part

Fig. 2. Normalized ∆C20 residuals (top: raw residuals,
bottom: filtered residuals, where the high frequency sig-
nals have been removed): non-modelled part of the ∆C20

harmonic coefficient of the Earth gravity field.

Such a secular variation is attributed to the post-glacial
rebound of the Earth (Yoder et al., 1983), which reduces
its flattening. Williams (1994) and Capitaine et al. (2003)
considered a J2 rate value of −3× 10−9/cy. Using the nu-
merical value of Table 2 for the first order contribution
(f01 cos ǫ0) to the precession rate r0, which is directly pro-
portional to J2, the contribution J̇2/J2 × f01 cos ǫ0 of the
J2 rate to the acceleration of precession d2ψA/dt

2 is about
−0.014′′/cy2, giving rise to a −0.007′′/cy2 contribution to
the t2 term in the expression of ψA.

Since 1998, a change in the secular trend of the J2

data has been reported (Cox & Chao, 2000). This change
can be seen in the series of ∆C̄20 residuals (see Fig. 2). An
attempt to model this effect, with oceanic data, water cov-
erage data and geophysical models, has been investigated
by Dickey et al. (2002). Using the residuals ∆C̄20 of the
GRGS, we can estimate a secular trend for J2 = −

√
5 C̄20

from 1985 to 1998 (see Fig. 3). We find a J2 rate of the
order of: −2.5 (±0.2) × 10−9/cy, which gives a change of
about −0.006”/cy2 in the t2 term of the polynomial de-
velopment of the precession angle ψA.

As this secular trend is not the same in the total data
span, we will also model the long term variations in the
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Table 3. Comparison between different values of the coefficient C/
(
MRe

2
)

and of the constant part for H : (1) IAG
values (Groten, 1999) - (2) MHB values (Mathews et al., 2002) - (3) Constant part H∗∗ obtained from Eq. (8) using
the M , Re and C IAG values - (4) Method of “Clairaut” (Sect. 3.2), assuming hydrostatic equilibrium. The third and
fourth methods use a constant part for C̄20 of −4.841695× 10−4 in Eq. (8) (i.e. J2 = 1.0826358× 10−3). The sense of
the computation is indicated by the arrows.

(1) (2) (3) (4)
IAG (1999) MHB 2000 Separate values for Clairaut

M , Re and C Theory

C/
(
M Re

2
)

0.330701 0.330698 0.330722∗∗ 0.331370∗

±2 × 10−6

⇑ ⇑ ⇓ ⇓

H 3.273763 × 10−3 3.27379492 × 10−3 H∗∗ = 3.27355562 × 10−3 H∗ = 3.26715240 × 10−3

±2 × 10−8

C20 residual series with a periodic signal. Such a long-
period term in the J2 residual series may come from mis-
modelled effects, particularly from the 18.6-yr solid Earth
tides. We will make such an assumption and adjust for the
period 1985-2002, a secular trend and a long-period term
in the ∆C20 residual series (see Sect. 4.3).

However, it should be noted that a secular trend for J2,
of the order of −3× 10−9/cy, is more consistent with long
term studies of the Earth rotation variations by Morrison
& Stephenson (1997), based upon eclipse data over two
millennia (they found J̇2 = (−3.4 ± 0.6) × 10−9/cy).

4.2. ∆C20 geophysical data used: modelled part

The geophysical models that have been previously sub-
tracted from the C20 data (i.e. atmospheric, oceanic and
solid Earth tides effects) must be added back to these data
in exactly the same way they had been subtracted to re-
construct the relevant geophysical contributions.

For each contribution we give the associated potential
U at the point (r, φ, λ, t) (limited to the degree 2 and
order 0) that we identify with the Earth gravitational
potential. Hence, we obtain the ∆C̄20 coefficient contri-
bution of each geophysical source.

• The atmospheric contribution is due to pressure
changes in time, measured and given by the European
Centre for Medium-range Weather Forecasts (ECMWF)
(see Fig. 4). The simple-layer atmospheric potential, lim-
ited to degree 2 and order 0, can be expressed as:

Uatm = 4πGRe
1+k

′

2

5g

(
Re

r

)3
∆C̄20ECMWF

(t) P̄20(sin φ) (21)

where G = 6.672 × 10−11 m3 kg−1 s−2 is the gravita-
tional constant, k

′

2 = −0.314166 is a Love number (Farrell,
1972), g = 9.81 m s−2, and P̄20(sin φ) is the Legendre
function of degree 2 and order 0. The C̄20ECMWF

(t) atmo-
spheric coefficient, expressed in Pascals, comes from the
spherical harmonic decomposition of the ECMWF atmo-

1985 1990 1995 2000

-5e-10

0

5e-10

J2 residuals
Linear regression

1985 1990 1995 2000
Years

-4e-10

-2e-10

0

2e-10

4e-10

6e-10

J2 filtered residuals
Linear regression

Fig. 3. J2 GRGS residuals (top: raw residuals, bottom:
filtered residuals, where the high frequency signals have
been removed): estimation of the linear trend, from 1985
to 1998.

spheric pressure grids, every 6 hours, over continents (see
Gegout & Cazenave (1993) or Chao & Au (1991)):

∆C̄20ECMWF
(t) =

∫

S

∆p (φ, λ, t)

(
3

2
sin2 φ− 1

2

)

dS(22)

where S is a surface grid pressure around the Earth and
∆p is the difference of pressure with a constant part pre-



G. Bourda and N. Capitaine: Precession, nutation, and Earth variable gravity field 7

fixed, at the point (φ, λ). Hence, identifying Eq. (21) with
the Earth gravitational potential, we obtain the atmo-
spheric pressure contribution to the ∆C̄20 harmonic co-
efficient:

∆C̄20atm
(t) =

4π Re
2 (1 + k

′

2)

5Mg
∆C̄20ECMWF

(t) (23)

• The contribution of the oceanic tides (see Fig. 5) is
modelled in the IERS Conventions 1996. The Earth re-
sponds to the dynamical effects of ocean tides, and the
associated potential, limited to the degree 2 and order 0,
is:

Uoc = 4π G Re ρw
1 + k

′

2

5

(
Re
r

)3

P̄20(sin φ) α(t) (24)

where we note α, depending on time, as:

α =
∑

n

−∑

+

C±
n,2,0 cos(θn(t)+χn)+S

±
n,2,0 sin(θn(t)+χn)(25)

The sum over n corresponds to the Doodson develop-
ment whose associated arguments are θn and χn. The
parameter ρw (= 1025 kg m−3) is the mean density of
sea water. Furthermore, C±

n,2,0 = Ĉ±
n,2,0 sin(ǫ±n,2,0) and

S±
n,2,0 = Ĉ±

n,2,0 cos(ǫ±n,2,0), where Ĉ±
n,2,0 and ǫ±n,2,0 are the

normalized amplitude and phase of the harmonic model
of the oceanic tides limited to degree 2 and order 0.
Identifying Eq. (24) with the Earth gravitational potential
gives the oceanic tide contribution to the ∆C̄20 harmonic
coefficient:

∆C̄20oc(t) =
4π Re

2 (1 + k′2) ρW
5 M

α(t) (26)

• The solid Earth tide contribution (see Fig. 6) is due
to the gravitational effect of the Moon and the Sun on the
Earth (IERS Conventions 1996). This force derives from a
potential, developed in spherical harmonics, which limited
to degree 2 and order 0 is:

Usoltid = G M
Re

2

r3
P̄20(sin φ) C̄20Moon+Sun

(t) (27)

where

C̄20Moon+Sun
(t) =

k20 Re
3

5 M

sun∑

p=moon

(
mp

r3p
P̄20(sinφp)

)

(28)

where k20 = 0.3019 is the nominal degree Love number
for degree 2 and order 0, mp the mass of the body p,
and rp the geocentric distance and φp the geocentric lati-
tude at each moment of the body p. The Love number de-
pends on the tidal frequencies acting on the Earth. Hence,
the contribution to ∆C̄20 from the long period tidal con-
stituents of various frequencies ν must be corrected (see
IERS Conventions 1996). Eq. (27) corrected for the fre-
quency dependence of the Love number, can be identi-
fied with the Earth gravitational potential. We obtain the

1985 1990 1995 2000

-2e-10

-1e-10

0

1e-10

2e-10

3e-10

1985 1990 1995 2000
Years

-1e-10

-5e-11

0

5e-11

1e-10

1,5e-10

Filtered and interpolated atmospheric C20

Fig. 4. Normalized atmospheric ∆C20 (top: raw data, bot-
tom: filtered data, where the high frequency signals have
been removed): atmospheric modelled part of the ∆C20

harmonic coefficient of the Earth gravity field, obtained
with ECMWF pressure data.

Earth solid tide contribution to the ∆C̄20 harmonic coef-
ficient:

∆C̄20soltid
(t) = C̄20Moon+Sun

+“frequency correction”(29)

This contribution comprises a constant part in the ∆C̄20

solid Earth tide, which is called “permanent tide”. We
have estimated it and obtained: −4.215114 × 10−9 (the
IERS Conventions value is −4.201 × 10−9). We must re-
move it from our ∆C̄20 data coming from solid Earth tides.

• Finally, we must consider a series including all the
effects described before. Hence, we add them back to the
residuals (Fig. 2), interpolating and filtering the data.
Then we obtain the total series (Fig. 7).

4.3. Adjustments in ∆H data

Eq. (11) allows us to transform the geodetic ∆C̄20 tempo-
ral variations into the dynamical flattening variations ∆H .
They can then be introduced into the precession equations
(1), replacing H with (H+∆H) (Eq. (2), Eq. (3), Eq. (4)
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1985 1990 1995 2000

-4e-10

-2e-10

0

2e-10

4e-10

1985 1990 1995 2000
Years

0

5e-11

1e-10

1,5e-10

Filtered and interpolated ocean tides C20

Fig. 5. Normalized oceanic ∆C20 (top: raw data, bot-
tom: filtered data, where the high frequency signals have
been removed): oceanic-tide-modelled part of the ∆C20

harmonic coefficient of the Earth gravity field; IERS
Conventions 1996.

and Eq. (7)) and using the process already described in
Sect. 2.3.

It is generally considered that VLBI observations of
the Earth’s orientation in space are not sensitive to the
atmospheric and oceanic contributions to the variations
in C20 (de Viron, 2004). However the amplitudes of these
effects have been evaluated in Table 11 for further dis-
cussion and in any case we can notice that they have a
negligible effect on precession.

The analytical and semi-analytical approach to solv-
ing the precession-nutation equations provides polynomial
developments of the ψA and ωA quantities. The ∆H data
are then considered as a linear expression plus Fourier
terms with periods derived from a spectral analysis (18.6-
yr, 9.3-yr, annual and semi-annual terms) (see Tables 4, 5,
6 and 7). Note that the phase angles used for adjusting the
∆H periodic terms are those of the corresponding nuta-
tion terms. This implies changes in the development of the
equatorial precession angles (ψA, ωA), which we describe
in the next section.

For the residual contribution of ∆H , we will consider
(i) an adjustment of a secular trend over the interval from

1985 1990 1995 2000

-6e-09

-5e-09

-4e-09

-3e-09

-2e-09

1985 1990 1995 2000
Years

-5e-09

-4,5e-09

-4e-09

-3,5e-09

-3e-09

Filtered and interpolated solid earth tides C20

Fig. 6. Normalized solid tides ∆C20 (top: raw data,
bottom: filtered data, where the high frequency signals
have been removed): solid-Earth-tide-modelled part of the
∆C20 harmonic coefficient of the Earth gravity field; IERS
Conventions 1996.

1985 to 1998 (see Table 6 and Eq. (30)), and (ii) an ad-
justment of a secular trend plus a 18.6-yr periodic term
(see Table 5 and Eq. (31)), both added to the seasonal
terms. The fit (i) of the secular trend gives:

Ḣ ≃ −7.4 × 10−9/cy ⇔ J̇2 ≃ −2.5 × 10−9/cy (30)

and the fit of model (ii) gives:

∆H =
(
74 × 10−11

)
× t+

(
20.9 × 10−11

)
× sin(ωt)

+
(
32.5 × 10−11

)
× cos(ωt) (31)

with ω = 2π/0.186.
We must recall that these adjustments have been made

together with the fit of annual and semi-annual terms. In
contrast, the higher frequency terms appearing in the ∆H
data have been filtered and we therefore did not take into
account other contributions, as for example the diurnal
effects of the geophysical contributions in ∆H .

5. Effects of the ∆H contributions on the

precession angles

On the basis of the models fitted to the time series of ∆H
in the previous section, obtained with geodetic ∆C20 se-
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Table 5. Adjustment of periodic terms in the ∆H contributions, for the data span 1985-2002 for various ∆H geo-
physical sources (atmospheric ∆H atm., oceanic tides ∆H oc. and solid earth tides ∆H soltid., as well as the residuals
∆H res.)) - Units are in 10−10 rad.

period ∆H res. ∆H atm. ∆H oc. ∆H soltid.

(in years) sin cos sin cos sin cos sin cos

1 2.17 −4.02 0.96 −1.66 −3.92 1.41 −4.64 0.89

0.5 −0.43 3.71 0.76 1.56 −0.34 28.04

18.6 2.09 3.25 −0.46 −26.29

9.3 −0.17 −1.65 −0.01 0.29

1985 1990 1995 2000

-5e-10

0

5e-10

1e-09

1985 1990 1995 2000
Years

-3e-10

-2e-10

-1e-10

0

1e-10

2e-10

3e-10

Fig. 7. Normalized total ∆C20: top is the total series in-
cluding atmospheric, oceanic tides and solid earth tides
effects and the residuals; bottom is the total series with-
out the solid earth tides effect.

ries, we investigate the influence of these geodetic data on
the precession angle developments. First, we evaluate the
effect of the secular trend considered in the ∆C̄20 residual
series. Second, we report on the influence of each geophys-
ical contribution, on the influence of the residuals and on
that of the total contribution. Finally we focus on the pe-
riodic effects resulting from the various ∆H contributions.

Table 4. Summary of the constant parts for H and C20

(Constant part + Permanent tide) used in this study.

HMHB 3.2737942 × 10−3

C̄20 −4.841695 × 10−4

J2 1.0826358 × 10−3

H∗ 3.2671524 × 10−3

H∗ with geophysical 3.2671521 × 10−3

constant parts

H∗∗ 3.2735556 × 10−3

Table 6. Specific adjustment of the ∆H residual series
(∆H res.), from 1985 to 1998. The secular trend is consid-
ered as in Eq. (30) - Units are in 10−10 rad.

period ∆H res.

(in years) sin cos

1 2.57 −3.84

0.5 −0.50 3.80

Table 7. Adjustment of the total series of ∆H (∆H tot.),
from 1985 to 2002 - Units are in 10−10 rad.

period ∆H tot.

(in years) sin cos

1 −5.39 −3.39

0.5 0.07 33.67

18.6 0.92 −23.11

9.3 −0.08 −0.50

5.1. J̇2 influence

We have already mentioned that the J̇2 influence was
taken into account in previous precession solutions
(Williams 1994, Capitaine et al. 2003) (see Sect. 4.1). But
depending on the value adopted, the polynomial devel-
opment of the ψA precession angle is different. Indeed,
if we take J̇2 = −2.5 × 10−11/cy like in our study, or
J̇2 = −3 × 10−11/cy like in Capitaine et al. (2003), the
contribution in ψA varies by about 1.5 mas/cy2 (see Table
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8). So we must carefully take into account this J2 rate.
Furthermore, (i) we already noticed that such a secular
trend has been recently discussed because of the change
in this trend in 1998 (see Fig. 2) and (ii) the uncertainty in
this secular trend, derived from space measurements of J2,
is significant. Therefore we can conclude that until there
is a better determination of the J2 rate, the accuracy of
the precession expression is limited to about 1.5 mas/cy2.

5.2. Precession

First, we can compare the polynomial part of our solu-
tion Geod04 for the precession angles, based on the con-
stant part HMHB of H and on its variable part provided
by expression (31), with previous precession expressions
(IAU2000 and P03) (see Table 9). The differences larger
than one µas concern the ψA precession angle and more
particularly its t2 and t3 terms. The differences (of 7 mas
and 2 µas, respectively) with respect to P03 are due to
considering or not considering the J̇2 effect. Actually, P03
includes a J2 secular trend, whereas Geod04 includes in-
stead a 18.6-yr periodic term (see (3) in Table 9 or (2) in
Table 10). Comparing Geod04 with the IAU 2000 preces-
sion (which does not consider the J2 rate) shows differ-
ences of 0.6 mas and 5 µas in the t2 and t3 terms, respec-
tively. This results from the improved dynamical consis-
tency of the Geod04 solution (based on the P03 precession
equations) with respect to IAU 2000. Note that such re-
sults regarding the t2 and t3 terms will not be affected if
changes of the order of 1 mas/cy in the precession rate
would occur in an updated P03 solution.

Second, we can evaluate the differences introduced in
the ψA (and ωA) polynomial development by the use of a
constant part for H determined with the geodetic J2 (as
used in Geod04-H* and Geod04-H**) instead of the Hastro

determined by VLBI and used in Geod04. Table 9 shows
that the differences are very large, but it should be noted
that using J2 for deriving H suffers from the too large
errors introduced by the mismodelled C/MRe

2.

5.3. Periodic contributions

On the basis of the adjustments made in Sect. 4.3 for the
different ∆H contributions, we estimate here the periodic
effects appearing in the expressions of the precession an-
gles. We can focus on the Fourier terms in the ψA preces-
sion angle, which are the most sensitive to the ∆H effects.
The corresponding results are presented in Table 11.

• First, we note that the major effect is due to the
18.6-yr periodic term in the solid Earth tides (contribution
number (3) of Table 11): about −2 µas and 120 µas in
cosine and sine, respectively. The tidal annual and semi-
annual effects are negligible as well as the atmospheric and
oceanic effects (contributions number (4) and (5) of Table
11).

• Second, note that the ∆H variation strictly limited
to its residual part, not modelled into the geodetic orbit

restitution, introduces negligible Fourier terms into the ψA
development. But we can note that the way the long term
effect is considered in such data (i.e. either with a secular
trend term (contribution number (1) of Table 11) or a
18.6-yr periodic term (contribution number (2) of Table
11)) is important. Modelling the long term variation in
the geodetic residuals over the total data span as a 18.6-
yr variation induces a term with an amplitude of 15 µas in
the ψA development. But at present the ∆C20 data span
is not long enough to allow us to discriminate between the
two models.

Finally, we can conclude that the geodetic determina-
tion of the total variable C20 (contribution number (6) of
Table 11) introduces Fourier terms into the ψA precession
angle development, mainly a 18.6-yr periodic one, of the
order of 4 µas and 105 µas in cosine and sine, respectively.

6. Discussion

This study was based on new considerations: the use of
a geodetic determination of the variable geopotential to
investigate its influence on the developments of the pre-
cession angles. The major effect on the precession is due
to the J2 secular trend which implies an acceleration of
the ψA precession angle. But for the moment, the avail-
able time span for J2 satellite series is not as long as we
need to determine a reliable J̇2 value. The J2 secular trend
estimation based on our C20 residuals series from 1985 to
1998 is: J̇2 = −2.5× 10−9/cy. The accuracy of the preces-
sion expression is limited to about 1.5 mas/cy2 due to the
uncertainty in this J2 rate value.

Then, we can notice that the main periodic effect is due
to the 18.6-yr periodic term in ∆C20 due to solid Earth
tides. But we must say that computing the ∆C20 with
satellite positioning observations requires making some as-
sumptions on the geophysical contributions to ∆C20, for
instance from atmospheric pressure, and oceanic or solid
Earth tides. Actually, models are used, but they are not
perfect and we may have some errors. So the ∆C20 resid-
uals obtained may be affected by these errors, which is
why the total ∆C20 contributions (residuals observed +
models assumed) constitute a better series to evaluate the
effects on the precession angles. This introduces Fourier
terms into the ψA development (4 µas and 105 µas in co-
sine and sine respectively; see Table 11) that we should
compare to the MHB2000-nutations. Indeed, the differ-
ent terms of the total ∆H (or ∆C20) contributions have
same periods as the (∆ψ, ∆ǫ) nutations. This implies that
there is some coupling between the observed ∆H effects
and the nutations, which may not have been included in
the MHB2000-nutations.

In the future, we will be able to compare the J2 data
with geophysical models and data, in order to have better
ideas on the different contributions and on the secular
trend. We will also be able to proceed to numerical study
of this problem, and to implement a refined and more
realistic Earth model.
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Table 8. Influence of J̇2 on the polynomial development of ψA (more particularly on the t2 and t3 terms): (1) IAU2000
(Mathews et al., 2002), (2) P03 (Capitaine et al., 2003) and (3) Same computation as in P03 but with other J̇2 values.
The J2 secular trend estimation based on our C20 residuals series is: J̇2 = −2.5 × 10−9/cy.

J̇2 t2 t3

(1) IAU2000 None −1′′.07259 −0′′.001147

(2) P03 −3 × 10−9/cy −1′′.079007 −0′′.001140

Differences wrt P03
︷ ︸︸ ︷

0 /cy -7.000 mas 2 µas
−2 × 10−9/cy -2.871 mas 1 µas

(3) −2.3 × 10−9/cy -1.954 mas 1 µas
−2.5 × 10−9/cy -1.495 mas 1 µas

Table 9. Polynomial part of the ψA and ωA developments (units in arcseconds): comparison of (1) IAU2000 (Mathews
et al. 2002) - (2) P03 (Capitaine et al. 2003) - (3) Differences of Geod04 (this study) with respect to P03, considering
all the contributions for ∆H (Table 7, ∆H tot) - (4) Differences of Geod04 with respect to P03, obtained with a H
constant part different from HMHB , but not used in the following (see Table 3 for the H∗ and H∗∗ constant values).

Angle Source t0 t t2 t3

(1) IAU2000 5038′′.478750 −1′′.07259 −0′′.001147

(2) P03 5038′′.481507 −1′′.079007 −0′′.001140

ψA

Differences wrt P03
︷ ︸︸ ︷

(3) Geod04 HMHB 0′′ -7 mas 2 µas

(4) Geod04

{
H∗

H∗∗

≃ 10′′.23
≃ 0′′.37

-9.177 mas
-7.079 mas

-3 µas
2 µas

(1) IAU2000 84381′′ .448 −0′′.025240 0′′.05127 −0′′.00772

(2) P03 84381′′ .406 −0′′.025754 0′′.051262 −0′′.007725

ωA

Differences wrt P03 in µas
︷ ︸︸ ︷

(3) Geod04 HMHB 0 0 0 0

(4) Geod04

{
H∗

H∗∗

0
0

0
0

104
3
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