
HAL Id: hal-00119908
https://hal.science/hal-00119908

Submitted on 12 Dec 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Steep nonlinear global modes in spatially developing
media

Benoît Pier, Patrick Huerre, Jean-Marc Chomaz, Arnaud Couairon

To cite this version:
Benoît Pier, Patrick Huerre, Jean-Marc Chomaz, Arnaud Couairon. Steep nonlinear global modes
in spatially developing media. Physics of Fluids, 1998, 10, pp.2433-2435. �10.1063/1.869784�. �hal-
00119908�

https://hal.science/hal-00119908
https://hal.archives-ouvertes.fr


PHYSICS FLUIDS OCTOBER 1998VOLUME 10, NUMBER 10

LETTERS
The purpose of this Letters section is to provide rapid dissemination of important new results in the fields regularly covered by
Physics of Fluids. Results of extended research should not be presented as a series of letters in place of comprehensive articles.
Letters cannot exceed three printed pages in length, including space allowed for title, figures, tables, references and an abstract
limited to about 100 words.There is a three-month time limit, from date of receipt to acceptance, for processing Letter
manuscripts. Authors must also submit a brief statement justifying rapid publication in the Letters section.
Steep nonlinear global modes in spatially developing media
Benoı̂t Pier,a) Patrick Huerre, Jean-Marc Chomaz, and Arnaud Couairon
Laboratoire d’Hydrodynamique (LadHyX), CNRS UMR 7646, E´ cole polytechnique,
F-91128 Palaiseau cedex, France

~Received 16 April 1998; accepted 15 June 1998!

A new frequency selection criterion valid in the fully nonlinear regime is presented for extended
oscillating states in spatially developing media. The spatial structure and frequency of these modes
are dominated by the existence of a sharp front connecting linear to nonlinear regions. A new type
of fully nonlinear time harmonic solutions calledsteep global modesis identified in the context of
the supercritical complex Ginzburg–Landau equation with slowly spatially varying coefficients. A
similar formulation is likely to be applicable to fully nonlinear synchronized global oscillations in
spatially developing free shear flows. ©1998 American Institute of Physics.
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Spatially developing free shear flows such as mix
layers,1 wakes,2,3 and jets4 typically give rise to intrinsic self-
sustained oscillations when they exhibit a sufficiently lar
region of absolute instability.5 Fluctuations saturate at a finit
amplitude in the locally unstable regions of the flow a
become tuned at an overall frequency. The intrinsic f
quency and the associated spatial distribution of fluctuati
define aglobal modeliving on the underlying unstable bas
flow. In the present letter we show the existence of fu
nonlinear global modes with a sharp stationary front sepa
ing linear and nonlinear regions. The complex Ginzbur
Landau~CGL! equation is chosen as a model of open flo
since families of linear and nonlinear wave solutions
readily determined analytically. As summarized below,
study of CGL models has been found to lead to linear f
quency selection criteria6 that remain applicable for the
Navier–Stokes equations.7 The same approach is adopte
here in the fully nonlinear context.

In the linear approximation, global frequency selectio
in doubly infinite domainsis dictated by saddle poin
conditions6,7 imposed on the local linear dispersion relatio
Such a criterion predicts remarkably well the vortex sh
ding frequency behind blunt edged plates.8 Nonlinearexten-
sions of these concepts have only recently been develo
mainly in the context of various one-dimensional evoluti
models in semi-infinite9,10 or finite11 domains. The results
compare satisfactorily with numerical simulations and e
periments for Taylor–Couette flow12 and Rayleigh–Be´nard
convection with throughflow.13,10 Surprisingly, fully nonlin-
earsoft global modesof the CGL equation varying smoothl
over a doubly infinite domain have been shown,14 by appli-
cation of Wentzel–Kramers–Brillouin–Jeffreys~WKBJ!
theory, to satisfy a nonlinear saddle point criterion which
101070-6631/98/10(10)/2433/3/$15.00 243
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formally analogous to its linear counterpart. Here we sh
the existence of a second class of nonlinear spatially
tended states in doubly infinite domains:steep global modes
with a sharp front.

We assume that the fluctuating complex scalar fi
c(x,t) is governed by the supercritical CGL equation writt
as

i
]c

]t
5S v0~X!1

1

2
vkk~X!k0~X!2Dc1 ivkk~X!k0~X!

]c

]x

2
1

2
vkk~X!

]2c

]x2
1g~X!ucu2c, ~1!

where the complex functionsv0(X), vkk(X), k0(X), and
g(X) solely depend on the slow space variableX5ex,
e!1, to account for the weak inhomogeneity of the mediu
The choice of these functions and their meaning will beco
clear when we discuss the resulting linear and nonlinear
persion relations.

In regions where the amplitude ofc is small, its behav-
ior is governed by the linearized counterpart of~1!. Under
the assumption of weak inhomogeneity, linear solutions
approximated at leading order by waves of the fo
exp((i/e) *Xk(u)du2ivt). The correspondinglocal linear dis-
persion relationreads

v5V l~k,X![v0~X!1 1
2 vkk~X!~k2k0~X!!2, ~2!

with associated complex local linear spatial branches

kl 6~X;v![k0~X!6A2
v2v0~X!

vkk~X!
. ~3!
3 © 1998 American Institute of Physics
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As defined in Ref. 5, the complex absolute frequencyv0

necessarily coincides with the branch point of~3!: at
v5v0 both wave number branches are equal to the lo
absolute wave numberk0 . The following basic flow struc-
ture is assumed: a central absolutely unstable~AU! region of
finite extent characterized byv0,i(X)[Im v0(X).0, sur-
rounded by convectively unstable~CU! regions with
v0,i(X),0, which in turn become stable far downstrea
(X→1`) and upstream (X→2`). In order to enforce cau
sality, sufficiently large wave numbers are assumed to
damped, i.e.,vkk, i(X),0 for all X. We assume a basic flow
advection towards increasingX which is readily shown to
correspond tok0,i,0. The1 and2 superscripts are unam
biguously assigned to the spatial branches exponentially
caying towardsX51` andX52`, respectively.

In unstable regions the CGL equation admits local n
linear traveling wave solutions of the formc
5R(X)exp((i/e) *Xk(u)du2ivt), with real wave numberk,
real frequencyv andreal amplitudeR governed by thelocal
nonlinear dispersion relation

v5v0~X!1 1
2 vkk~X!~k2k0~X!!21g~X!R2. ~4!

This complex equation with three real unknowns can ea
be cast in the form

v5Vnl~k,X! ~5a!

and

R25R2~k,X!, ~5b!

where the functionsVnl andR2 are quadratic polynomials in
k with X-dependentreal coefficients. The real nonlinea
wave number branchesknl6(X;v) are derived from~5a!; the
allowed wave numbers are those for whichR2(k,X).0. We
only consider CGL coefficients for which the finite amp
tude traveling waves are stable.

Global mode solutions over the entire flow are obtain
by asymptotically matching together local traveling wave
lutions of the same frequency. By definition, a global mo
is necessarily made up of the decayingkl 2 branch forX→
2` and the decayingkl 1 branch for X→1`. The fre-
quency selection gives rise to a nonlinear eigenvalue p
lem: the matching of finite amplitude oscillations in a cent
region to exponentially decaying tails in both upstream a
downstream directions can only be achieved for a spec
frequency.

This problem has been solved for purelylinear global
modesin Ref. 6. In the fully nonlinear regime,soft global
modeswith an overall slowly varying spatial envelope ha
been identified and described in Ref. 14; their real glo
frequencyvs is obtained at a saddle point (ks ,Xs) of the
nonlinear dispersion relationVnl(k,X). The objective of this
letter is to report the existence of a second type of fu
nonlinear solutions: in situations wheresoft modes fail to
exist, they are replaced by asteepmode with a sharp front.

The spatial structure of a steep global mode of freque
v f is given in Fig. 1~a!. Such a solution is characterized b
sharp front at the upstream boundaryXf of the AU region
indicated in gray. Associated linearkl 6 and nonlinearknl6

wave number branches at the frequencyv f vary along the
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streamwise directionX, as shown by solid and dashed line
in the X-kr plane of Fig. 1~b!. The local wave number mak
ing up the actual solution follows the path indicated by
thick line in Fig. 1~b!. Except for the jump at the front@re-
peated arrows in Fig. 1~b!#local wave number and amplitud
vary slowly. The nonlinear solution prevails in the regio
Xf,X,X2 which extends beyond the AU region.

The steep global frequencyv f and the front locationXf

are then solely determined by applying the following crit
rion to the locallinear dispersion relation:

v f5V l~kf ,Xf !, ~6!

where the pair (kf ,Xf) satisfies

]V l

]k
~kf ,Xf !50 and V i

l~kf ,Xf !50. ~7!

In terms ofv0(X) these conditions read

v f5v0~Xf ! and v0,i~Xf !50. ~8!

The above equations are reminiscent of the Dee–Lange
lection criterion15 for a propagating front connecting an un
stable statec50 to a fully nonlinear wave pattern in a ho
mogeneous medium undergoing a supercritical bifurcati
According to this criterion, a stationary front exists in hom
geneous media only when the control parameters are ch
to be exactly at the CU/AU transition. In the present inh
mogeneous, i.e., spatially varying context, the CU/AU tra
sition precisely occurs at the single locationXf . The front at
this station has the overall frequencyv f and the complex
wave number at the decaying front edge coincides@Fig. 1~b!#
with the local absolute wave numberkf5k0(Xf)
5kl 6(Xf ,v f).

By definition of the absolute wave number, the line
kl 6 branches meet atkf for v5v f andX5Xf . In a neigh-
borhood ofXf , the upstreamkl 2 branch decays towardsX

FIG. 1. ~a! Envelopeucu and real partc r of steep global mode with sharp
front at upstream boundaryXf of AU region ~in gray!. ~b! Corresponding
linear and nonlinear spatial branches in theX-kr plane. Local wave number
making up solution in~a! follows path indicated by a thick line. The wav
number jump at the front is indicated by repeated arrows.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp



e

.
re
n
m

a
s
c
e
i

ta
lin

ith
w
ar
,

ur
m

s
yp
e

th
to

t

el
c
up

o

he
nd
ff

b

ear
e

ss:
r–

-
n as
llel

ems
or
lobal

in

on

in

’

ion

ity

m-

ys-

es,

.

e
vor-

t-

el-

ett.

bili-

r-

2435Phys. Fluids, Vol. 10, No. 10, October 1998 Letters
52` when X,Xf , whereas the downstream spatially am
plified kl 1 branch is replaced by the nonlinearknl1 branch
whenX.Xf . The front atXf exactly connects the linearkl 2

branch in the CU regionX,Xf with the nonlinearknl 1

branch prevailing in the AU regionX.Xf . Further down-
stream the nonlinearknl1 branch eventually returns to th
linearkl 1 via a neutral stability stationX2 where the nonlin-
ear amplitude vanishes, exactly as for soft global modes14

A front located at the upstream boundary of the AU
gion is a stable configuration due to the following argume
Consider a small displacement from the front equilibriu
position atXf towardsX.Xf . The front now experiences
slightly AU medium and hence15 propagates slowly toward
its decaying edge, i.e., upstream. When the front is displa
to X,Xf , it penetrates into a CU region and is thus push
downstream. In any case the front is seen to return to
equilibrium position. The complete asymptotic represen
tion of steep global modes is obtained by linear and non
ear WKBJ matching techniques as in Ref. 14.

According to the present theory the CGL equation w
spatially varying coefficients has been shown to admit t
types of time harmonic solutions. Soft global modes
characterized by a nonlinear saddle point condition14

whereas steep global modes display a stationary front~6! and
~7! at the upstream boundary of the AU domain. The nat
of the selected global mode is determined by formally co
puting the respective characteristic frequenciesvs and v f :
in a future publication we will show that the mode of large
frequency is selected and that no other global mode t
occurs. The validity of these theoretical criteria is confirm
by spatio-temporal numerical simulations of~1!. Further-
more, according to the results of Ref. 16, one expects
nature of the bifurcation to a fully nonlinear global mode
be extremely sensitive toe.

In both instances, frequency selection takes place at
downstream position where a2 branch is linked to a1
branch:knl2 andknl1 at Xs for a soft global mode,kl 2 and
knl1 at Xf for a steep global mode. These stations effectiv
act as frequency generators for the entire flow. Such lo
tions may be interpreted as local oscillators inducing the
stream2 branch and the downstream1 branch, regardless
whether these branches are linear or nonlinear. It is notew
thy that the present steep frequency selection criterion~6!
and~7! demonstrates, in the CGL context, the validity of t
initial resonance principle postulated by Monkewitz a
Nguyen17 to account for self-excited resonances in blu
body wakes.

An essential difference between steep and soft glo
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modes is that steep global modes only involve one nonlin
spatial branchknl1. The sharp front allows an immediat
crossover from the linear2 to the nonlinear1 branch. Gen-
eralization of the present theory to real flows is in progre
In the context of free shear flows governed by the Navie
Stokes equations, the localknl1 is represented by fully non
linear saturated solutions on a streamwise periodic domai
obtained in direct numerical simulations for a given para
basic flow. To our knowledge localknl2 branches for free
shear flows have never been identified. It therefore se
likely that fully nonlinear global modes in wakes, jets
shear-layers may be described as steep rather than soft g
modes.
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