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Bifurcation to fully nonlinear synchronized structures in
slowly varying media

Benoit Pier, Patrick Huerre, Jean-Marc Chomaz

Laboratoire d’Hydrodynamique (LadHyX)
CNRS - Ecole polytechnique, F-91128 Palaiseau cedex, France

Abstract

The selection of fully nonlinear extended oscillating states is analysed in the con-
text of one-dimensional nonlinear evolution equations with slowly spatially varying
coefficients on a doubly-infinite domain. Two types of synchronized structures re-
ferred to as steep and soft global modes are shown to exist. Steep global modes
are characterized by the presence of a sharp stationary front at the marginally ab-
solutely unstable station and their frequency is determined by the corresponding
linear absolute frequency, as in Dee—Langer propagating fronts. Soft global modes
exhibit slowly varying amplitude and wavenumber over the entire domain and their
frequency is determined by the application of a saddle point condition to the local
nonlinear dispersion relation. The two selection criteria are compared and shown
to be mutually exclusive. The onset of global instability first gives rise to a steep
global mode via a saddle-node bifurcation as soon as local linear absolute instabil-
ity is reached somewhere in the medium. As a result, such self-sustained structures
may be observed while the medium is still linearly globally stable. Soft global modes
only occur further above global onset and for sufficiently weak advection. The entire
bifurcation scenario and state diagram are described in terms of three characteris-
tic control parameters. The complete spatial structure of nonlinear global modes is
analytically obtained in the framework of WKBJ approximations.

Keywords: Hydrodynamic stability; Frequency selection; Nonlinear global modes.
PACS: 47.20.Ft; 47.20.Ky; 47.54.4r; 03.40.Kf.

1 Introduction

It is now well established that spatially developing open shear flows may be
divided into two classes: some flows are very sensitive to inflow conditions
and essentially behave as noise amplifiers, others display intrinsic dynamics
and may be interpreted as global oscillators [20-22]. The present paper is
concerned with the latter class of systems and examines in detail the synchro-
nized self-sustained structures which they can support. In previous studies we
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have demonstrated the existence of nonlinear soft global modes [33] and steep
global modes [34]. The objective of the present investigation is to analyse the
bifurcation scenarii which lead from the basic state to either of these fully
nonlinear structures as the global control parameters are varied. The analysis
is carried out in the context of one dimensonal evolution models with spatially
varying coefficients, in order to account for the streamwise development of the
basic state.

A variety of physical systems give rise to intrinsic self-sustained oscillations:
mixing layers with strong enough counterflow [45], low-density jets [43,29],
cylinder wakes [27,37,44], wakes behind blunt-edged plates [18,19], thin aero-
foilwakes [48], Taylor—-Couette flow between concentric spheres [42], Taylor—
Couette flow between circular cylinders with throughflow [5], Rayleigh-Bénard
convection with throughflow [31], baroclinically unstable atmospheric flows
[36,17], sunspot cycles [1,28]... Many of these flows display a spatially varying
basic state, and hence a spatial dependence of the local instability character-
istics. The goal of a global analysis is to obtain in a self-consistent manner
a spatially extended structure made up of wave trains governed by the local
properties of the medium and tuned at an overall global frequency w,. The
unknown global frequency wy is to be derived from a nonlinear eigenvalue prob-
lem consisting of the evolution equation and associated boundary conditions.
The associated eigenfunction yields the spatial structure of the corresponding
self-sustained oscillations. The resolution of the eigenvalue problem is typ-
ically undertaken in the context of a slowly varying approximation whereby
the underlying basic state evolves slowly over a typical instability length scale.
In this framework, the main objective of the global mode analysis is to derive
global frequency selection criteria from the local dispersion relation prevailing
at each streamwise station.

Linear global mode analyses are now fairly complete. Chomaz et al. [7] demon-
strated that the complex global frequency is determined by a saddle point
(equivalently a double turning point) condition applied to the local linear dis-
persion relation for the linear complex Ginzburg-Landau equation with spa-
tially varying coefficients. This criterion had previously been discovered and
implemented by Soward and Jones [42] to describe oscillating states in Taylor—
Couette flow between concentric spheres. According to Monkewitz et al. [30],
the same criterion also holds for the Navier—Stokes equations linearized about
an arbitrary slowly varying basic flow. More recently, Le Dizes et al. [25] re-
examined the case of the spatially varying linear complex Ginzburg-Landau
equation and demonstrated the existence of another family of linear global
modes with two simple turning points. The causal nature of these linear global
modes has been established for the same model by Hunt and Crighton [23]:
the exact linear impulse response does converge, for large time, to the most
unstable linear global mode. The validity of the linear saddle point criterion
has been fully confirmed in the direct numerical simulations of the Karman



vortex street behind a blunt-edged plate by Hammond and Redekopp [19].

Paradoxically, the weakly nonlinear extension of these concepts is fraught
with difficulties, as emphasized by Chomaz et al. [6] and Le Dizes et al. [24]:
the Landau constant pertaining to the Hopf bifurcation near global mode
onset does not display a well-defined sign as the WKBJ spatial inhomogeneity
parameter is decreased. Furthermore, the weakly nonlinear formulation is only
valid in an exponentially small vicinity of threshold.

To obviate such weakly nonlinear studies, it appears natural to resort to a
fully nonlinear approach where fluctuations are of order unity. Such a line of
thought has been consistently pursued since the early nineties in the framework
of nonlinear Ginzburg-Landau type models. The classical absolute/convective
instability concepts introduced in a linear context by Briggs [4] and Bers [3]
have been generalized to the fully nonlinear régime by Chomaz [8]. The ab-
solute/convective nature of the nonlinear dynamics is then directly related
to the propagation direction of the front separating the basic state from the
bifurcated state [16,38-40]. The properties of fully nonlinear global modes
on a semi-infinite domain governed by Ginzburg-Landau type equations with
constant coefficients have been thoroughly studied by Couairon and Chomaz
[10,12,13]. In this case, a nonlinear global mode is obtained when an up-
stream travelling front is halted in its motion by the upstream boundary
point. This event occurs whenever the medium is nonlinearly absolutely un-
stable in the sense of Chomaz [8]. The reader is referred to Tobias, Proctor
and Knobloch [46] and Chomaz and Couairon [9] for a corresponding analysis
of the finite-interval problem.

Corresponding fully nonlinear analyses have been performed for the complex
Ginzburg-Landau equation with spatially varying coefficients in doubly infi-
nite media. Two varieties of nonlinear global modes have been identified. Soft
global modes, obtained by Pier and Huerre [33], obey a saddle point frequency
selection criterion applied to the local nonlinear dispersion relation. This cri-
terion is formally analogous to its linear counterpart. The associated spatial
eigenfunction structure displays smoothly varying amplitude and wave num-
ber over the entire domain. By contrast, according to the preliminary results
reported by Pier et al. [34], steep global modes are governed by a marginal
linear instability criterion: the steep global frequency is imposed by the real
absolute frequency [3] prevailing at the transition station between linear con-
vective and absolute instability. This criterion is akin to the linear front veloc-
ity selection principle put forward by Dee and Langer [16]: for a wide class of
systems, the speed of the front separating the basic state from the bifurcated
state is such that in the co-moving frame the medium is marginally linearly
absolutely unstable. The steep global spatial structure displays a stationary
sharp front at the transition station with a sudden jump in wave number. In
all other regions, the amplitude and wave number are slowly varying. Similar



steep self-sustained structures have been numerically identified and analyti-
cally determined in amplitude evolution models pertaining to solar and stellar
magnetic activity cycles by Meunier et al. [28] and Bassom et al. [1]. The
properties of nonlinear global modes governed by the real Ginzburg-Landau
equation in a semi-infinite domain with combined distributed spatial inhomo-
geneity have been obtained by Couairon [11] and Couairon and Chomaz [14].
Predicted scaling laws for amplitude and position of the maximum very fa-
vorably compare with experimental and numerical observations of bluff-body
wakes.

The purpose of the present study is two-fold: first we wish to map out the
domains of existence of soft or steep global modes in an appropriate control
parameter space and to characterize the associated bifurcations. Secondly we
present the detailed asymptotic structure of the various layers and regions
which make up their spatial distribution.

Consider a system governed by a one-dimensional nonlinear partial differential
equation that is first order in time of the form

W RO X0 (1)
where = and t represent space and time coordinates respectively, and X is a
slow space variable to be defined shortly. The basic state is assumed to be ¥ =
0, and the function ¢ (z, t) represents the fluctuations riding on the basic state.
In regions of finite amplitude, v is governed by the full nonlinear operator F.
In small amplitude regions, ¢ is a perturbation governed by equation (1)
linearized around the basic state, i.e.,

% — L@ X)) ©)
A crucial assumption of the present investigation is the slow spatial develop-
ment of the medium as exemplified by the introduction of the slow spatial
variable X in the operators F and L. The weak non-uniformity hypothesis is
fulfilled if the ratio e = A/ L between the typical instability length scale A and
the inhomogeneity length scale L is small. As a result of this scale separation,
the weak variations of the medium instability properties may be described
through the slow variable

X =ex with e<1. (3)

If the slow space variable X is frozen, system (1) becomes a p.d.e. in z and ¢
with constant coefficients which captures the local instability properties pre-
vailing at that station X. In order to construct a global mode it is necessary
to “piece together” local wave trains at different X by explicitly accounting
for the weak coupling between local and global properties via relation (3).



The outline of the paper is as follows. The bulk of the study (Sections 2—
4) is concerned with the determination of the leading order approximation
for fully nonlinear synchronized structures governed by (1). Local instability
properties where X is frozen are summarized in Section 2. Emphasis is given
to the relationship between causality and the spatial response to a localized
harmonic forcing (Section 2.3). In this framework, stationary fronts are shown
to naturally arise as the limiting spatial response of the system in the absence
of forcing when the medium is marginally absolutely unstable (Section 2.4).
Variations of the local instability properties over the entire X-domain are ana-
lysed in Section 3. More specifically, the distribution over X of linear spatial
branches (Section 3.2) and nonlinear spatial branches (Section 3.3) is investi-
gated as the global frequency is varied. Section 4 contains the essential results
concerning the structure of steep global modes (Section 4.2), the nature of
their bifurcation from the basic state (Sections 4.3-4.5), the structure of soft
global modes (Section 4.6), and finally the respective domains of existence of
steep and soft global modes (Sections 4.7,4.8) in control parameter space. The
results of Sections 2-4, in principle, apply to any nonlinear system governed by
an equation of the form (1). In order to obtain explicit results, we repeatedly
use as an illustrative example the complex Ginzburg Landau (CGL) equation

z%—qf = (wo(X) + %wkk(X)kO(X)z)w + iwkk(X)kO(X)g_qf
T E BRTe " n

for a complex function ¢ (x,t). For convenience, the CGL equation is written
here as derived from the Taylor expansion of the dispersion relation around
ko(X) in the same manner as [20]. The precise meaning of all these quantities is
discussed in detail in Section 2. The complex X-dependent coefficients wy(X)
and ko(X) denote the usual local absolute frequency and wave number respec-
tively, while wgx(X) is the second derivative of the linear dispersion relation
with respect to the wave number k. The complex Landau “constant” ~(X)
is chosen so that nonlinearities are stabilizing everywhere (supercritical bi-
furcation), i.e., v;(X) = Im~y(X) < 0 for all X. In the entire paper, the
field ¥ (z,t) is assumed to be advected in the positive z-direction everywhere
to mimic the dynamics of open flows. As demonstrated in Section 4.8, this
assumption is equivalent to ko;(X) < 0 for all X. Thus the increasing and
decreasing z-directions will be referred to as “downstream” and “upstream”
respectively.

Model (4) has been shown to successfully describe a large range of pattern
formation phenomena [26,15,32]. Here it is used as an idealized representation
of spatially developing flows, Similar conclusions are expected to hold for a
general system governed by (1). The analytical results obtained in Sections 2—
4 are further supported by numerical simulations of the CGL equation (4),



as depicted in the accompanying figures. The remaining part of the paper
(Section 5) is devoted to the complete higher-order asymptotic analyses of the
various regions and layers appearing as ingredients in the spatial structure
of global modes. The results are derived in the general context of system (1)
by following a methodology analogous to that previously used by Pier and
Huerre [33] and Bassom et al. [1]. This complete asymptotic analysis is rather
technical and may be skipped in a first reading. The main conclusions are
discussed in a final Section 6.

2 Local instability properties

Under the assumption that the governing equation only depends on space
through the slow variable X, local characteristics of the medium are recov-
ered by freezing X in (1) and studying the corresponding strictly uniform
medium. In the sequel, “local” always refers to properties of uniform systems
obtained by extending the medium of a specific downstream station X to-
wards x = 4o00. At this local level of analysis, X and x are then considered
to be independent: the fast component z is involved in spatial differentiation
whereas X plays the part of an independent control parameter. The rigorous
asymptotic analysis reestablishing the link between z and X via (3) in terms
of WKBJ approximations [2] is postponed to Section 5.

In the present section the properties of infinite spatially uniform media gov-
erned by an equation of the form

o
— =F(0, o
= FO.)ly) 6
are reviewed. The results are applicable to any nonlinear operator F(09,) =
F(0z; Xo) derived from (1) for some fixed location X = Xj. Explicit forms are
obtained for the uniform CGL equation

1 . 0 1 0?
wo + —wkkkg)lb + lwkkko—lp - _wkk_¢ +7[Y|*y. (6)

0 (
2 or 2 0zr?
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The linear properties dictating the dynamics of small amplitude perturbations
are routinely obtained. The main assumption used throughout the present
study is that (5) admits a continuous family of nonlinear travelling waves.
This is guaranteed as long as the nonlinearities are supercritically stabilizing,
as demonstrated below.

Small amplitude perturbations are governed by the counterpart of (5) lin-



earized around ¢ = 0,

o
5 = L) (7

Any perturbation is a superposition of elementary waves e/**=“" where the

complex wave number k£ and frequency w satisfy the linear dispersion relation
w = QHk) = iL(ik). (8)

For eq.(6), it takes the simple form
1 2
W =wq + Ewkk(k - ko) y (9)

where it is assumed that wgk; = Imwyy, < 0 in order to enforce causality (see
Section 2.3).

The dispersion relation (8) governs all linear properties of the system. Three
situations are of particular interest: the temporal evolution problem, the im-
pulse response, and the spatial response problem.

2.1 Temporal evolution and nonlinear dispersion relation

Consider the evolution of an initial spatially harmonic perturbation
Y(z,t = 0) = Ae*® +c.c.

of real wave number £ and small amplitude A < 1. Its linear temporal growth
rate is Q4(k) = ImQ%(k). Two typical variations of Qf and Q¢ with k are
sketched by solid lines in Fig.1. When Q¢(k) < 0, the wave exponentially
decays in time. When Q¢(k) > 0, the wave is temporally amplified and even-
tually governed by the full nonlinear equation (5). Assume that stabilizing
nonlinearities lead to a fully nonlinear travelling wave of the form

U(x,t) = V(ke — wt; k), (10)

where w is a real frequency and the function ¥(6; k) is 2m-periodic in . This
one-parameter family of nonlinear solutions parametrized by £ is characterized
by the nonlinear dispersion relation

w = Q"(k), (11)

represented by the dashed curves in Fig.1-a,c. The travelling waves (10) and
dispersion relation (11) are the nonlinear counterparts of the linear normal
modes €' ¥~ and dispersion relation (8). Since the medium is assumed to



Fig. 1. Linear and nonlinear temporal branches of the CGL equation. (b,d) Temporal
growth rate Qf(k) as a function of the real wave number. Unstable wave numbers
lie in the range k; < k < ko. (a,c) The nonlinear temporal branch Q™¢(k) (dashed
curves) is defined in the unstable wave number range and is connected to the Q¢ (k)
curve (solid lines) at the neutrally stable boundaries where w; = Q¢(k;) = Q™(k,)
and wy = Q¢(ky) = Q™(ky). The nonlinear branch may be either monotonous (a)
or exhibit an extremum (c).

be supercritical, nonlinear solutions ¥(6; k) only exist in the unstable wave
number range k; < k < ky defined by Q¢(k) > 0. Towards the boundaries of
this range, the linear growth rate vanishes as well as the nonlinear saturation
amplitude of W(0; k). A weakly nonlinear calculation then shows that the
higher harmonics of ¥(6) are slaved to the fundamental, and, in the neutrally
stable limit, the nonlinear frequency equals the linear real frequency

Q"“(k) = Q%(k) when Qf(k)=0. (12)

In Fig.1-a,c, the nonlinear temporal branches are seen to be connected to
their linear counterparts at w; = Q"(ky) = Qf(k1) and wy = Q"(ky) = Q4 (k)
respectively. In weakly unstable media, the unstable wave number range is
small and in general the nonlinear frequency is a monotonous function of the
wave number (Fig.1-a). Further above threshold, the unstable wave number
range increases and the nonlinear temporal branch ™(k) may exhibit an
extremum (Fig.1-c). As a result, one value of w may be associated to two
distinct wave numbers as further discussed in Section 2.5.

In general the functions ¥ as well as Q™ cannot be calculated analytically,
but they are easily obtained by performing a numerical simulation in a spa-
tially periodic interval of wave length 27 /k. In the particular case of the CGL
equation (6), nonlinear solutions are explicitly obtained as finite amplitude
harmonic waves

Y(z,t) = R(k) exp i[kz — Q™ (k)t],
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Fig. 2. Typical impulse response of (a) stable (b) convectively unstable (c) absolutely

unstable medium.

with

Im (W*Qz(k))
Im ~*

Im (Q¢(k))

Qnﬁ k) =
(k) i

and R?(k) =

where the superscript x denotes the complex conjugate. Recall that the con-
dition of stabilizing nonlinearities implies y; < 0.

2.2  Impulse response and absolute instability

The impulse response as defined by many authors [4,3,20-22] is given by

o _

5r = L)) +4(2)a(2), (13)

where ¢ denotes the Dirac delta function. Different behaviors arise as illus-
trated in the (x,?)-plane in Fig.2.

The medium is said to be linearly stable (Fig.2-a) if the response 9 (x, t) decays
on all rays x/t = C**. This is fulfilled when

QY k) <0 for all real k.

In an unstable medium, at least one growing wavepacket develops from (z,t) =
(0,0). If the growing wavepacket moves away from the source at z = 0 and
eventually leaves the medium unperturbed, the instability is said to be con-
vective (Fig.2-b). If, by contrast, the instability grows in place and invades
the system both upstream and downstream, the instability is said to be ab-
solute (Fig.2-c). The convective or absolute nature of the instability depends
on the absolute frequency wy associated with the absolute wave number kg
observed along the ray x = 0 defined as

14

wo = Q4(ky)  where %(ko):o. (14)

The medium is absolutely unstable (AU) if wy; > 0, convectively unsta-
ble (CU) if wg; < 0. The form (6) in which the CGL equation has been
cast explicitly puts forward its dependence on wy and k.



2.8  Spatial response and causality

Consider the response of the medium to a localized time harmonic forcing.
The response to a forcing of real frequency w; and amplitude Ay, switched on
at t = 0, is governed by the signalling problem

o _

5 = PO+ [A5(@) H(t)e ™ +c.c], (15)

with H denoting the Heaviside unit step function.

For small amplitude forcing (A; < 1), the response in the neighborhood
of the forcing location is governed by the linear spatial problem with F re-
placed by £ in (15). Switching on the forcing at ¢ = 0 produces a transient
wave packet together with the steady state response at the forcing frequency.
Whenever the medium is stable or convectively unstable, transients decay or
move away out of the system, and the long time response is established at
the forcing frequency. When the medium is absolutely unstable, switch-on
transients overwhelm the response at the forcing frequency and the signalling
problem (15) is ill-posed [4,3]. Hence we only consider the spatial problem (15)
for at most CU systems. The steady state response is made up of normal modes
eilkz—wst) satisfying w; = Qf(k). This equation in general admits several solu-
tions k! (wy) indexed by m, the number of which very much depends on the
particular form of Q¢(k).

Causality requires that ¢ = 0 for all ¢ < 0. Using a residue calculation in
the complex w-plane to solve (15) with F replaced by £, and assuming that
temporal growth rates are bounded (max{Q¢(k), k real} finite), it is readily
shown [4,3,20] that the spatial branches k¢, either pertain to the downstream
(x > 0) or to the upstream (z < 0) response to forcing. The downstream
(upstream) branches are denoted by k% (k%). For a given real forcing fre-
quency the distribution of the spatial branches k¢ (w) into + or — branches
is derived, according to classical arguments [4,3], from an examination of the
complete linear dispersion relation Q¢(k) in the entire complex k-plane. In the
sequel spatial branches are said to be causal + branches or causal — branches
according to whether they prevail downstream (z > 0) or upstream (z < 0)
of the forcing location. Hence causality always refers to the spatial response
to a localized harmonic forcing.

For simplicity assume that 2¢(k) exhibits a single second-order branch point wy
with only two spatial branches k%t and k%", as in the case of the CGL disper-
sion relation (9) where

K (W) = ko + ,/2“;:’0. (16)
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Fig. 3. Response to time-harmonic forcing applied at z = 0. (a) Upstream and
downstream decaying response in a stable or CU medium. (b) Linearly amplified
downstream response and nonlinearly saturated solution in a CU medium. (c) Sta-
tionary front in a marginally absolutely unstable medium. Note that slope discon-
tinuity at the forcing location has vanished. Dashed lines indicate exponentially
growing branches in the linear approximation.

The spatial growth rate of the response depends on kf = Im k‘. The down-
stream response decays for frequencies such that kf* (w) > 0; upstream decay
occurs when k¢~ (w) < 0. This is always the case for stable media (Fig.3-a).
Whenever a linear spatial k" (w) branch is amplified, nonlinear terms have
to be taken into account at some distance from the source, however small
the forcing amplitude. When the response reaches finite amplitude, nonlinear
saturation prevents further amplification and leads to a nonlinear travelling
wave at the excitation frequency for some real wave number k" (Fig.3-b).
Since the nonlinear wave train is asymptotically reached far downstream of
the source, it is denoted as k"¢t (w). This nonlinear solution would also be
obtained in a temporal evolution problem at the same wave number. Thus,
the forcing frequency wy and the nonlinear response wave number k"¢t again
satisfy the nonlinear dispersion relation (11). Note that due to the choice of
a basic advection towards x = +o00, only the downstream response may be
spatially amplified, and only the k"“*(w) branch is accessible via a forcing
problem.

The precise discussion of the relationship between linear and nonlinear spatial
branches is postponed to Section 2.5.
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2.4 Stationary fronts as spatial response without forcing

Many studies [16,38—41] have been devoted to the derivation of selection cri-
teria for propagating fronts connecting an unstable ¢y = 0 state to a fully
nonlinear saturated state in a uniform medium. In situations where the front
velocity is linearly selected [16,39], the front moves towards its decaying edge
in AU media, towards its finite amplitude edge in CU media. A stationary
front is then precisely obtained when the medium is exactly at the CU/AU
transition. The same stationary front solution may be recovered in the context
of the spatial response to time-harmonic forcing as discussed below.

Consider the signalling problem (15) in a uniform medium

oy

ot
where the frozen slow scale X has been explicitly introduced as an external
control parameter. Let us examine how the response to a localized forcing
of frequency wy varies with the parameter X which controls the instability
properties of the medium. Assume that the medium is CU for X < X and
marginally AU at X = X i.e., wy;(X) < 0for X < X, and w§* = wo(X)
real. Let k§* = ko(X°*) denote the complex absolute wave number at the
CU/AU transition. Since basic advection is assumed to be in the positive
z-direction, kg% < 0, as shown in Section 4.8.

F(0a; X)[W] + [Agd(x) H()e “r" + cc.| (17)

Upon making use of the associated linear dispersion relation ¢ and invo-
king continuity of the response at x = 0, the exact long time linear response
associated with the CGL equation (17) is obtained as

247 expilk™(wp)z — wyt]

o (X) K (X, w) — ke (X, op) T €€ (18)

1/1(3% t) =

The e*“** and e™**~* branches naturally pertain to the regions z > 0 and z < 0
respectively. In order to obtain a normalized response such that max [¢(0,t)| =
a, the forcing amplitude is adjusted to the level

Ap(X,wp) = Zwa(X) B (X, 0p) = K (X, 07)] (19)

If @« < 1, the linear response is guaranteed to remain valid in a neighbor-
hood of z = 0 even though the response may reach a finite amplitude further
downstream.

If the medium is stable for large X < 0, both upstream and downstream parts
of the response decay, i.e., ki " (ws; X) > 0 and kf~(wys; X) < 0 for large X < 0
(cf. Fig.3-a). As the control parameter X and forcing frequency w; are varied
continuously to approach the limit X°® wg, the downstream response k‘* is

12



eventually amplified, whereas the upstream branch k%= still decays (Fig.3-
b). Indeed, by definition of w§® [see also (16)] both spatial branches meet at
X = X and wy = wg?, i.e.,

ké—{—(Xca, wga) — ké— (Xca, wga) — k(c)a_

Since kg% < 0, it is therefore guaranteed that kT (X,wy) changes sign and
becomes negative as (X, w;) approach (X, wé®), while &~ (X, wy) does not. In
such a régime, the downstream growing response « explik‘* (X, w;)z] reaches
a finite amplitude at z ~ (Ina)/kf" > 0. At this station, the linearly growing
wave k" (X, wy) is replaced by its nonlinear counterpart ™" (X, wy).

In the convectively unstable régime (X < X), both the spatial growth rate
and wave number are discontinuous at x = 0, i.e., k*F # k. The forcing
location is then a singular point of the total response (Fig.3-a,b).

When (X,wy;) = (X, w§?®), the medium approaches absolute instability and
both branches ¥+ (X,w;) and k= (X, wy) tend towards k§*. Thus, in this pro-
cess, the slope discontinuity in the response at = 0 smoothes out. Moreover,
according to (19), the forcing amplitude A¢(X) required to maintain the nor-
malization condition max [¢(0,¢)| = « vanishes. Thus in the marginally AU
régime X = X, a smooth stationary front of frequency w; = w§® prevails
without any forcing (Fig.3-c). This front directly connects the upstream lin-
ear k= branch to the downstream nonlinear ™t branch. As mentioned in
Section 2.3, the + and — notations have causal meaning only in CU systems.
The previous argument indicates that, in a marginally AU system, the two
branches on both sides of a front are still determined by causal considera-
tions through a continuation procedure from the CU side. From the above
discussion, a stationary front in a spatially uniform system is obtained for
zero-amplitude forcing whenever the medium becomes marginally AU and the
forcing frequency equals the corresponding real absolute frequency wg®.

2.5 Nature of nonlinear spatial branches: Cautionary remarks

In Section 2.3 it has been demonstrated that, in the framework of a signalling
problem, nonlinear wave trains are generated downstream of the forcing loca-
tion in a CU system. Such a formulation naturally leads to a causal definition of
spatial k™" (w) branches. These fully nonlinear wave trains satisfy the nonlin-
ear dispersion relation (11). Thus the nonlinear wave number £™(w) may for-
mally be obtained by solving (21) for a given frequency. In this subsection we
discuss the precise relationship between linear and nonlinear spatial branches
as illustrated in Fig.4, and introduce definitions of k™t or k™~ branches which
apply to all formal solutions of the nonlinear dispersion relation. In this pro-
cess it will be seen that only the + superscript in CU systems may be assigned
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Fig. 4. Linear and nonlinear spatial branches of the CGL equation. (b,d) Spatial
growth rate —k;” (w) of downstream spatial branch as a function of the real fre-
quency. Unstable frequencies lie in the range w; < w < ws. The nonlinear spa-
tial wave number k™ (w) may be either single-valued as in (a) or double-valued
as in (c). (a) The unique nonlinear spatial branch k™% (w) (dashed curve) is de-
fined in the unstable frequency range and is connected to the k‘t(w) curve (solid
line) at the neutrally stable boundaries where k; = k‘t(w;) = k™ (w;) and
ko = k*t(wo) = k™1 (ws). (c) Two nonlinear spatial branches ™ (w) and k™~ (w)
(dashed curve) coexist, which issue from the neutrally stable boundaries at k; and
ko respectively and merge at a turning point (solid dot). Note that k™~ is now
connected to kT at k.

to nonlinear branches according to causality considerations.

Whereas the temporal problem yields the real nonlinear frequency as a func-
tion of real wave number as represented by the dashed lines in Fig.1, conversely
the spatial problem yields the real nonlinear wave number as a function of real
frequency. This inversion process is straightforward in situations where Q™ (k)
is monotonous as in Fig.1-a. But it is more delicate in situations where Q™ (k)
exhibits an extremum as in Fig.1-c.

In the first case (Fig.1-a), the behavior of the linear and nonlinear spatial
branches is illustrated in Fig.4-a,b. The linear downstream response is specified
by the spatial growth rate —kf+ displayed in Fig.4-b. For forcing frequencies in
the range w; < w < we, the response is amplified and gives way to a nonlinear
spatial solution of wave number k™ as indicated by the dashed line in Fig.4-
a. Note that, as in the temporal case (Fig.1-a), the nonlinear branch k™" is
connected to its linear counterpart k‘* at the neutrally stable frequencies w;
and ws.

In the second case (Fig.1-c), the behavior of the linear and nonlinear spa-
tial branches is as illustrated in Fig.4-c,d. The presence of an extremum
in Q"(k) (dashed line in Fig.1-c) is responsible for the double-valuedness
of k™(w) (dashed line in Fig.4-c). In the linearly unstable range w; < w < wy
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there is still a single nonlinear wave number £™*(w) which governs the far
downstream nonlinear response to forcing, and it is legitimately assigned the
superscript + with a causal meaning. As in the first case, it is connected
to a linear k%" branch at the neutral frequency w,. Note however that for
w < wi, two nonlinear k™ branches coexist. Following the definition adopted
by the front community [41] let us introduce the “nonlinear group velocity”
dQ™(k)/dk. The + (—) superscript is then given to the spatial ¥ branch
with positive (negative) nonlinear group velocity. With this convention, the
+ superscript is assigned to the extension of the k™t branch down to the
turning point (solid dot in Fig.4-c), whereas the — superscript is assigned to
the remaining part of the k™ curve. It is now this £~ curve that is connected
to the linear k** branch at the neutral frequency wj. It is essential to note
that the nonlinear branches k™ and k™~ may not be accessible via forcing at
frequencies w < w;. They are therefore not necessarily causal and the 4+ and
— superscripts are purely chosen for notational convenience in this frequency
range.

For infinitesimally small forcing level, the wave number observed far down-
stream as the forcing frequency w is varied follows the decaying complex k‘* (w)
for w < w; or w > wy, and the real k™" (w) in the range w; < w < w,. Hence
the transition between a linear and a nonlinear wave train is continuous at wy
where k™" and k" merge, but discontinuous at w; with a consequent jump
in wave number.

This spatial analysis only holds for CU media. In AU media, switch-on tran-
sients spread and grow in situ. Long time evolution is thus completely con-
taminated by transients and no steady state response at the forcing frequency
may be identified. However solving the linear and nonlinear dispersion rela-
tions (8) and (11) for a given frequency still yields k¢(w) and k™ (w) solutions.
These linear and nonlinear branches then loose their causal meaning. But the
corresponding nonlinear wave trains may still be generated from a tempo-
ral problem and the superscripts + and — may be assigned to the nonlinear
branches k™ (w) via the sign of d2™/dk.

3 Spatial variations of local instability properties

The previous results derived for spatially uniform media also yield the local
linear and nonlinear instability characteristics of weakly nonuniform media,
provided that the control parameter X now be interpreted as the slow stream-
wise coordinate. The respective dispersion relations at each station X read

w=0k,X), wand k complex, (20)
w=0%Fk,X), wand k real. (21)
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The local linear dispersion relation pertains to any complex wave number
whereas the local nonlinear dispersion relation is defined only for real wave
numbers associated with a positive temporal growth rate Q¢(k, X) > 0. In
strictly uniform media, linear normal modes are sought in the form 3 =
Aexpilk‘(w)z — wt] + c.c. In weakly nonuniform media, such modes are re-
placed by

¥ = A(X) exp (% [ Ky~ m) +ec. (22)

As demonstrated in the classical WKBJ procedure outlined in Section 5, the lo-
cal linear wave number k(X w) necessarily satisfies the local linear dispersion
relation (20). In strictly uniform media, nonlinear travelling waves are sought
in the form W[k™(w)xr — wt]. In weakly nonuniform media, such travelling
waves are replaced by slowly modulated wave packets of the form

Y~ (%/k”é(u, w)du — wt + O(X); k™ (X, w),X) , (23)

where the local nonlinear wave number k™(X,w) satisfies the nonlinear local
dispersion relation (21). The slowly varying functions A(X) and ©(X) ap-
pearing in (22) and (23) respectively are obtained in the complete asymptotic
analysis (Section 5).

The objective of this section is then to study the changing topology of linear
complex k¢ and nonlinear real k"¢ spatial branches as the global real frequency
is varied.

3.1 Instability domains

Let us first introduce the regions of local convective or absolute instability
in physical X-space and determine the domain of existence of nonlinear wave
trains in (X, k)-space. The local absolute frequency wy(X) and wave num-
ber ko(X) are derived from the local linear dispersion relation (20) as in (14).
The local convective or absolute nature of the medium is determined by the
sign of wy;(X). In a typical situation of interest, absolute instability occurs
in a central finite domain. Consider wy(X) to be of the form sketched in the
complex w-plane in Fig.5-a: wy;(X) is an increasing-decreasing function of X
with a single maximum wg’/** reached at X = X™*.

Whenever wi#* > 0, there exists a finite AU domain, X** < X < X, defined
as the region where wp;(X) > 0. Its boundaries X“* and X are the stations
where the local absolute frequency is real, w§* = wo(X ) and w§® = wo(X*)
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Fig. 5. (a) Locus of the local absolute frequency wp(X) in the complex frequency
plane for —oo < X < 4o00. The AU interval X% < X < X% is associated with
wg,i(X) > 0. (b) Nonlinear balloon in the (X,k)-plane defined by Qf(k,X) > 0
and bounded by the curve of neutral stability Q¢(k, X) = 0. In the X-direction the
balloon spans the domain of local linear instability X°*¢ < X < X% and extends
beyond the AU interval.

respectively.

The domain of local instability, characterized by unstable real wave numbers,
Q%(k, X) > 0, defines the nonlinear balloon in the (X, k)-plane (Fig.5-b). In
the X-direction the balloon extends beyond the AU domain to the stations
of linear neutral stability, denoted X*¢ and X°. At each unstable location,
the nonlinear balloon extends in the k-direction over the local unstable wave
number range. Note that, due to causality, large wave numbers are always
temporally decaying; thus the nonlinear balloon is necessarily bounded in the
k-direction.

A typical system therefore displays the following structure: a central AU
domain X < X < X% of finite extent, surrounded by two CU regions
X< X < X%and X < X < X%, which in turn are embedded in two semi-
infinite stable regions extending to X = +o0o. As mentioned in Section 4.1,
one may relax the stability requirement at X = +oc and the medium may
remain CU to X = +o0.

3.2 Linear spatial branches

The loci of linear spatial branches k‘(X,w) as functions of X is now qual-
itatively discussed in the complex k-plane for different values of the com-
plex frequency w. Such an analysis will illustrate the relationship between the
behavior of linear spatial branches and the local CU/AU properties of the
medium. Linear spatial branches k(X,w) are obtained by solving the local
linear dispersion relation (20) for a given frequency w. In the case of the CGL
equation (4) they read

w — wo(X)

B (X, w) = ko(X) £ 4|2 G

(24)
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In Section 2.3 the choice of the + and — branches was shown to be dictated
by causality for real frequencies in stable or CU media. Thus the k" and
k*= branches are unambiguously defined in the distinct regions X < X and
X > X for real frequencies. The fate of spatial branches in the AU range
X% < X < X* is now examined for different frequencies in the complex
w-plane as illustrated in Fig.6.

As a result of causality [4,3], the spatial branches k**(X,w) do not cross the
k.-axis in the complex k-plane for large enough w; > 0. For such frequencies
far above the absolute frequency curve {wo(X)} (cf. Fig.6-a), the k** (k%)
branch is globally defined as the one located in the upper (lower) half k-plane
for all real X. The k**(X,w) branches continuously deform as w is varied.
They may cross the k,-axis for finite values of X (Fig.6-b,c,d), but remain in
the same half k-plane for X — +o00. As w is kept above the curve {wy(X)}
(denoted by w > {wo(X)}), no branch switching may occur as readily seen by
inspection of eq.(24). This property yields definitions of the £+ branches that
remain uniformly valid in X, for all complex frequencies w > {wo(X)}, even
though the medium may be locally AU.

When w € {wo(X)}, say w = wy(Xy), the two k** branches pinch at ko(X) for
X = X, (Fig.6-e illustrates the case of particular interest where X, = X“).
For frequencies w < {wo(X)} below the absolute frequency curve (Fig.6-f),
the continuous k¢ curves connect the upper and lower half k-planes as X is
varied from —oo to +o0o. Global k% branches can no longer be defined, but
the + and — superscripts may still be assigned according to causality in the
distinct X < X and X > X% regions represented by thick lines in Fig.6.
For w < {wy(X)} (Fig.6-f), the k= branch for X < X is connected to the
k** branch in the region X > X%, across the AU domain (part of the curve
being represented by a thin line).

These considerations apply in particular to real w. For frequencies outside the
wi-wd interval, i.e., w = {we(X)}, the k** and k*~ branches are globally
defined, although causality considerations do not apply in the central AU do-
main. For frequencies in the w-wi® interval, i.e., w < {wo(X)}, the £+ and
k= branches turn one into the other across the AU domain.

3.8 Nonlinear spatial branches

The goal of this section is to describe synthetically the qualitative properties of
the nonlinear spatial branches £™(X, w) as functions of X for different values
of the real frequency w. Finite amplitude waves are governed by the nonlinear
dispersion relation (21). Figure 7-a,b illustrates its properties by projecting the
surface defined as w = Q"(k, X) in the (X, k,w)-space onto the (X, k) and
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Fig. 6. (a-f) Loci of linear spatial branches k¢(X,w) of CGL equation in the complex
k-plane for frequencies w indicated in the complex frequency plane on top sketch.
Arrows on the curves indicate direction of increasing X. Thick lines pertain to the
stable or CU regions X < X and X > X%, thin lines to the central AU region
X < X < X%, (a-d) For frequencies w > {wo(X)}, the spatial branches k“(X)
remain distinct and are located in the same half k-plane for X — +o00, but they may
cross the k,-axis for finite values of X . As the frequency approaches the wy(X) curve,
the spatial branches move closer to each other. (e) For a frequency located on the
wo(X) curve, here w = wy(X ), pinching occurs at the corresponding absolute wave
number, here at £ = k§®, when X = X, (f) When w < {wo(X)}, the continuous
curves connect the upper and lower half k-planes as X — Zoo. Definition as k*
branches still holds in the distinct CU domains X < X and X > X%, but not in
the central AU region.

(X,w) planes respectively. Nonlinear spatial branches k™ (X,w) for a given
frequency w are obtained as the intersections of this surface with planes of
constant frequency.
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Xt X
Fig. 7. Projections of the nonlinear dispersion relation surface w = Q™ (k, X) on the
(X, k)- and (X,w)-planes. Nonlinear spatial branches k™t (X,w) and k™~ (X,w)
represented by constant frequency level curves (dashed lines) live within the neutral
stability boundary (thick solid line). Similarly marked curves in (a) and (b) map
one into the other. (a) Nonlinear spatial branches display a saddle structure and, by
convention, k™t and k™~ refer to the upper and lower regions on either side of the
steepest descent curve (thick dotted line) emerging from the saddle point X;le, k?e
(solid dot). The real parts k“* of the linear spatial branches (thin solid lines) are
also shown outside the nonlinear balloon for the same frequencies as the nonlinear
branches. Note their continuous connection at the neutral stability boundary. (b) In
the (X,w)-plane, the k™* and k™~ branches give rise to two overlapping sheets
joining along a fold curve (thick dotted line). Within the neutral stability boundary
(solid curve), only the k™ sheet exists. Between the fold line and the neutral curve,
both ™+ and k™~ sheets coexist. The saddle point located at X;w corresponds to

the frequency w™.
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Nonlinear wave trains only exist inside the nonlinear balloon of the (X, k)-
plane, defined by Q¢(k, X) > 0 (see Fig.5-b). Its neutrally stable boundary
characterized by Qf(k,X) = 0 is represented by the thick closed curve in
Fig.7-a. Since the nonlinear dispersion relation w = Q™(k, X) is always a
single-valued function of &, the mapping in the (X, k)-plane (Fig.7-a) is one-
to-one and all the nonlinear solutions are contained inside the neutral stability
boundary.

By contrast, ¥"¢(X,w) is not ensured to be a single-valued function of w, the
projection of the same surface in the (X,w)-plane (Fig.7-b) may therefore
display an overlap region represented by two sheets that are connected at a
fold, as indicated by the thick dotted line. In this view, the region inside the
neutral curve (thick line) corresponds to a unique wave number k™ (X, w)
of the nonlinear dispersion relation, whereas the domain between the neutral
curve and the fold corresponds to two distinct sheets associated with two wave
numbers k™*. The image of the fold line in the (X, k)-plane is also represented
by a thick dotted line in Fig.7-a.

The nonlinear spatial branches k"¢(X,w) of real frequency w are obtained as
the level contours Q"(k, X) = C* indicated by thin dashed lines in both
figures. In Fig.7-b they are just straight lines. Depending on the frequency,
these straight lines may intersect either only the single-valued domain, or
both domains. The double-valued nature of the nonlinear spatial branches
merely reflects features already encountered in the uniform case in Section 2.5
(Fig.4-c). We have deliberately chosen a configuration displaying this double-
valuedness, which is made manifest here by the saddle point structure in the
contour levels Q" (k, X) = C* of Fig.7-a. Following the definition adopted in
Section 2.5, the nonlinear spatial branches are labelled k™t and k™~ according
to the sign of the “nonlinear group velocity” Q™ /0k. Accordingly, the k™
and k™~ domains of Fig.7-a precisely correspond to the two sheets of Fig.7-b
connected via the thick dashed fold line.

In order to emphasize the relationship between linear and nonlinear branches,
the linear spatial branches k(X w) have also been displayed by thin solid
lines in Fig.7-a through their real part k‘*(X,w) at the same frequencies.
Note that linear branches continuously connect to nonlinear branches at the
neutral stability boundary. This property is not surprising: At the neutral
stability boundary in the (X, k)-plane, the linear branch k‘(X,w) is purely
real and equals its nonlinear counterpart k™(X,w) so that

E(X,w) = k{(X,w) and Ef(X,w)=0.
Equivalently,

Q"(k, X) = Q%k,X) and Qf(k,X)=0.
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As discussed in Section 3.2 (Fig.6), the linear spatial branches are globally
defined as k" or k¢~ for w = {wo(X)}. While lowering the frequency, starting
from large positive values, the k" and/or k= branch may cross the k,-axis in
the complex k-plane (Fig.6-b,c,d). As this linear wave number branch moves
into the opposite half k-plane, it becomes spatially amplified and gives birth to
a nonlinear branch. This corresponds in the (X, k)-plane to the emergence of a
k™ branch connected at the boundary of the nonlinear balloon to a k-branch
(Fig.7-a).

By further lowering the frequency, switching between the nonlinear branches
may take place, as implied by the saddle structure of the dashed curves
in Fig.7-a. When the frequency decreases, pinching between k™~ and k™*
will take place for w = w™ at the saddle point (X™ k™) of the nonlinear dis-
persion relation (21) in the (X, k)-plane. Below this saddle-point frequency, the
nonlinear spatial branches move into the left- and right-hand sectors bounded
by the saddle-point asymptotes (Fig.7-a). For a given frequency in this range,
nonlinear spatial branches are indeed generated at the boundary of the non-
linear balloon but they fail to exist in the heart of the nonlinear region sur-
rounding the saddle-point. This behavior is provoked by the merging of k™*
and k™" on the fold line (thick dotted line of Fig.7-a) and their subsequent
disappearance. The implications of such a nonlinear saddle point structure on
global mode selection is discussed in Section 4.6.

4 Globally synchronized structures

Having investigated local instability properties of the spatially developing
medium, we now turn to the study of globally synchronized solutions of sys-
tem (1) and associated bifurcations. Such global modes are defined as station-
ary time-periodic solutions satisfying

Y(z,t + 21 /w,) = Y(x, 1)

where w, is the global real frequency. Frequency selection criteria for self-
sustained global oscillations are derived below and their spatial structure is
obtained. The properties of the medium which dictate the selected global mode
type are identified and the ensuing bifurcations are analyzed as global control
parameters are varied.

4.1 Boundary conditions

To completely determine the global mode problem, proper boundary condi-
tions in connection with eq.(1) have to be specified. Global modes are defined
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as intrinsic oscillations which are due to the dynamics of the central region
and not to perturbations invading the system from X = Foo. Consequently
the boundary conditions must be causal: The solution close to the boundaries
is necessarily dictated by the intrinsic oscillations occurring in the central re-
gion. Thus, far downstream near X = +oo the solution is necessarily made up
of a + branch caused by the dynamics governing the central region upstream
of it. Similarly the solution necessarily involves a — branch towards X = —oo.
Such boundary conditions at X = +oo will be referred to as causal.

When the medium is assumed to be stable in the far downstream and upstream
regions, causal boundary conditions are equivalent with decaying ones. Indeed,
in the stable regions no nonlinear solutions exist. Causality then requires a
linear k** (k%) branch towards X = +oo(—oc). Due to stability, kF > 0 and
kf_ < 0, thus the solution necessarily decays towards X = 4o0.

However the medium may remain CU up to X = #4o0o. In such instances,
decaying boundary conditions are not necessarily fulfilled. However causality
still holds: if the solution remains fully nonlinear down to X = 400, it is there
necessarily made up of the ™" branch only. Thus proper boundary conditions
for the global mode problem do not necessarily require exponential decay: they
should however satisfy causality.

Since a global mode is a solution over the entire X-axis, it necessarily connects
a — branch at X = —oo to a + branch at X = +o00. This crossover from — to
+ branches may only be achieved for certain frequencies. The search for global
modes is thus a nonlinear eigenvalue problem for the global frequency w,. The
manner in which this crossover takes place in the central region gives rise to
different types of global modes as described below.

4.2 Steep global modes

According to [34], the spatial structure of steep global modes is characterized
by the presence of a sharp front at the upstream boundary X of the AU
region, as sketched in Fig.8-a.

This front at the location of marginal absolute instability [wg;(X*) = 0]
is precisely of the type obtained in Section 2.4: It oscillates at the real ab-
solute frequency wy, = w§® = we(X**) and allows a crossover between the
upstream &’ and the downstream k™" branches. The exponential decay of
the upstream tail of the front is determined by the imaginary part of the cor-
responding absolute wave number k§® = ko(X ). The upstream k¢ (X, w,)
branch extending towards X = —oo is precisely generated at the pinch point
X = X in the complex k-plane (Fig.8-b). The downstream nonlinear wake of
the front is made up of the k"* (X, w,) branch. As depicted in the (X, k)-plane
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Fig. 8. Structure of steep global mode in CGL equation. (a) Envelope |¢| and real
part 1, as functions of downstream distance X. The sharp front located at the
upstream boundary X of AU region initiates the fully nonlinear development
extending down to the neutral station X5. (b) Linear spatial branches k‘*(X) of
steep global frequency w§® in the complex k-plane. Pinching occurs for the absolute
wave number k§® at X = X°*. Thick lines pertain to the stable or CU regions
X < X and X > X%, thin lines to the central AU region X < X < X%.
(c) Corresponding linear k‘* (solid) and nonlinear k™t (dashed) spatial branches
in the (X, k)-plane. Local wave number of steep global mode in (a) follows path
indicated by thick line. Three domains are identified: the £~ branch prevails in the
upstream linear /— region X < X°; the front at X is associated with a jump in
wave number and in its wake the k™% branch develops in the fully nonlinear nf+
domain X°* < X < X, extending towards the boundary of the nonlinear balloon
(shaded); the k¢* branch continuously takes over in the linear £+ region downstream
of the neutral station X5.

of Fig.8-c, nonlinear travelling waves prevail in the region X < X < X, ex-
tending down to the location X, where the £™* branch meets the boundary
of the nonlinear balloon in the (X, k)-plane. At the neutrally stable station X5
the amplitude of the nonlinear travelling wave vanishes and the linear branch
k* (X, w,) continuously takes over in the downstream linear region X > X.

The following frequency selection criterion then holds: the steep global fre-

quency w, is given by the real absolute frequency wg® prevailing at the front
location X“* separating the CU and AU regions. In other words

wy = wo(X) and wg;(X*) =0. (25)
The front at X effectively acts as a wave maker for the entire flow. It may

be interpreted as a local oscillator inducing the linear upstream — branch and
the nonlinear downstream + branch.
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4.8 Saddle node bifurcation to steep global modes

It should be noted that the steep global mode criterion (25) is also fulfilled by
the absolute frequency w{ prevailing at the downstream boundary X of the
AU region. Thus, Whenever wg® > 0, two steep global modes exist: one of
frequency w§® with a front at the upstream boundary X“* of the AU region and
one of frequency w§® with a front at its downstream boundary X% (see Fig.5-
a). When wi’#* < 0, no AU region is present and no steep global mode exists.
Thus wif* constitutes the global control parameter governing the existence
of steep global modes. When wg'#'" is varied, transition to steep global modes
occurs via a saddle-node bifurcation at wyi = 0 as demonstrated below.

The spatial structure of a solution with a front at X “® has been detailed in the
previous subsection. The structure of a solution with a front at X is similar.
Indeed, both linear £ (X, wi¢) branches equal k¢ = ko(X ) at X = X . Due
to the assumption kg; < 0, the k¢~ branch is again exponentially damped while
the k" branch is amplified. As a result, nonlinear travelling waves k"t are
only present downstream of the front (X > X9) and linear damped waves £
upstream of the front (X < X%). Thus the nonlinear part of such a global
mode extends in the downstream CU region, whereas the central AU domain
is covered by an exponentially decaying upstream tail.

Let us now show that an upstream front is a stable configuration whereas a
downstream front is unstable. Consider a small displacement of the upstream
front from its equilibrium location X“* towards X > X°. The front now
experiences a slightly AU medium, hence, according to Dee and Langer [16],
the nonlinear part grows and the front propagates towards its decaying edge,
i.e., upstream. When this front is displaced towards X < X, it penetrates
into a CU region and is thus pushed downstream. In any case the front is seen
to return to its equilibrium position X .

On the contrary, a downstream front displaced from its equilibrium posi-
tion X% towards the AU region X < X continues to propagate upstream
and completely invades the AU domain. When the front is displaced towards
the CU region X > X%, it is swept away downstream towards X = +oc.
A downstream front is therefore unstable.

Thus when wgi* > 0, a pair of steep global modes exists: the mode with a
front at the upstream (resp. downstream) boundary of the AU region is stable
(resp. unstable). In the limit wg’® | 0, the AU domain shrinks and the front
locations move in closer to each other, X 1 X% and X% | X™% When
wi® = 0 both front frequencies w§® and wg® equal wo(X™**), and both steep
global modes coincide. When wg'/* < 0, the domain is nowhere AU and no
steep global mode exists.
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This behavior is typical of a saddle node bifurcation: while decreasing the
bifurcation parameter wy;'*, a stable and an unstable solution meet and dis-

appear at the critical value wg* = 0.

Note that in general the steep global mode remains fully nonlinear for all
wg® > 0. Indeed, for 0 < wg*® < 1 the extent of the convectively unstable
domain remains O(1) (in terms of X) and so does the nonlinear region where
the global mode lives.

4.4 Linear global modes

The linear global instability of the unperturbed i) = 0 state has been studied
by Chomaz et al. [7] and Le Dizes et al. [25]. The instability properties were
derived from an analytic continuation of the local absolute frequency wy(X)
in the complex X-plane, as summarized below.

Linear global modes are assumed to be of the form (z,t) = ¢(X)e “st of
complex global frequency w,. The spatial function ¢ is defined over the com-
plex X-plane and the local complex wave number satisfies the linear dispersion
relation (20) with complex X. A linear global mode is entirely made up of lin-
ear spatial branches k. Due to causal boundary conditions, the k¢~ branch
prevailing near X = —oo must necessarily connect to the k** branch near
X = +4oo. This can be achieved at a saddle point X? of the absolute fre-
quency in the complex X-plane®. The frequency of the linear global mode is
then equal to the saddle point frequency w?, defined by

wl = wy(X%) where (XZ) 0, (26)

dX

or equivalently by

QO o0¢
wt =04kt XY where o — (K5, X = o —— (K, XH =0, (27)
Linear instability is determined by the sign of wf = Imw’; when w ; <0

(resp. wf; > 0) the state ¢ = 0 is linearly stable (resp. unstable).

1 Only linear global modes with a double turning point are considered here. The
reader is referred to Le Dizes et al. [25] for a detailed analysis of linear global modes
with two simple turning points.
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Fig. 9. Curves wo (X, +:X;) in the complex frequency plane for different values of X;
when X, varies along the entire real axis. Bold curve pertains to X; = 0. The linear

saddle point frequency w‘q is obtained at a cusp of this set of curves and is seen to
lie below w{***, towards the center of curvature of the wo(X,) curve.

4.5 Hysteresis

The existence of nonlinear steep global modes is determined by the sign
of wg*, while the linear global instability of the unperturbed state ¢ =

is dictated by the sign of we It is now shown qualitatively that always
wyit > w“, and in general wgm > w!,. Thus steep global modes may ex-
ist in globally linearly stable media (s1tuat10ns where w ;, <0< wm‘”), and

the saddle node bifurcation implies hysteretic behavior as wg}z‘” is varied.

The relative position of wg* and wf,i is most conveniently illustrated in the
complex frequency plane as sketched in Fig.9. The solid curve represents wg(X)
for real X. The AU region corresponds to the X-interval over which wq(X) lies
in the w; > 0 half-plane. The maximum w{’/* is reached at X = X™*. Thus
steep global modes exist whenever the curve wy(X) crosses the real w-axis.
The complex frequency w’ is obtained at a saddle point of the analytically
continued function wy(X). For most situations of physical interest, wq;(X) is
an increasing-decreasing function on the real X-axis, while wy, (X) is simply a
smooth function. The dashed curves of Fig.9 represent the loci of wy (X, +iX;)
for different values of X; when X, varies along the entire real axis. The saddle
point frequency w? is obtained at a cusp of this set of curves and lies below
the wy(X,) curve, towards its center of curvature. Thus it follows clearly that
wi'#" > wt ; and one recovers the well known result that global linear instability
requires an AU region of finite extent [7,25].

In the neighborhood of w{***, the absolute frequency wy(X) may be approxi-
mated by the Taylor expansion

1
wo(X) ~ wy™™ + wox (X — X™7) + FWoxx (X — X™an)?, (28)

with wox; = 0 and woxx,; < 0. The linear saddle point, solution of (26), is
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Fig. 10. Global linear and nonlinear stability in the (wg'*,wox,r)-plane. Global
stability is governed by the sign of wi?*. When wg'® > 0 the medium is globally
nonlinearly unstable although hnearly stable in the gray region.

then explicitly given by

1 2
Xt = xmar _ DX and = Wl — 1 (wox,r)® , (29)
WoxXx 2 woxx
thus
)4 maz 1 (wOX 7“)2

Imw, = wy; +—mw0XXz

Only if dwo,(X™*)/dX = 0, does the saddle point X! coincide with X™a®
on the real X-axis and, under such a condition, w! = we(X™®). The differ—
ence between wg** and wsi is seen to depend on the magnitude of wox, =
dwy - (X™*)/dX and to scale as (wox,)?. The influence of the two parame-
ters wg'*® and wyx, on global linear and nonlinear instability is illustrated
in Flg.l().

The following scenario holds as the global control parameter wg’/* is varied
at a fixed wox, setting. When Wi <0 (left-hand half-plane of Fig.10), the
unperturbed state is stable, no nonlinear global mode exists. When wg#® > 0
while ws,z < 0 (shaded region of Fig.10), a pair of steep global modes eX1st, one
of which is stable, the other unstable. However the unperturbed state is still
linearly globally stable? , but nonlinearly unstable. Only for wyi* large enough
such that w!; > 0 (clear region inside parabola of Fig.10), does the basic
state become linearly unstable. Whereas the global saddle node bifurcation is

max

controlled by wg’{”, the extent of the hysteresis range in wg;'” is governed by
a second control parameter, namely wox -

2 The unperturbed state is however locally unstable.
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Fig. 11. Structure of soft global mode in CGL equation. (a) Overall smoothly varying
envelope || and real part 1, as functions of downstream distance X. (b) Linear spa-
tial branches k*(X) of nonlinear saddle point frequency w? in the complex k-plane.
Both linear branches cross the k,-axis and give birth to their nonlinear counterparts
at the respective neutral stations. Thick lines pertain to the stable or CU regions
X < X% and X > X, thin lines to the central AU region X“* < X < X, (c) Cor-
responding linear k¢* (solid) and nonlinear k™* (dashed) spatial branches in the
(X, k)-plane. Pinching of nonlinear branches occurs for k7¢ at X = X7 in the core
of the nonlinear region. Local wave number of soft global mode in (a) follows path
indicated by thick line. Four domains are identified: the central nonlinear nf— and
nf+ regions prevail upstream and downstream of Xs"e where the nonlinear spatial
branches k™~ and k™" meet; at the upstream X; and downstream X, boundaries
of the nonlinear balloon (shaded) the nonlinear spatial branches are continuously
connected to their respective linear counterparts k‘* prevailing in the semi-infinte
linear regions /— and ¢+ respectively.

X, xnt X, X

4.6 Soft global modes

The existence of soft global modes has been analyzed in an earlier study [33].
Their structure is now briefly summarized, as well as their relationship to
steep global modes.

An example is illustrated in Fig.11-a. In contrast to steep modes, no front is
present and soft modes display an overall smoothly varying envelope and wave
number. The connection between the upstream — branch and the downstream
+ branch occurs here in the core of the nonlinear region, at a saddle point of
the nonlinear dispersion relation (21).

As already discussed in Section 3.3, the nonlinear branches k™ (X, w), for-
mally defined as the level contours Q"(k, X) = C*, may display a saddle
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point point (X™ k™) in the (X, k)-plane (solid dot in Fig.7-a). More pre-

s 178

cisely, pinching of the nonlinear branches, defined by the condition
R (XTE W) = K (X7 W) = K,

then occurs at the real station X" for the real saddle point frequency w™ of
Q"¢ such that

o ot

nl _ onl/i.nl nt nt né\ __ nt nl —
ws _Q (ks ’Xs ) and 6k (ks 1Xs )_ 8X (ks ’Xs ) 0’ (30)
with the saddle condition
aQQnZ 2 aQQnK BQQM
knﬁ Xné _ kne Xnﬁ zoae knﬁ Xné 0. 31
(G xs) = S xey S x> @)

Note the formal analogy of this nonlinear saddle point criterion (30) with its
linear counterpart (27) which involves in general complex values of k¢ and X*.
The upstream k™~ (X,w?) branch and downstream k™ (X, w™) branch are
precisely initiated at the nonlinear saddle point X, as depicted in Fig.11-c.
These nonlinear travelling waves prevail in the range X; < X < Xj,, where
X7 and X, denote neutral stability stations of frequency w?z, at the boundary
of the nonlinear balloon in the (X, k)-plane. At X; and X, the amplitudes of
the nonlinear travelling waves k™~ and k™t respectively vanish and give way
to their linear counterparts k¢~ and k%t respectively.

For the CGL equation (4) with wy(X) of the form (28), all other coefficients
being kept uniform in X, the nonlinear saddle point location is explicitly
obtained as

i Wox,r
Xrt= xmee 4 2T 32
Im (’}/*LUOX)() ( )
Re v wi
K =koy + ——— ko, 33
S 07 + Im ’Y*Wkk 07 ( )
and the soft global mode frequency reads
nt mazx T max rYi(w()X 7”)2 |’7*wkk|2 2
wt =wyt — —wyit + ’ + kg ;- 34
0, v O 2Im (Vwoxx) 27 Im (vwg) > (34)
Condition (31) requires that (Im y*wg)(Im y*woxx) < 0.
It was shown in [33] that in situations where
Im (v*wyr) > 0, (35)

the nonlinear branches ™+ exist in the neighborhood of X™ for frequencies
such that w > w™. When w | w™, the branches pinch at k™ for X = X; and
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for w < w™, they fail to be defined around X™. In the following it is always
assumed that the possible frequencies for the nonlinear spatial branches lie in
the range w > w™. The opposite situation is exactly analogous and applies
when Im (y*wgg) < 0. From (31) and (35), the following inequality is then
derived

Im (yv*woxx) < 0. (36)

4.7 Transition between soft and steep global modes

The selection mechanisms governing steep and soft global modes are now
compared.

The steep criterion (25) only involves the boundary of the AU domain on the
physical X-axis, regardless of the characteristics of the regions X # X¢. Nev-
ertheless a steep global mode only exists if the nonlinear k™ (X, w§®) branch
can be followed from X down to the boundary of the nonlinear balloon and
if it can there be continuously connected to the linear branch k(X ws®). In
contrast, the soft criterion (30), involves a saddle point of the nonlinear dis-
persion relation. Again, a soft global mode only exists if the nonlinear spatial
branches issuing from this nonlinear pinch point may effectively be contin-
ued via corresponding linear k** branches in the respective downstream and
upstream linear domains.

The selection of either steep or soft global modes depends not only on the local
criteria (25,30) but also on the necessity to enforce the boundary conditions.
The key argument in the following derivation is based on a careful monitoring
of the linear wave number branches in the complex k-plane and of their non-
linear counterparts in the (X, k)-plane as the global frequency is varied. The
connection between linear and nonlinear spatial branches is shown to crucially
depend on the relative magnitude of the characteristic frequencies w? and w§?.
In all instances, only one global mode, steep or soft, is capable of continuously
converting k= at X = —oo to k" at X = 400, as X is varied. The two main
scenarii of interest are illustrated in Fig.12 and 13 respectively, as discussed
below.

Since nonlinear global modes necessarily involve real frequencies, let us focus
on frequencies on the real w-axis. As shown in Section 3.2, for large positive or
negative w the linear spatial branches do not cross the k,-axis in the complex
k-plane. Since nonlinear spatial branches are assumed to exist for w > w™, we
start with large positive values of the frequency.

As w is decreased, the k**(X,w) branches move in closer to each other and
one or both cross the k,-axis for finite values of X. A change in sign of k{ sig-
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Fig. 12. (facing page) Evolution of CGL spatial branches with decreasing real fre-
quency in a situation where the soft global mode is selected. The left sequence
illustrates the evolution of the real part of linear branches k‘*(X,w) (solid lines)
and of nonlinear branches k™* (X, w) (dashed lines) in the (X, k)-plane. Connecting
points between linear and nonlinear branches are indicated with tick marks. In the
right sequence, corresponding complex linear k‘* (X, w) branches are sketched in the
complex (k,, k;)-plane; superimposed on the same graphs are the curves (k™*, R?)
of the nonlinear spatial branches. (a,b) For frequencies w > w?¢ linear k** spatial
branches successively cross the k,-axis in the complex k-plane and give birth to
the nonlinear k™* branches between the corresponding neutral stations. (c) For
the nonlinear saddle point frequency w?e, nonlinear spatial branches pinch at k?e
when X = X?e. This pinch point joining k™~ and k™* branches gives rise to a soft
global mode connecting the k¢~ branch near X = —oo to the k" branch prevailing
near X = +oo0. (d,e) For frequencies w < w?, the nonlinear spatial branches fail to
exist in the neighborhood of X7, but linear k** branches are still defined. (¢) When
w = w§?, the linear branches in turn pinch at k£ = k§* at the upstream boundary X
of AU region. However, this pinch point is not associated with a steep global mode
since the k™% branch prevailing for X > X is not connected to the k" branch
extending to X = +o0.

nifies that the corresponding branch is spatially growing: downstream spatial
growth for kf“L < 0 and upstream spatial growth for kf* > 0. As already men-
tioned (Section 2.3) a spatially growing branch k** gives way to its nonlinear
counterpart k™% as a neutrally stable station is crossed in the (X, k)-plane.

Nonlinear k™ branches are by construction always real-valued. However, to il-
lustrate their relationship with the linear k¢ branches they are also represented
in the complex k-planes of Fig.12 and 13. For clarity their missing imaginary
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part is replaced by the square of the amplitude of the corresponding nonlinear
solution. This avoids the collapse of the k™ branches onto the k,-axis, and
brings to the fore the continuity between linear and nonlinear branches at the
neutral stations where k! as well as the square of the nonlinear amplitude
vanish.

In the following discussion representations in the (X, k,)- and the (k,,k;)-
planes are always shown in parallel. Although the 4+ and — superscripts may
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Fig. 13. (facing page) Evolution of CGL spatial branches with decreasing real fre-
quency in a situation where the steep global mode is selected. The left sequence
illustrates the evolution of the real part of linear branches k‘*(X,w) (solid lines)
and of nonlinear branches k™* (X, w) (dashed lines) in the (X, k)-plane. Connecting
points between linear and nonlinear branches are indicated with tick marks. In the
right sequence, corresponding complex linear k‘* (X, w) branches are sketched in the
complex (k;, k;)-plane; superimposed on the same graphs are the curves (k™*, R?) of
the nonlinear spatial branches. (a,b) For frequencies w > w§® linear spatial branches
remain separated, nonlinear branches exist between the corresponding neutral sta-
tions. (c) For the front frequency w§®, linear spatial branches pinch at k§® when
X = X°%. A sharp front associated with a wave number jump then gives rise to a
global mode connecting the k¢~ branch near X = —oo to the kt branch prevailing
near X = +o0. (d,e) For frequencies w < w§®, branch switching between k“ and
k*~ occurs. (e) When w = w™, the nonlinear branches meet at the nonlinear saddle
point location ng. However, this saddle point is not associated with a global mode
since no continuous connection to the k£~ branch prevailing near X = —oo exists.

not be derived from causality considerations in the AU domain, linear as well
as the nonlinear 4+ and — branches may be defined without ambiguity as long
as the linear and nonlinear branches remain distinct (Sections 3.2 and 3.3).

The branch switching scenario as w decreases depends on the relative values
of the characteristic frequencies w™ and w§®. The frequency w@® which cor-
responds to an unstable steep global mode with a front at the downstream
boundary of the AU domain does not play an essential part. For clarity as-
sume that w§® > wg¢ and w™ > wg. If these assumptions are not satisfied, the
same selection mechanisms as discussed below prevail, although the detailed
topology of spatial branches may be different. Two possibilities now arise:
w > W or wt < wg.

The scenario for w™ > wg® is illustrated in the sequence of Fig.12. As w is
decreased, the two linear spatial branches successively cross the k,-axis while
remaining separated as depicted in Fig.12-a,b. Each crossing gives birth to
a corresponding nonlinear branch, connected to its linear counterpart at the
neutrally stable locations where k¢ is real. Both linear and nonlinear + and
— branches are well identified and separated. When w | w?, the nonlinear
branches gradually approach each other. For w = w? (Fig.12-c), the k"¢t
branch meets the k™~ branch at k? for X = X as determined by (30). This
is the soft global mode configuration, where the nonlinear saddle point at X™
connects the nonlinear k™~ (X, w™) in the region X < X™ to the nonlinear
k™ (X, w™) in the region X > X™. Further outward, the nonlinear k™=
branches give way to their respective linear counterparts k& at the locations
of their respective neutral growth. When decreasing the global frequency to
values w < w™, the nonlinear branches fail to exist in the neighborhood of X™
(Fig.12-d). As w reaches w§® (Fig.12-e), linear spatial branches do pinch at X =
X but the nonlinear spatial branch k™" prevailing around X° cannot be
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continued far downstream towards the £t branch extending down to X =
—+00: There is no global mode of frequency wg®.

The scenario for wi® > w™ is sketched in the sequence of Fig.13. As w

decreases, the first characteristic frequency encountered is now wg®. When
w | w§® (Fig.13-a,b,c), the linear branches approach and pinch at k§® for
X = X determined by (25). Since k§% < 0, the relevant branches in a neigh-
borhood of X are k= and k™. A front of frequency w§® at X® allows a dis-
continuous jump in wave number from k= (X, w§?) = k§® to k™F (X, ws?).
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This front performs the connection between — and + branches necessary to
obtain a steep global mode: further downstream, the amplitude of the nonlin-
ear k™t branch vanishes at a neutrally stable station and there the linear k¢
branch takes over to X = +oo. Note that the k" (X, w?) branch necessarily
crosses the k,-axis; the k= (X, wg®) branch however may or may not cross. For
w = w§®, the nonlinear branches, if they both exist, do not meet. Decreasing
further w towards w™ (Fig.13-d,e), the nonlinear branches in turn approach
and pinch for w = w?. However, since w™ < w§, the linear k* branches
have undergone branch switching for w = w§®. As can be seen in Fig.13-e, the
nonlinear branches issuing at k"¢, X" cannot be continued towards the k-
branch near X = —oo. In this situation, due to global considerations, no soft
mode exists, although the local criterion (30) may be satisfied.

This completes the discussion of the global mode selection mechanism: the
type of selected global mode depends on the relative values of the linear pinch-
point frequency w¢® and nonlinear pinchpoint frequency wn. If

nt ca
Wy < Wy

linear spatial branches meet first as the overall frequency is lowered: the steep
criterion (25) yields a global solution on the entire X-axis with a sharp front
located at X*“*. However if

wy < w?z,

the nonlinear saddle point is encountered first and a soft global mode with
overall smoothly varying envelope and wave number prevails. There exists of
course situations where the nonlinear dispersion relation displays no saddle
point in the nonlinear balloon. Then a steep mode is necessarily obtained.

The preceding close inspection of spatial linear and nonlinear branches guar-
antees that the selection criteria for steep and soft global modes are mutually
exclusive, and that all situations are accounted for.

According to this discussion, when a global control parameter is continuously
varied, the transition mechanism between soft and steep global modes is the
following. Starting with a system where a soft mode is selected, ¢.e., where
w™ > ws®, two possibilities arise if the control parameter is changed:

— The saddle point frequency w™ may equal the front frequency w® for a
critical value of the control parameter. Beyond this value, w™ < w§?, and a
steep mode prevails. The transition to a steep mode of the same frequency
takes place when w?é = w§.

— The nonlinear saddle point may reach the boundary of the nonlinear bal-
loon and disappear while still w™ > wg®. Then, transition to a steep mode
again occurs, but in this situation the global frequency is discontinuous at

transition.
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This will be fully justified in Section 4.9, where we map out the domains of
existence of soft and steep global modes in an appropriate control parameter
space. To identify the relevant control parameters, a discussion of the role of
the absolute wave number is first required.

4.8 Role of the absolute wave number

The local instability properties are seen to be essentially controlled by the
streamwise evolution of the absolute frequency wy(X) and wave number £q(X)
which in principle can be varied independently. The criterion for steep global
modes (25) only depends on the local absolute frequency wy(X) regardless of
the local absolute wave number ky(X). The soft global mode criterion (30),
however, depends on ky(X) through the complete nonlinear dispersion rela-
tion. In this subsection, the role of the absolute wave number is discussed by
varying ko(X) in the CGL equation, all other coefficients remaining fixed.
From expressions (24) for the linear spatial k* branches it is readily seen
that a change in k¢(X) by some constant value, say k, results in a displace-
ment of the £* curves in the complex k-plane. Under this process, the linear
pinchpoint properties are not affected. Nonlinear characteristics, however, are
closely related to the crossing of the k,-axis by the k** branches; it follows
that changes in kg ; strongly influence the nonlinear properties of the medium,
unlike changes of ko ,. This calls for two distinct physical interpretations of ko,
and ko ; respectively.

Consider the uniform CGL equation (6) with ky replaced by ko — ,. Then,
under the change of unknown function

¢(~’Ua t) = ¢($, t)eim:c’

the original CGL equation (6) is recovered for ¢. This shows that the only
effect of a change in ky, is a change in wave length; linear spatial growth
or decay rates, frequencies as well as nonlinear amplitudes remain the same.
A variation of kg, results in a change of carrier wave but does not alter the
linear nor the nonlinear stability properties of the system. In the spatially
dependent CGL equation (4), the following change of unknown function

. X

V(1) = olw, ) exp - [ ky(u)du

results in modifying the absolute wave number to ko(X) — £,.(X). Any slowly
modulated carrier wave defined by the real function x,(X) may thus be used
to transform the real part of the absolute local wave number. Under such a
transformation, the global mode selection criteria as well as the characteristic
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frequencies remain unaltered: The function ko ,(X) may be chosen arbitrarily
since it does not affect the local and global dynamics.

In order to bring to the fore the role of ky;(X), it is convenient, in the re-
mainder of this section, to select ko ,(X) so that the function wgg(X)ko(X)
appearing in front of the advection term 0t /0z in (4) is real [12]. Under such

a condition,

kO,r(X) = —%ko,i(X),

and the CGL equation reads

oY wg®, O
- T 0im- =
ot Wkk,i " ox

2

P T
—Z(wo + §wkkk§)¢ + QWhk g5 ~ LIRS (37)

The form (37) clearly indicates that the real factor

|wk (X)[?

U(X) - wlck:,i(X) O,Z(X)

may be interpreted as an advection velocity. Since causality requires that
wik,i < 0, a negative (positive) kg ; is readily seen to correspond to advection
towards X = 400 (X = —o0). Thus the sign of ko, controls the advection
direction whereas its magnitude is directly related to the advection velocity.
As stated in the introduction, it is assumed that U(X) > 0, i.e., koi(X) < 0
in the entire domain: the basic advection is then directed towards X = +oc.

In order to further discuss the role of kg, in the selection of global modes,
consider, for definiteness, that &g ; is constant over the entire domain. A change
in ko; is seen to be associated with a displacement of the k% curves along
the k;-axis in the complex k-plane. Its effect on the nonlinear balloon and
nonlinear spatial branches in the (X, k)-plane is outlined in Fig.14. Since the
function wy(X) is kept fixed, a change of kg ; leaves the extent of the AU range
X < X < X% unaltered, as indicated by vertical dashed lines X = X
and X = X% in Fig.14. Without mean advection, ky;, = 0 (Fig.14-a), the
nonlinear balloon exactly spans the AU region. In this situation, local linear
instability coincides with local absolute instability: X ¢ = X and X% = X .
Nonlinear spatial branches cover the nonlinear balloon symmetrically with
respect to k = k™. Figures 14-b,c,d are obtained for increasing negative values
of ko ;, i.e., increasing advection towards X = +oc. Increasing |k ;| then shifts
the k* branches (24) towards negative k; in the complex k-plane, thereby
enhancing the instability of the downstream &t branches and reducing the
instability of the upstream k¢~ branches. Under such circumstances, the onset
of linear instability no longer coincides with transition to absolute instability:
The nonlinear balloon inflates and extends beyond the AU range into the
CU regions X%¢ < X < X% and X% < X < X%. The basic flow advection
breaks the k" /k™~ symmetry, and the part of the nonlinear balloon spanned
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Fig. 14. Evolution of nonlinear balloon and spatial k* branches in the (X, k)-plane
as the advection towards X = 4oc is increased. Vertical dashed lines indicate AU
domain extending over X < X < X%. (a) Without mean advection (ko; = 0),
spatial branches display symmetry with respect to the nonlinear saddle point wave
number k?e and the nonlinear domain exactly spans the AU region, X*¢ = X and
X% = X, (b,c,d) With increasing downstream advection ky; < 0, the nonlinear
balloon inflates and extends beyond the AU region, X°¢ < X and X% < X.
During this process the fraction of the nonlinear balloon covered by the downstream
k™t branches increases with respect to the k™~ branches. Simultaneously, the
nonlinear saddle point (X7¢, k7% is seen to descend to eventually leave the nonlinear
balloon.

by the k™" branches increases to the detriment of the k™~ branches. During
this process, the nonlinear saddle point moves towards the neutral stability
boundary and eventually leaves the nonlinear balloon. The advection velocity,
measured by kg ;, thus strongly affects the existence of the nonlinear saddle
point and hence the existence of smooth global modes.

In the remainder of this subsection we temporarily allow advection in the
positive or negative direction so that ko; may change sign. It has been shown
in Section 4.2 that among the two stationary fronts at X“* and X, only the
one located at the upstream boundary of the AU region is stable. Since flow
direction is directly related to the sign of kg ;, the stable steep global mode
frequency is w§® for ko; < 0 and wg® for ky; > 0. These are indeed the fronts
at the stations of local marginal absolute instability with their nonlinear wave
train covering the AU domain and their exponentially decaying tail extending
into the CU region (see also Fig.15-a). The soft global mode frequency w™ has
been obtained in (34), and, in contrast to the steep global mode frequencies
wi® and wg®, it is seen to depend on kg .
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Fig. 15. Transition between steep and soft global modes as a function of kg ;. Black
arrows indicate advection direction. For small advection velocities (ko; small), the
saddle point frequency w?e is larger than the front frequencies w§® and w§®, and
thus a soft global mode is selected. With increasing advection towards X = +o0
(ko,; < 0), the saddle point frequency w™ decreases, and, when ko < kg,; the soft
mode is replaced by a steep global mode with a front at the left boundary of the
AU region. Similarly, with increasing advection towards X = —oo (ko; > 0), the
saddle point frequency w?e again decreases, and at ky; = ké: ; transition takes place
to a steep global mode with a front at the right boundary of the AU region.

In the previous subsection it has been demonstrated that the global mode
of largest frequency is selected; thus the transition scenario between steep
and soft global modes as a function of kg ; is derived from the relative values
of wg®, wi and w™(kg;), as displayed in Fig.15. According to (34), the soft
frequency w™ is largest for ky; = 0, all other coefficients being kept fixed. Thus
soft modes prevail when advection is small enough, w™ > w® and W™ > wge.
With increasing downstream advection (ko; < 0), the nonlinear saddle point
frequency w™ decreases. When w™ < w¢?, the soft mode is replaced by a steep
mode with a sharp front at X (left-hand side of Fig.15). Similarly, if & ;
increases from 0 (ko ; > 0), which corresponds to advection towards X = —oo,
the nonlinear saddle point frequency w? again decreases. When w? < wg®,
the soft mode is now replaced by a steep mode with a front at X = X% (right-
hand side of Fig.15). Since ky; > 0, the front at X is now the stable one:
upstream and downstream directions have been interchanged. In any case, the
front location corresponds to the upstream boundary of the AU region. The
critical transition values kg; < 0 and kg; > 0 between soft and steep global
modes are defined by w§® = w™ and w® = W™ respectively.

4.9 Domains of existence in control parameter space

Now that the roéles of Wy, wox and ko ; have been separately discussed, the
domains of existence of steep and soft global modes may be obtained in the
three-dimensional space of these control parameters (Fig.16). Consider the
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CGL equation (4) with wo(X) of the form (28), all other coefficients being
assumed uniform in X for simplicity. The front frequencies w§® and wg® then
read

ca ac __
Wy ,Wy = Wy, — Wy, T Woxea| T - (38)

They exist whenever wg'i® > 0 and their values are seen to be effectively
independent of kg ;.

The selected gobal mode type depends on the relative values of the front fre-
quencies (38) and the nonlinear saddle point frequency w™ obtained in eq.(34).
However note that the nonlinear saddle point formally defined by (32,33) only
exists if (K™, X™) lies in the nonlinear balloon, i.e., if

Qi (kY X7) > 0. (39)

For the CGL equation under study, one readily obtains

2 Im y*woxx

|wpr|*Tm 2wy,

2
1 .
Qf(]ggf, sz) =wpy " + SWox X <L> (woxs)?

(koi)?. (40)

2(Im y*wyy)?

Whenever Q¢(k™, X™) < 0, the nonlinear saddle point does not exist, and only
a steep global mode is obtained. In the control parameter space of Fig.16, the
domain where condition (39) is satisfied is located above the surface labelled
Q4(k™, X)) = 0. According to (40), this surface is a paraboloid entirely con-
tained in the half-space wgi® > 0 and tangent to the plane wgy® = 0 at
wox,r = ko; = 0. Below this surface no soft mode may exist and only steep
modes are obtained. Above this surface, the soft global frequency w™ must be
compared to wi® and wg®. For simplicity consider only situations with advection
towards X = +o0, ¢.e., the half-space ky; < 0, so that only wi® comes into con-
sideration for steep modes. Within the region where a nonlinear saddle point
exists, transition between soft and steep modes occurs when w™ = w§®. This
transition surface is derived from (34) and (38) and it is sketched in Fig.16. It
is seen to meet the surface Qf (k7, X™) = 0 along a curve in the plane ko ; = 0.
As may be inferred from these critical surfaces, the parameter space is divided
into four regions (Fig.16):

— (a) Below the global threshold, wi’#** < 0, no front and no saddle point
exists, the unperturbed state ¢) = 0 remains stable.

— (b) When wi’#* > 0 and Qf(k™, X™) < 0, no saddle point exists and a steep
global mode prevails.

— (c) When Q¢(k™, X™) > 0 and w™ < w§, a saddle point exists but the
steep mode is selected.
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Fig. 16. Domains of existence of steep and soft global modes in the three-dimensional
control parameter space (wox,r,ko,i,w()’}f“). A nonlinear saddle point exists above
the surface Qf(k™*, X¢) = 0. The associated frequency w? is larger than the front
frequency w§® above the surface labelled w™ = w§®. Hence soft global modes prevail
in region (d). In region (c), steep modes are selected according to w™ < w§®. In
region (b), no nonlinear saddle point exists and only steep modes are obtained. In
region (a), below global threshold wif* < 0, the unperturbed state is stable.

— (d) When Qf(k™, X™) > 0 and w™ > w§?, the soft mode is selected.

Thus at global mode onset wy{® = 0, transition occurs always via a steep
global mode except for the triply degenerate case Wyt = ko; = wox, = 0.
With increasing wg'{"*, transition from a steep to a soft mode occurs for finite
values of wg'/"® either as soon as the nonlinear saddle point comes into existence
(on the surface Qf(k™, X™) = 0) or when its frequency reaches the steep

frequency (on the surface w™ = wg?).

4.10  Summary of transition mechanisms

To conclude the first part of this paper, let us summarize the main transi-
tion mechanisms. Three distinct control parameters governing global mode
selection have been identified.

The global bifurcation parameter is the maximum absolute growth rate over
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the entire medium wg’y"*. Nonlinear global modes exist whenever a region of

absolute instability is present (wgi® > 0). The transition to a steep global

mode occurs discontinuously at wg'f® = 0 through a saddle-node bifurcation.
axr

In the absence of absolute instability (wg’® < 0), no self-sustained global

modes exist and the basic state is globally stable.

The basic state remains globally linearly stable up to a finite positive value of

wgi. The hysteresis width in wg* is governed by wox» and scales as (wg xr)2

The advection parameter kg ; strongly influences transition from steep to soft
nonlinear global modes. Soft modes exist for small values of kq;, wheras for
increasing upstream or downstream advection, steep modes prevail.

The main global mode properties may be inferred from the three above men-
tioned control parameters.

5 Asymptotic spatial structure of global modes

The preceding results have been derived under the assumption that the global
mode is, at each station close to the local wave train at the global frequency.
This local wave train is governed by the local linear dispersion relation (20)
in regions where the amplitude is small, whereas it follows the local nonlinear
dispersion relation (21) in finite amplitude domains. These considerations,
which only involve the local characteristics of the medium, yield the leading
order WKBJ approximation to the spatial structure. Within this framework,
the selection criteria for steep and soft global modes have been identified and
the leading order global frequencies have been derived.

The objective of this section is to incorporate the previous results into a con-
sistent WKBJ approximation scheme [2], in order to obtain higher order cor-
rection terms, and to establish that the global mode structures outlined in
the preceding sections may effectively be constructed by matching together
extended wavepackets prevailing in different regions.

The organization of the following sections is motivated by the spatial structure
of both steep and soft global modes illustrated in Fig.17. As already discussed,
global modes display nonlinear regions of finite amplitude as well as linear
regions of infinitesimal amplitude. In the outer semi-infinite linear regions
(/+) extending towards X = oo (Section 5.1) the respective complex linear
spatial branch k%" prevails. The central nonlinear regions (nf+) are of finite
extent, i.e., order unity measured in terms of X, and they are dominated by
the respective nonlinear spatial branch £™* as discussed in Section 5.2. These
extended regions are connected via three types of narrow transition layers:
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Fig. 17. Spatial structure of (a) steep and (b) soft global modes: (¢%), outer
semi-infinite linear regions near X = +oo with respective linear spatial k‘* branch;
(nf+), central nonlinear regions of size O(1) with respective nonlinear spatial k™¢*
branch; (tl+), weakly nonlinear transition layers of width O(e'/?) connecting linear
and nonlinear branches of same superscript; (l), front layer of size O(e*/?) con-
necting the k¢~ and k™t branches and selecting the steep global mode; (sp), saddle
point layer of size O(e'/?) connecting the £™* branches and selecting the soft global
mode.

— The front layer (fl) of size O(e**) located at the upstream boundary of
the steep global mode nonlinear region connects £~ and k™% branches
(Section 5.3).

— The nonlinear saddle point layer (sp) of size O(€e'/*) allows crossover between
the k™* branches within the nonlinear soft global mode region (Section 5.4).

— Weakly nonlinear transition layers (tl+) of size O(e'/?) at the downstream
end of the steep global mode nonlinear region and at both ends of the soft
global mode nonlinear region connect the fully developed nonlinear branches
with their linear counterparts (Section 5.5).

Each of these regions is analysed in turn to obtain a uniformly valid asymptotic
approximation over the entire range —oo < X < +o00. Since the width of the
narrow layers is O(€'/?) or O(e*?) measured in units of X, their characteristic
scale is intermediate between the inhomogeneity length scale O(1) and the
instability length scale O(¢e). Thus, although the medium may be considered
uniform in the transition layers, they still display many wave lengths, typically
O(e7'?) or O(e™'/?).

In the preceding sections, the bifurcation study was largely based on the CGL
equation (4) and a complete understanding of the global selection mechanisms
was achieved in this context. In the present section, the WKBJ approximation
scheme is presented in the more general framework of p.d.e. (1).
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5.1 Linear WKBJ instability waves

In the semi-infinite linear regions extending towards X = +oo (/% in Fig.17-
a,b), the global mode amplitude exponentially decays on the fast z-scale. These
regions are thus governed by the linear equation (2). Under the slowly varying
medium hypothesis (3) a solution of (2) with global frequency w, may be ob-
tained in terms of WKBJ approximations [2]. The spatial structure is described
by a rapidly varying complex phase, accounting for the local wave length and
spatial decay rate, and a slowly varying envelope. For a given value of the
frequency wy, the solution reads

Y(z,t) = AYX) exp (z/k[(u)du — iwgt) +c.c., (41)

where k°(X) is one of the linear spatial branches associated with the fre-
quency w,. The functions A%(X) and k*(X) implicitly depend on w,; for sim-
plicity their frequency dependence is omitted.

In classical WKBJ fashion, the slowly varying envelope A‘(X) is expanded in
powers of € as

AYX) ~ AS(X) 4 AL (X) + EAY(X) + ... (42)

Thus, spatial differentiation takes the form

oy

o [(ike(X) + eax)Ae(X)] exp (é / k (u)du — iwgt) + c.c. (43)

Upon substituting (41,42,43) into the governing equation (2) and bearing in
mind that Qf(—i0,) = iL(8,), see (8), one obtains

wo(A§ + Al +...) = QHKY(X) — iedx, X) (Af +eAl + ). (44)
Note that differentiation with respect to the fast variable, i.e., multiplication

by ik*(X), does not commute with the slow derivative operator dx. The linear
operator appearing in (44) admits the expansion

QY (EY(X) — iedx, X) = Q4(X)
— e (4(X)0x + %&(X)%(X)) +0(),  (45)

with the notations

Q4X) = Q4K (X),X),  QX)= ——(k(X),X), etc



At lowest order, eq.(44) reduces to the linear dispersion relation (20), i.e.,
wy = Q(K(X), X), (46)
which yields the local wave number k*(X) for a given frequency w,.

The order € terms read

e — 1(0(X), )] 44(X) = i) M0 Lt (0pt () 44(x).

By invoking (46), one obtains the obvious solvability condition for A§(X),
namely
Y (X) 0

dA§ 1
X = "X 4. (47)

Thus, the first order asymptotic approximation to the solution of the linearized
equation reads

Qﬁk (u)
Qi (u)

+c.c., (48)

X X
1 .

¢NA€(X1) exp —E/kﬁf(u) du | exp z/ke(u)du—iwgt
X1 X1

where X, is some arbitrarily specified reference point. In each of the semi-
infinite linear regions the respective causal k¢ branch has to be chosen: k¢~ for
X — —oo and kf* for X — +o0.

In the linear region, the nonlinear terms of (1) are seen to be exponentially
smaller than the linear ones. The nonlinear operator then produces higher
harmonics that are exponentially slaved to the fundamental (48). A complete
expansion of ¢ reveals that the exponential envelope of the n-th harmonic

reads
n| 7
exp (—— /kf(u)du) .
€

Their exact expressions are therefore irrelevant to this work and will not be
computed here.

5.2 Nonlinear WKBJ wave trains

In the central nonlinear regions (nf+ in Fig.17-a,b), the solution of (1) is
obtained in terms of local nonlinear wavetrains (10). An asymptotic approx-
imation scheme for nonlinear wavetrains is derived in this section, which is
formally analogous to linear WkBJ theory.
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The fast oscillations of the propagating wave and its slowly varying local wave
number and amplitude suggest the following change of variables,

P(z,t) = P(0; X),

where the real phase function 6(z,t) is 27-periodic and accounts for propaga-
tion on the fast space and time scales, whereas X = ex allows for slow spatial
modulation. Local frequency and wave number are defined as

w= -0 and k=0,0.

For a synchronized global solution, the frequency w = w, is constant, whereas
the local wave number k = k"¢(X) depends on the slow space variable.

Upon expanding the derivative operators according to

0y = k™(X)0y + €dx,
3t = — wgﬁg,

the governing equation (1) is recast in the form
w0t + F (K™ (X)0p + €0x; X)[¢] = 0. (49)

Again note that differentiation of v (6; X) with respect to the fast variable
does not commute with dx since £™(X) depends on X. Next 1 is expanded
according to

¥~ o+ e+ Ea £
and substituted into (49).

The lowest order in € yields the local equation

Wiy + F(kdy; X)[] = 0, (50)
where X acts as an external parameter. When X is considered frozen, the fam-
ily of local nonlinear wavetrains ¥(0; k, X) is recovered. This equation admits
solutions only if w = Q"(k, X). In other words, for a global frequency w,, the
nonlinear spatial branch £™¢(X) is derived from the local nonlinear dispersion
relation (21) as

(,dg = an(knz(X):X): (51)

and the leading order solution )y then reads

o = U(0; k™(X), X). (52)
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The function ¥ is 27-periodic in the phase variable # which accounts for the
fast propagation through

0= % [ Ky — wyt + 60(X). (53)

The so far undetermined slowly drifting phase function 6y(X) obeys a solv-
ability condition to be obtained at next order.

The O(e) terms in (49) require some care. For clarity of presentation assume
that spatial differentiation only occurs in the linear operator,

F(0s; X)[W] = L(00; X)[¥] + N (X)[¥].
The linear terms are expanded as
L(E™(X)0p + €dx; X)[tho(0; X) + ey (6; X) +...] ~

1 dk™

COOM) + ¢ (£0O + LC0Dxb] + 35 LX) 0] ) + (),

where the notation £(X) is shorthand for L£(k™(X)dp; X) and the primes
denote differentiation of £(9,; X) with respect to its first argument. The non-
linear terms are expanded as

N(X) o + 1 + ... = N(X)[bo] + GW%LJ[%]% + 0O(é).
Thus (49) yields at O(e),
! 1 dknz "
L] = ~L(X)[Bxo] — 3 (X)), 9

where the linear differential operator L on the L.h.s. is defined as

L = wy0p + L(X) + W (55)
o
Thus 1, satisfies a linear differential equation with respect to 6 with X-
dependent coefficients. The operator L is singular since one may readily verify
that
LWyl =0 with Wy = 0,0(0; k™(X), X).

Thus (54) admits solutions for ¢, only if its r.h.s. satisfies a solvability condi-
tion.

Let us introduce an inner product for 27-periodic functions of # defined by

2w

(6,0) = 5 [ 0)w(0)0. (56)

0
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The adjoint operator L' of L is then obtained via successive integration by
parts through the relation

(¢, Ly = (L9, ),
and it reads

Lt = —w,09 + L( — k™(X)dp; X) + M(%w)w. (57)

Let U} be the adjoint eigenfunction of W,. Taking the inner product of (54)
with \Il}; and substituting

do dkmt
dxtho = d—)?‘l’e + %

Uy, + Uy,

yields the following solvability condition for 6y(X),

ldknﬁ
2 dX

db)
—2(Uh L) +

5 (W, 2L'0, + L7W,) + (), L'Tx) = 0. (58)

This entirely specifies the leading order approximation to the global nonlinear
solution

X
1
p(z,t) ~ (— /k"‘(u)du — wt + 0o (X); K™(X), X) : (59)
€
where the parametric dependence of £™(X) on the global frequency w, is
entirely determined by (51).

5.8 Front layer

According to Section 4.2, the front of steep global modes is located at the
station of local marginal absolute instability X“* and it is associated with a
wave number jump from the k¢~ to the £™* branch. On the slow scale X, the
front discontinuously connects the linear solution (48) of wave number k-
prevailing in the upstream domain X < X to the nonlinear solution (59)
of wave number k™" on the downstream side of the front X > X°. In this
subsection, the linear solution is shown to match to the nonlinear solution
through a narrow front layer (fl) as depicted in Fig.17-a. The formulation
essentially follows the same approach as in the asymptotic description of the
front boundary layer arising in nonlinear dynamo waves developed by Bassom
et al. [1] and is based on linear turning point theory [47].

The envelope of the outer linear solution is governed by the amplitude equa-
tion (47) which is singular at a turning point X, of the dispersion relation (46)
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defined by
wo(Xo) = wy. (60)

For wy = w§?, the turning point is at Xy = X“*. However it is to be anticipated
that the global frequency does not exactly equal w§®. As outlined below, it is
convenient to implement a matching procedure in the turning point region for
an arbitrary complex global frequency w,. Thus consider the linear governing
equation (2) for complex X. The results of Section 5.1 pertaining to linear
instability waves remain valid in the complex X-plane, provided that Q¢(k, X)
and hence wy(X) are analytically continued for complex values of X. Then (60)
associates to a frequency w, the turning point Xy(w,) in the complex X-plane.

Expansion of the dispersion relation (46) in the neighborhood of the turning
point X, yields

1
0= iﬁﬁk’o(kz(X) — ko)” + Qo (X — Xo) + heout., (61)

where kg is the associated absolute wavenumber ky = ko(Xo) and the sub-
script 0 denotes evaluation at (ko, Xo). By definition of the turning point,
Qﬁ,o = 0, and under the assumption that the turning point is simple, Qf;(,o # 0.

Thus
Vi —2(2%(,0 1/2
kk,0

The linear amplitude equation (47) then reduces to

dAg Ap(X)

dX T TAX = Xy)

Hence Ag(X) ~ C*(X — X,)~"* as X — X, and the complete behavior of
the outer linear solution (48) as X — X reads

P~ CHX — Xo) Yt exp [%J

13
Qkk,o

3 (X — X0)3] elkor=wsl) 4 cc. (62)
€

Here it is assumed that the square root branch cut is chosen so that the wave

number k‘~ prevailing in the domain X — —oo is recovered.

It is seen that in the neighborhood of the turning point Xy, the amplitude Aq
becomes singular. Balance of dominant terms, as shown below, yields an inner
turning point region of size O(e*/?). Thus define an inner variable X by

X = Xy +€°X, (63)
and expand v as

P = A(X)elkor=wst) ¢ ., (64)
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with
fl( )= CSt[A( )+€2/3A2/3( )+...], (65)

where Ay(X) is O(€). Spatial differentiation now becomes

9

5 = (ko + €05 AX)] ot 4+ c.c. (66)

Note that in this inner transition layer, the leading order wave number is
constant and equal to kg, thus 03 and ik, now commute. Replacing (63,64,66)
into the governing equation (2) yields

wy A(X) = Q (ko — i€'05, Xo + €/* X)A(X)
2/3( v 1 Al Y
~ Q"(ko,XO) + e (XQﬁc,o - §Qik,08)?)~()] A(X),

where w, = Q¢(ko, Xo). The scaling X — X ~ ¢*X and & ~ ¢ /32X guarantees
the balance of dominant terms at order O(e*?) in the previous equation and
leads to the following Airy equation for the leading order amplitude

1 d?A . -
3 ﬁk,od7~20 = X% 0 Ap(X). (67)

Thus %O(X' ) is a linear superposition of the Airy functions Ai(—AX) and
Bi(—\X) with
e 20%

QL
kk,0
Upon choosing for A the solution with [Arg A\| < 7/3, the Bi component expo-
nentially grows whereas the Ai component decays according to

. 1 2i | —20% -
Z XX] (68)

Ai(=AX) ~ ﬁ(_m—w exp {5 o

as X — —oo [2]. Expressing the outer solution (62) in terms of the inner
variable X, shows that it matches with the inner solution (64) provided that

A(X) = CHAI(=AX) + O(e¥?)], (69)

) 1/4 CSt

with O = ¢/6 =
Thus, for any frequency w,, linear instability waves are governed by the Airy
equation (67) in a region of size O(e*?) located at the turning point of the lin-
ear local dispersion relation. The location of the turning point in the complex
X-plane depends on w,. For frequencies wy, = w§® + dw, close to the marginal
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absolute frequency, the turning point is located at

dw

Xog~ X4 — — |
° wo,x (X<)

For O(e®) frequency corrections, dw = €*/*wy/3, the inner Airy region in the
complex X-plane contains in its neighborhood the point X“ on the real X-
axis.

Before analysing in more detail the properties of the Airy solutions on the X-
scale, let us turn to the front structure. As discussed in Section 5.3, a uniform
medium at the transition between convective and absolute instability admits
stationary front solutions oscillating at its real absolute frequency. Thus the
original nonlinear governing equation (1) rewritten at X = X as
ca 8¢ ca

S+ F (0 X = 0, (70)
admits the front solution W(z, ), which is 27-periodic in the phase func-
tion § = w§’. Towards x = 400 this solution approaches a fully nonlinear
wavetrain of the form (52). Thus

Wz, wi') ~ UEMT (X W)z — wi®; kM (X, wi®), X as & — +oo.

Towards x = —oo the exponential decay rate is dictated by the absolute wave
number k§* = ko(X“*) and the front solution reads

sz, wi®t) ~ (S + Sta)elke™e 6" 4 cc., (71)

where the secular term is due to the double root k£ = k= = k§® of the
linear dispersion relation. In the uniform medium, the front has no preferred
location. A translation of Az only changes the phase by &™*(wi®)Ax in the
asymptotic behavior towards the nonlinear side x = 400 and leads to an
additional factor e”*6°2® in the upstream exponentially decaying tail.

The exponentially decaying tail (71) has to be matched with (64) in the Airy
region. Due to the secular term in (71), matching with (64) is only possible at
the zeroes of the Airy function.

The Airy function Ai appearing in (69) admits real negative zeros a;. Thus
the zeros of Aq are located at X; = —a;/A. In terms of the outer variable X
these occur at

Xi = Xolw,) + €°X; = X4 + ¢ (ﬁ - %) +O(e). (72)
Wo,x A

Whereas the linear WKBJ approximations as well as the turning point region
may be investigated in the complex X-plane, the front involves a nonlinear
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wavetrain and is thus necessarily restricted to the real X-axis. Requiring that
the i-th zero (72) of the Airy function is on the real X-axis yields the frequency
correction term

|w0, X ‘2 Im A

CL)2/3 = a’l |)\|2 ImCL)O,X,

for a zero located at

a; Im (WS,X)\)

X' ~ Xca 2/3
! te |)\‘2 Imwax

Since X is the transition location from convective to absolute instability,
Im wy, x is positive. Under the slightly more restrictive assumption that 7/3 <
Argwy x < 2m/3, we are guaranteed that Im (w5 xA) < 0. In most situations
of physical interest, variations of wy, are small compared to those of wy; and
thus the condition on Argwy x is readily fulfilled.

So far the matching conditions yield a countable set of frequencies

) wo x|? ImA
wg ~ wga + 62/3a,~Q2/3 Wlth Qg/g = | ‘(;jj Im w0 X, (73)

each being associated with the i-th zero a; < 0 of the Airy function. The
corresponding fronts are located at

—Im (wg,X)\)

X ~ X — &g, X ith Xp/3 =
€' a 2/3 wit 2/3 \)\|2Imw0’X

> 0, (74)

Since Xy/3 > 0, higher order global modes display a front located further
downstream in the AU domain. These situations are likely to be unstable
since the exponentially decaying tail of the front partly penetrates into the
AU domain. Such a higher order front prevailing in a slightly AU medium
tends to move upstream, until it reaches the most upstream possible station
associated with ay. Thus we argue, although we have not proven the result,
that the only stable global mode solution is obtained for the first zero indexed
by ag. Up to O(e**), the global frequency and the front location therefore
respectively read

Wy ~ Wit +€%apQy3 and X ~ X — %ag Xy,

with
ayp = —2.3381...

This completes the investigation of the detailed structure of the front region.
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5.4 Fully nonlinear saddle point layer

The nonlinear saddle point is defined as the location X™ where the two non-
linear wave number branches meet. The saddle point frequency w?z is given by
the criterion (30). In the nonlinear regions surrounding the saddle location X™
the asymptotic approximation of the global solution is of the form (59) and
the slowly drifting phase function 6y(X) is governed by the solvability condi-
tion (58).

At the saddle point, the first order differential equation (58) for 6, becomes
singular since (U}, £'T,) = 0 at X" [cf. equation (93) below]. Thus the non-
linear WKBJ approximation worked out in Section 5.2 is no longer valid in the
neighborhood of X™, because 6, varies there on a spatial scale which is faster
than X. In this section, a nonlinear transition layer at X" is introduced, (sp)
in Fig.17-b, and a second order differential equation for the phase 6, is derived
after rescaling the spatial variable in the neighborhood of X™. This inner so-
lution in the saddle point region allows a smooth crossover between the WkBJ
wave trains in both nonlinear regions.

Let us introduce an inner local space variable X in the saddle point region
defined as

X:X_:'e+61/2X,

and expand v according to
1/1 ~ J}O + 61/27751/2 + 67751 +... (75)

The subsequent analysis yields the higher order corrections to the global fre-
quency as

Wy ~ w?e +€%w,,, + ewr + ... (76)

Replacing the spatial derivative 0, in the inner region by k™0, + ¢'/?05, the
linear operator expands as?

L(k;“ag +€'/%05%, Xge + 61/2X)
=L, + 61/2([,;8;( + X,CX’S) + %(ﬁgaj()} + 2)25’)(,56;( + XQ,Cxx,s)
+ O, (77)

Substituting the expansions (75,76,77) into the governing equation (1), one
recovers at leading order

Wi Optho + L (K2 09, X1)ho + N (XI)[tho] = 0.

3 Subscript (s) always denotes evaluation at 0, = k29, X = XM k = kM.
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Thus

o = Wy = V(0 + 0p(X); k¢, XT¥), (78)

1S

where the fast phase function in the inner saddle point layer reads 6 = knfx —
w™t and the slow phase 6;(X) is a so far an undetermined function varying
on the intermediate length scale X.

The nonlinear term is expanded as
N (X 4 /2 X)[U, + €%, + ey + O(e¥?)]
:-/V;’ + 61/2()2-/\/’X,5 + N¢’51,Z71/2)
1~ ~ . 1 ~ - ,
+€ (§X2Nxx,s + XNx¢,sw1/2 + §N¢¢,s¢12/2 +.N’¢,51/J1> + 0(63/ ), (79)

where

N, = N(XSM)[\I,S]’ Ny,s = (9¢./\/’(X?£)[\Ifs], Nx,s = aXN(X;LZ)[\I’s]a etc.
The order €'/? problem reads

- do -
Lyth s + w2 s + d—)gﬁ's\llg,s + X(Lx,, P, + Nx,) =0, (80)

where
Ls = w;wag + Es —+ Nw’s.
Let \II;’S be the adjoint eigenfunction of Uy ;. Eq.(80) admits solutions for 151/2
if the following solvability condition is met
df .
up(Phas Wos) + Z2{Whs £W0,) + X (), LW + Nixs) = 0.

In Section 5.4.1 below, the two last terms of this equation are shown to vanish
(93,94). Thus the solvability condition requires that

w1/2 - 0.

1/2

There is no correction to the global frequency at order €¢'/? and no equation

for 0~0 is obtained at this order.

With w,,, = 0 and using (95,96), the general solution of the linear inhomoge-
nous equation (80) is obtained as

- - do, -
Uy = XUy, + d—)gxlfk + A(X) Wy, (81)

where A(X) is an arbitrary real amplitude function.
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At order ¢, the following inhomogenous equation for 11 is obtained

_ _ . _ 1 _
stl + [';af(wl/z + X (EX,s + NXw,s) wl/z + in’lﬁ,Sq/)?/Q

1 1~ 1~
+w1‘lls + (55{9’8)”( -+ X»CI af( + §X2£XX,5> \Ils + EXQNXX:S = 0

Replacing v, ,, according to (81) leads to

1 d26,
2dX?

+—<%>2(2ﬁ’q} + LYWy + Nygps (0)?)
9 dX s ¥ Ok,s s £ 60,s P, k,s

db
)'g ((EX,S + NXw,s)\IJk,s + EIX,S\IIH,S + L;\IIGX,S + Nww,s\pk,s‘llX,s)

Lyt + 5 =2 (2L00 o + L1 ,)

1
+2X2( (Lx,s + Nxp,s)¥x,s + Lxx,sVs + Nxxs +N¢¢s(‘1’Xs))

d9
= A(X) <£;\I}00,s + quq/;,s‘I’a,s‘I’k,s)
+ XA( ) ((ﬁx s+ Nyx,s)Wos + Nyy,s Vo s ¥x s)

dA
d~5"1’es+ A( ) Nop,s (Lo,5)?

+LUx s+ wi Wy
=0. (82)

This equation admits solutions for ¢ if the inner product of the forcing terms
(everything except LSTL1) with ‘Il;S vanishes. The different inner products are
computed in Section 5.4.1. From (97,98,99) it follows that all the terms in-
volving the function A(X) vanish: this function remains undetermined at this
order. Using (100,101,102) the solvability condition for 6, reads

- _
A% _ B(%) di? — E — 2wy, (83)

dx?  \dX
where

A= (U] 2L, + L1Tg,) (T, Ty ),

B= Q% $)
C= Qsz’
D:Q%X,sa

E= (W), L) /() ).
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Let

~ B - Cao? -
O(X) = exp —Zeo(ax) — ﬂX2 (84)
with
AZ
4 _
o' = 1CZ=BD)’ (85)

Note that C%2 — BD > 0 since (k™, X™) is a saddle point of Q™ (k, X). Rewri-
ting the solvability condition (83) in terms of © yields the parabolic cylinder
equation [2]

d’0 1, 1
m=(Fr3)e (86)
where

L1 1 AC — B(E + 2w,)
v+ - = .
2 2 ,/A%C?- BD)

This solution in the inner saddle point layer needs to be matched with the wave
trains (59) in the outer nonlinear regions. In terms of the inner variable X,
the phase of the outer nonlinear solutions (59) expands as

1 X;’l—l—el/z)’z
- / k" (w)du — w,t + By(X)
€

Xxnt

1 -
= (k™Mz — w™t) + §k}‘st2 + O(e?). (87)

Matching to the phase k™z — wl'“t + 0y(X) of the inner solution (78) when
X — #o00, requires that

- 1 - -
0o(X) ~ ik’}fSXQ when X — +oo. (88)

At the saddle point, the derivative of the wave number reads

—Op s (052 - 85, —C+VCT—BD

knf _
X,s — né
Qkk,s B

(89)

Using (88) with (89) in (84) shows that the function ©(X) behaves asymptot-
ically as

~ 1 ~
ln©(X) ~ — X,
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when X — +00. The only solution of (86) satisfying this asymptotic behavior
and taking only nonnegative values is obtained for v = 0 and simply reads

O(X) = exp(—X?/4).

Thus the asymptotic expansion (88) is exact for all X. Then the soft global
mode frequency reads to O(e)

Wq ~ w?e + ewy

with )
=—(AC — BE — /A%2(C? - BD) ).
w1 23( ¢ (© )>

5.4.1 Computation of inner products

The values of the inner products used in the previous analysis are obtained
from

Q" (k, X)0gW + L(kDp, X)W + N (X)[¥] = 0. (90)
Differentiation of (90) with respect to 6, k or X yields

Ly, = (Q"‘Oe + L+ qu)\pg =0,
LYy, + QP + L'y =0, (91)
LUx + Q¥+ LxT + Nx =0. (92)

Taking the inner product of (91,92) with ¥} yields

QR Wg) + (W), Lg) =0,
(W), Wg) + (Th, Lx W) + (Th, Nx) =0.

At the saddle point (k"¢ X™) the derivatives Q2¢ and Q% vanish by definition,
thus

(Uh s L3 0g,) =0, (93)

(U)o Lx,sTs + Ny,5) =0. (94)
From (91) and (92) we deduce

Ls\pk,s = —ﬁls‘l’e,s, (95)

Ls\I’X,s = _EX,S\IIH,S - NX,s- (96)

From these identities, the particular solution (81) to eq.(80) follows.
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The order € problem in the saddle point region specified by (82) requires to
compute inner products by double differentiation. Differentiating (90) with
respect to 06, 0k or X yields

LWgg + Ny (¥g)* =0,
LUgy + Qg + L'Wgg + Nyy U, =0,
LUgx + Q¥ Wgp + Lx Vg + Ny Vg + Ny Ug Uy =0,

and, after taking the inner product with ‘1ng at the saddle point, one obtains

<q’£;5’ N‘wwys(ways)2> = 0’ (97)
(Uh s L1005+ Nyy,s Vo, U5) = 0, (98)
<\II£,sa (['X,s + NX'{/),S)‘IIH,S + N’t/}'zﬁ,slllﬁ,s‘llX,s> =0. (99)

Differentiation of (90) with respect to kk, kX or XX yields

LUy 4+ QREWy + 2(Q0 + LN Wgr + L"Tgp + Ny (34)? =0,
LUpx + (0% + L)W + (28 + L) Ty
+Q”Xe\119k + (Lx +Nx¢)\11k +N¢wwk\1/X =0,
LUxx + Q¥ Uy + 20% gy + 2(Lx + Nxy)Ux
+Lxx U + Nyy(Vx)* + Nxx =0,

and thus

(U) 2L Wgpo s + LUTgg s + Nopys s (U 5)%)
=~ (W), Vo), (100)

(U)o (Lxys + Nxs)Whs + Ly Pos + LoWox s + Nyys Vg s ¥x )
= — % (Wh s Woy),  (101)

<‘1’£,s, 2(Lx,s + Nxyp,s)¥x,s + Lxx,s Vs + Nxx,s + N¢¢,s(\l’x,s)2>
=~ (Wl W) (102)

Results (97-102) are invoked to cast the phase evolution equation in its final
form (83).

5.5 Weakly nonlinear transition layers

Frequency corrections for steep and soft global modes have been derived by
performing a detailed asymptotic analysis of the corresponding narrow transi-
tion layers where their respective frequency selection mechanism takes place:
the front layer for steep modes and the nonlinear saddle point layer for soft
modes. The only type of layer that remains to be investigated in order to
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obtain uniformly valid asymptotic approximations for global modes is the
weakly nonlinear transition layer. This layer applies to the downstream end of
the steep mode nonlinear region (tl+ in Fig.17-a) and to both ends of the soft
mode nonlinear region (tl+ in Fig.17-b). It should be emphasized that these
layers are slaved to the dynamics imposed by the front or the nonlinear saddle
point frequency.

A smooth transition between nonlinear and linear solutions occurs at the
boundary of the nonlinear balloon (Fig.5 and 7) in the (X, k)-plane. Con-
sider a global solution of frequency w,. Its local linear and nonlinear wave
number branches k(X,w,) and k™(X,w,) are derived respectively from the
curves Q4(k, X) = w, and Q"(k, X) = w,. A k™(X,w,) branch is connected
at the border of the nonlinear balloon to the corresponding linear k(X w,)
branch at the particular station X = X;(w,) for k¥ = ki(w,) where the pair
(ky, Xy) is defined by

wy = Q8 ks, X3) = Q™ (b, X). (103)

As demonstrated in Sections 4.2 and 4.6, a continuous transition between
linear and nonlinear wave number branches occurs at the downstream bound-
ary of the nonlinear region of a steep global mode and at both downstream
and upstream boundaries of the nonlinear region of a soft global mode. At
a downstream boundary, the k™% branch prevailing in the region X < X,
is continuously connected to the k‘* branch for X > X,. At an upstream
boundary, transition from k¢~ for X < X, to k™~ for X > X, occurs.

When X — X; from within the nonlinear region, the amplitude of the nonlin-
ear wave train decays, nonlinearities weaken, higher harmonics become slaved
to the fundamental, and eventually a linear instability wave takes over. In
the present section we show how the connection between linear and nonlinear
solutions is achieved across a narrow transition layer located at X;.

Let us focus on an upstream transition layer (tl—), i.e., the solution is fully
nonlinear for X > X; and decays exponentially for X < X;. The same analysis
applies in the downstream transition layer (tl4). The asymptotic behavior of
the nonlinear wave trains W (6; k, X) is first derived as (k, X') approaches the
neutral stability boundary of the nonlinear balloon (Section 5.5.1). This result
is then used along the particular path (k"*(X), X) to derive expansions for
the modulus (Section 5.5.2) and phase (Section 5.5.3) of the global mode as
X | X;. This outer expansion is shown in Section 5.5.4 to match with the
inner solution prevailing in the transition layer. Finally the inner solution is
matched in Section 5.5.5 to the outer linear WKBJ approximation prevailing
in the region X < Xj.
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5.5.1 Weakly nonlinear behavior

In the nonlinear balloon of the (X, k)-plane characterized by Q¢(k, X) > 0,
the governing equation (1) admits local solutions of the form (52). A global
mode of frequency w, follows the line w, = Q"(k, X) in the (k, X)-plane.
The boundary of the nonlinear balloon is reached at (k;, X;) defined in (103).
Let us first study the behavior of the periodic functions ¥(6; %k, X) in the
(k, X)-plane as (k, X') approaches the boundary of the nonlinear balloon, i.e.,
Q4(k, X) | 0.

The nonlinear operator F[¢] in (1) is expanded in powers of 1 and (1) is
rewritten as

T = L0 X))+ A0, X)), (104

where the operators N, are of r-th order in . In all generality, each N,
depends on J,, but to simplify the subsequent computations, it is assumed
that the N,’s do not involve spatial derivation, i.e.,

N (0, X)[Wh] = Ny (X)9" (105)

The results would remain valid for any nonlinear operator with spatial deriva-
tives, but the notation and results becom unwieldy in more general cases. The
method is easily extended to specific examples.

The 27-periodic function W is expanded as the Fourier series
T(0;k,X) = T (k, X)em?, (106)
where U(—™) = (U(™)* Due to the invariance of the governing equation under

the transformation § — 6 + C*., W()(k, X) may be chosen to be real for each
(k, X).

Substituting (105,106) into (104) yields the equations for the harmonic com-
ponents of W,

Q" (k, X)¥™ (k, X) = Q% (nk, X) T (k, X) (107)
+i Y NA(X) Y Uk, X)W (k) X,
r=2

n1+...+n,=n

With the definition
AW (k, X) = nQ™(k, X) — Q% (nk, X),

equations (107) read,
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AW (k, X)T™ (k, X)
:iiNr(X) S vk X) - T (k, X). (108)

ni+..+n,=n

When Qf(k, X) | 0, the term A®M(k, X) vanishes, whereas the A (k, X)
remain finite for |n| # 1. Thus, in this limit, the components with |n| # 1 are
slaved to the fundamental n = +£1 and scale as

O[T (k, XY™ if n £ 0

O[TV (k, X)) ifn=0 when  Q;(k, X) 10. (109)

T (k, X) = {

The dominant terms of (108) for n = 2 read
A® (5, X)) (k, X) = iNo(X) [0V (k, X)]” + O[(TD)4], (110)
and for n =0,
AO(E, X)UO(k, X) = 20N, (X)W (k, X))V (k, X) + O[(wM)4]. (111)
For n = 1, equation (108) yields
AW (k, X)TWD (k, X) = 2iNy(X)[T@ (k, X) T (k, X)+0D (k, X)TO (£, X)]
+3i N5 (X)) D (k, X)POD (k, X) + O[(TM)?]. (112)
Substituting (110,111) into (112) yields the leading order expression for ¥

AW (k, X)
3iN3(X) — 2Na(X)? (

WD (k, X)|? ~ (113)

1 2
s + 50t

Thus
0O (k, X)[? = O[AW (K, X)),

and

VO (k, X) = O {,/fo(k, X)] . (114)

5.5.2  Asymptotic decay of outer nonlinear wave trains

The preceding results, valid for any (k, X') when Q¢(k, X) | 0, yield the asymp-
totic behavior of the nonlinear part (59) of a global mode as X | X;.

Let us expand the nonlinear solution (59) into harmonic components as follows
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U(0; km(X), X) =

> (won) (X)+ ewyl)(X) +.. ) exp {m (% / k™ (u)du — wgt> } . (115)

n

Then, according to (106),
U (X) = T (RM(X), X)),

From (109,114) with Q4(k™(X), X) = O(X — X;), it follows that, for each
n # 0,

(X)) = O[(X — X)"?) as X | X, (116)

The asymptotic behavior of w(()l)(X ) for X | X, is derived from (113) as

P (X) ~ B0 (X — X,)12, (117)
with
. A(l)
g = A (118)

3iN3¢ — 2(Noy)2( <l + )
t t

where subscript ¢ means evaluation at X = X; and k = k; = k"(X;), and

d

o _ %
81 = gy

AD (E"(X), X)

X=X
In the same fashion one obtains for the second harmonic

i) (X) ~ BN (X - X,), (119)
with, according to (110),

= (2 Noy =01

$ = F(\pg N2, (120)

In the bulk of the nonlinear region the harmonic spectrum is fully devel-
oped but towards the neutral stability boundary the higher order harmonics
become slaved to the fundamental. Since the higher order harmonics decay
faster than W(Y as the neutral stability boundary is approached, the nonlinear
solution is approximated by a purely sinusoidal wave of vanishing amplitude.
Matching to a linear solution in the region X < X; therefore becomes possible.

5.5.8 Diverging slow phase

So far only the behavior of the amplitude as X | X; has been obtained. In
this subsection the asymptotic behavior of the slow phase 6y(X) at the neutral
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stability boundary of the nonlinear region is computed.
Let us write the solvability condition (58) as

do 1dknt dkmt
0= d)gmﬁ,z'qfa) ST (qff,c"\p,,)Jr(fo;,L'(dX q;k+x11X>> (121)

According to (106) the nonlinear solution ¥ admits the expansion

(0 + 0p(X); k"X Z T (E(X), X)enbo(X) gind

Thus

A
dX
L'y =Y"inL" (ink"(X); X) T (X)enloX)eint,

[\Il(n) (X)] einﬂo(X)einG’

dknﬁ

[J\I}H = Z inﬁ'(mk"e(X); X)\Il(n) (X)einOO(X)einH’

with

™ (X) = ™ (k(X), X).
According to (109,114) the harmonic components exhibit the following beha-
vior

X — X)"2e0) if £ 0

T (X) ~ ( 2 ) 70 s x 1 X,

(X = X)W ifn=0
where ¥() and ¥® have explicitly been obtained in (118,120). Thus the
term L’ (kf}f\llk + \IIX) diverges as (X — X;)~'/2 whereas the other terms scale

as (X — X;)¥/2. In order to evaluate the inner products involved in (121), the
adjoint \IIE has to be explicitly determined. The term in L' (57) associated
with the nonlinear operator N reads

ML — o — )2 (0060069 1) + OLX - X,

whereas

L( = k™(X)0p; X) = L(—k09; X;)
+ (X = X3)(— K L' (—kyDg; X,)0p + Lx (—kiDy; Xy))
+O[(X — X;)?].

Thus the adjoint operator (57) reads
Lt=— wgag + E(—k‘tag; Xt)
+2(X = X)) Y2Np (BWei X ¢ c)) + O[X — X].
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A solution of LT¢ = 0 sought under the form

¢ = in(X — X,)"2eM(X)em,

leads to

0= (X — X)2[( — iwy + L(—iksy; X;))i®D (X)e? + c.c.]
+ (X = X)[( — 26w, + L(—2iks; X;))2i0@ (X)e™ + c.c.]
+ (X = X;)2Ng, [UWei®D it ¢ ¢ ][idD (X)e? + c.c.]
+0[(X = X,)%?).

Due to (103) the O[(X — X;)'/?] term identically vanishes. At order (X — X;),
the equations

0=2iN, , ¥We D (X)) 4 c.c.,
0= (2w, 4 iL(—2ik;, X;))20P (X) + 2N,(X,) WX (X)),

yield

oM (X) P (D) gifo(X)
iNa(X¢)

o2 (X
(X) 2wy + iL(—2iky, Xy)

(ﬁ;(l)eieo(X))Q,

with a real constant of proportionality. A simple calculation then leads to
(U, L'W) = (X — X3)[L' (iks; Xy) + c.c] TV + O[(X — X,)?),
(W}, £709) = (X — X)L (iks X) + e [FDP + O[(X = X,)?),
1 .
(Uh, £ (k30 + Ux ) = — Sl (ih; X) + c.c][PO] + O[X — X}
Upon substituting the preceding results into (121) the governing equation for
the slow phase at the boundary of the nonlinear region becomes

d00 1 1 Im El(lkt, Xt) 0
o _ 1 X - X,)°.
dx 2X — X, Re L'(iky; X;) + Ol )]

Hence, 6y diverges logarithmically as

1Im LI(’th, Xt)

Oo(X) = — -2 =N 2
0( ) 2 Re ﬁ’(Zkt,X,{)

In(X — X;) + C* + O[X — X}], (122)
when X | X;.

5.5.4  Inner transition layer solution

The asymptotic matching of a finite amplitude nonlinear wave train to an
exponentially decaying linear solution takes place via an inner solution valid
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in a narrow transition layer at X; between the nonlinear and linear regions.

Define an inner variable X in the neighborhood of X; by X = X, + €/2X . The
outer solution obtained in the previous section is rewritten in terms of this
inner variable. The fast phase 6 reads

1 Xt+€1/2X 1
0=~ kM (u)du — wot = (kyx — wyt) + ék?(etXZ + O(e?), (123)
6 )

whereas the slow phase 6, of eq.(122) is expanded as

1Im ﬁ’(’lkt, Xt)

By ~ — = 2 W 2t
0 2 Re ﬁ’(lkt, Xt)

In X + C* (124)

Thus, as X | X;, keeping only the leading order terms in the harmonics
In| < 2 of the outer solution given by (115) yields the following expansion

" ~/AXL/2 [\il(()l)ei(e—l—@o) + C_C_]

iNZ,t T (1)2
AD 215 ) + O(e¥/*). (125)

~ (1N N .
+e2X (Aéa)t [(\IJ(()U)QEQZ(O-}-@O) + C.C.] 4
t

This behavior of the outer solution in terms of the inner variable X suggests
to expand the harmonic components of the inner solution as

Y Y e (G50 (@, X) + €29 (@, X) + L) et (126)

with 15" = 0 since ¥© = O(|y®|2). Each component of the inner expansion
has to be matched for X — +oco with the corresponding component of the
outer expansion. Due to the presence of slow and fast spatial scales X and
x, the spatial derivative in the governing equation (1) now reads 0, + €'/°05.
Thus the following equations are obtained for each harmonic component

0= (mwg + L(0y + €/%0%; Xyt + 61/2)2)) [1/7(()”) + el 4 ]

-f—iNT(Xt—i-el”f() S@ )W+ ). a2

r=2 ni+...+n,=n

For n =1 the leading order problem in € reads
waty) = iL(0s; X))

This linear differential equation in z admits solutions of the form A(X)e*®
where the a priori possible complex wave numbers k satisfy the linear disper-
sion relation (20): w, = Q¢(k, X;). However, the slowly (algebraically) decaying
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outer nonlinear solution is oscillating on the fast scale as e***® with ki deﬁned
by (103). Hence matching of outer and inner solutions ensures that Y con-
tains the single Fourier mode

0 = AR (X)ette, (128)
with a slowly varying amplitude A((]l) (X).
For n = 2 the leading order problem in € of (127) reads

2wy — iL(0a; X[ ] = iNos 5 05" (129)

Using (128) yields the particular solution

1N 2,t
AP

P& = AP (X)) ek, (130)

The homogenous differential equation associated with (129) admits solutions
of the form e*2? for wave numbers k, satisfying 2w, = Qf(ks, X;). Again none
of these complex wave numbers ko satisfy the matching conditions, thus only
the particular solution (130) needs to be retained.

For n = 0, the equation
= L3 X0) 917 + 2N 657

yields

QZNQ it

P = AP (X)P. (131)

t

In eq.(127), the linear operator expands as

L(0y + €205; X; + €2 X) = L (0 X;)
+e2 [L(00; X1)0x + X Lx (803 X)| + Oe).

Thus for n = 1 the order €'/? terms of (127) read

0= iwy i) + L(9a; Xo) ] + [z'(am, X0)05 + X Lx (055 X2)|
+ BNy o[ 56" + 2N [6767" + i), (132)

and at this order there are no derivatives of the nonlinear term with respect
to X. This inhomogenous differential equation in z admits solutions for 1/182

only if the resonant terms in e’**® of the forcing terms vanish. Upon using
(128,130,131) in (132), this leads to the solvability condition
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dA(l) o R
0= L' (iky; Xt)d—)% + Lx (iky; X)) X AN (X) (133)

, 12 1) iz (1)
+ (300, + 2 (g + 1) ) AV CORAD ()
i t

This amplitude equation for A" (X) is of the form

dAM
dX

+ ((ar +ia;) X + (be + i) |A (X)7) AP (X) = 0, (134)

and its solutions are

AV(R)  exp [~ X — 100 (1425, [AP (0) JiF e’ du)] -
AP (0) V1 + 20, AD(0)2 X e-ervtdu ’

where 121(()1)(0) is the integration constant. Matching of the inner solution 1%)1)

to the outer solution w(()l) of (117) requires that |f~1(()1) (X)| ~ VX as X - +oc.
This implies that

+00
. i gy
1+26,|457(0)? / ey =0, e, |[ADO)="\/2.

b T
0 T

With this value for |A$” (0)| the inner solution (135) admits for X — +oco the
asymptotic expansion

AP (X~ [ X e [(:—a - ai> X2+ z— InX + cst] : (136)

Comparison of (133) and (134) yields

. EX(ikt;Xt) .y
T = a1 v N k ’
a, +1a L ik X,) WK 4
o A(l) i
b, + ib; = | >|—2% = V|2 (z‘k’;;jt +

['X (Zkt, Xt)
il (iky; X, ’

L'(iky; X)

with [¥{"[? obtained in (118). Thus

ﬁ _ Im Ll(ikt, Xt)
b, Rel'(iky, X;)
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This completes the proof that the first harmonic of the outer nonlinear solution
given by eq.(125) completely matches the first harmonic of the inner weakly
nonlinear solution /4 A" (X)eiktz—wst) where A (X) is given by (135).

5.5.5 Matching to the outer linear solution

As X 1 X, the outer linear WKBJ approximation (41) reads, at leading order,
P~ A5 (Xy)ekre—wat) exp (%kﬁ’tXQ) +c.c., (137)

when expressed in terms of the inner variable X. Using (135), the asymptotic
behavior of the inner solution as X — —oo yields

w ~ 61/41481) (Xv)ez'(ktm—wgt) + c.c.

A0 rti gy LD
~ et "\/é ) itk ox <_“ ;Z“ X2 - %Eln 2> +c.c (138)

Since a,+ia; = —ikf ;, both expansions (137) and (138) asymptotically match
with

Aél) (0) eiibé:’I;Q .

V2
Thus, at leading order, the weakly nonlinear inner expansion (138) exactly
matches the outer linear WkBJ approximation (41). In the inner transition
layer the slaved higher order harmonics scale as €™/%. In the outer linear region,
each harmonic component matches the corresponding exponentially slaved
harmonic and decays as

A(X) =

nl 1
enl/ exp—%/kf(u)du.

The width of the transition layer at X, is of order €¢'/? measured in terms of X.
The intermediate scaling between the fast length scale x and the slow spatial
variation X = ex allows the asymptotic analysis of the crossover between linear
and nonlinear regions. Even in the narrow transition layer the solution exhibits
slowly modulated fast oscillations; the transition layer contains O(e='/?) wave
lengths.

6 Conclusions

It has been demonstrated that a wide class of one-dimensional nonlinear evo-
lution equations with spatially varying coefficients may support two types of

69



fully nonlinear self-sustained global modes in a doubly infinite domain: Steep
global modes are triggered by the presence of a sharp stationary front located
at the upstream transition point between local convective and absolute in-
stability. This front acts as a source and imposes its real absolute frequency
to the entire medium. Soft global modes are due to the presence of a saddle
point of the local nonlinear dispersion relation which again acts as a source
and imposes its frequency to the entire medium, as given by saddle point
conditions.

A necessary condition for the occurrence of either of these modes is the ex-
istence of a region of local absolute instability. Recall that linearly unstable
global modes given by a complex saddle point of the local linear dispersion
relation [7,25,30] also require a range of local absolute instability. But, this
range must in general be of finite extent whereas nonlinear global modes exist,
however small the AU domain. The relationship between linear global insta-
bility and the existence of fully nonlinear global modes is non-trivial: In the
generic case, nonlinear global instability does not coincide with linear global
instability. The nature of the various global bifurcation scenarii constitute the
major result of the present investigation. Steep global modes occur right at
local absolute instability onset below the linear global instability threshold,
via a saddle node bifurcation, while the medium is still linearly globally stable.

Soft global modes generically do not appear at local absolute instability onset
but only for a sufficiently large domain of local absolute instability. Further-
more, they are more likely to be observed in systems with weak advection. It
is essential to note that steep and soft global modes are mutually exclusive,
as dictated by the relative magnitude of their respective frequencies. The ex-
istence and selection of either kind of global modes has been confirmed by
direct numerical simulations of the CGL equation with varying coefficients for
small but finite values of €. As a word of caution, it should be stated that
soft global modes are likely to be more fragile than their steep counterparts.
They may become unstable whenever the region of local absolute instability
protrudes beyond the central nonlinear regions, in the tails of the extended
wavepacket. This lack of robustness is all the more acute as the WKBJ limit
€ = 0 is approached.

In several physical systems [36,1] linear and nonlinear global instability have
been found to occur at the same value of the global control parameter. This
peculiar feature takes place in situations where the entire spatial dependence
is accounted for in a single real spatially varying parameter, say R(X), which
displays an extremum at a real position X™% such that dR(X™**)/dX = 0.
Under these circumstances, the local linear dispersion relation is necessarily of
the form Q%(k, X) = Q¢[k, R(X)] and the local absolute frequency is readily
obtained as wy(X) = wo«[R(X)]. The real station X is then simultaneously
associated with a maximum of wy;(X) and with a saddle point X¢ of wy(X).

70



The analytical structure underlying the spatial distribution of steep and soft
global modes has been systematically derived in the WKBJ approximation
€ < 1. It has been shown that for a wide class of one-dimensional evolution
equations the various inner layers and outer regions may be matched together
to arrive at a consistent description valid over the entire spatial domain. In
particular, higher-order frequency corrections have been obtained.

It should be emphasized that the different transition scenarii depend on the
precise form of the linear and nonlinear dispersion relations. Due to the num-
ber of parameters required to specify the spatial variations of the medium, a
comprehensive survey of all possible configurations has not been attempted.

This study has been undertaken in order to understand the nature of syn-
chronized structures in real slowly varying open shear flows. In the latter
framework, the local linear dispersion relation is obtained from the Rayleigh
or the Orr—-Sommerfeld equation, whereas the local nonlinear dispersion rela-
tion requires the computation of finite amplitude structures in a streamwise
periodic interval. In this context, steep global modes may be constructed as
reported elsewhere [35].
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