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Steep nonlinear global modes in spatially developing media

Benoit Pier,® Patrick Huerre, Jean-Marc Chomaz, and Arnaud Couairon
Laboratoire d'Hydrodynamique (LadHyX), CNRS UMR 76460lE polytechnique,
F-91128 Palaiseau cedex, France

(Received 16 April 1998; accepted 15 June 1998)

A new frequency selection criterion valid in the fully nonlinear regime is presented for extended
oscillating states in spatially developing media. The spatial structure and frequency of these modes
are dominated by the existence of a sharp front connecting linear to nonlinear regions. A new type
of fully nonlinear time harmonic solutions calleteep global modeis identified in the context of

the supercritical complex Ginzburg—Landau equation with slowly spatially varying coefficients. A
similar formulation is likely to be applicable to fully nonlinear synchronized global oscillations in
spatially developing free shear flows. €998 American Institute of Physics.
[S1070-6631(98)00410-3]

Spatially developing free shear flows such as mixingformally analogous to its linear counterpart. Here we show
layers! wakes?3 and jeté typically give rise to intrinsic self- the existence of a second class of nonlinear spatially ex-
sustained oscillations when they exhibit a sufficiently largetended states in doubly infinite domairs¢eep global modes
region of absolute instability Fluctuations saturate at a finite with a sharp front.
amplitude in the locally unstable regions of the flow and ~We assume that the fluctuating complex scalar field
become tuned at an overall frequency. The intrinsic fre4/(X,t) is governed by the supercritical CGL equation written
guency and the associated spatial distribution of fluctuation8s
define aglobal moddiving on the underlying unstable basic ” L
flow. In the present letter we show the existence of fully. ¥ _ 2 .
nonlinear global modes with a sharp stationary front separatl-ﬁ = @oX)+ 5 @l X)ko(X)7 | i e X)ko(X)
ing linear and nonlinear regions. The complex Ginzburg— 1 2
L_andau(CQ_L) equqtlon is chosen as a model of open flows — Z w0 X) — + (X)) |2, 1)
since families of linear and nonlinear wave solutions are 2 x?
readily determined analytically. As summarized below, the
study of CGL models has been found to lead to linear frewhere the complex functioneg(X), wy(X), ko(X), and
quency selection criteffathat remain applicable for the ¥(X) solely depend on the slow space variabde- ex,
Navier—Stokes equatiodsThe same approach is adopted €<1, to account for the weak inhomogeneity of the medium.
here in the fully nonlinear context. The choice of these functions and their meaning will become

In the linear approximation, global frequency selection clear when we discuss the resulting linear and nonlinear dis-
in doubly infinite domainsis dictated by saddle point Persion relations.
condition§” imposed on the local linear dispersion relation. N regions where the amplitude ¢fis small, its behav-
Such a criterion predicts remarkably well the vortex sheddOr is governed by the linearized counterpart(aj. Under

ding frequency behind blunt edged plafdsonlinearexten- the assumption of weak inhomogeneity, linear solutions are

sions of these concepts have only recently been develope@PProximated at leading order by waves of the form

mainly in the context of various one-dimensional evqutioneXp(_(VE) ka(?)du—iﬂ’t)- The correspondintpcal linear dis-
models insemi-infinit&1° or finite'! domains. The results Persion relationreads

compare satisfactorily with numerical simulations and ex-

periments for Taylor—Couette fldvand Rayleigh—Beard w=0'(K,X)=wo(X)+ 5 0 X)(k—ko(X))?, (]
convection with throughflow?° Surprisingly, fully nonlin-

earsoft global modesf the CGL equation varying smoothly With associated complex local linear spatial branches
over a doubly infinite domain have been shotfiy appli-

cation of Wentzel-Kramers—Brillouin—Jeffrey§WKBJ) K= (X: ) =ko(X) + Zw—wo(x) 3)
theory, to satisfy a nonlinear saddle point criterion which is ' o= '
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As defined in Ref. 5, the complex absolute frequengy
necessarily coincides with the branch point (8): at

o= wy both wave number branches are equal to the local

absolute wave numbeég,. The following basic flow struc-
ture is assumed: a central absolutely unstéhld) region of
finite extent characterized byg(X)=Im wy(X)>0, sur-
rounded by convectively unstabléCU) regions with
w0 i(X)<<0, which in turn become stable far downstream
(X— +) and upstreamX— — ). In order to enforce cau-

sality, sufficiently large wave numbers are assumed to be

damped, i.e.gwy {(X) <O for all X. We assume a basic flow
advection towards increasing which is readily shown to
correspond tky;<<0. The + and — superscripts are unam-

biguously assigned to the spatial branches exponentially de- k‘f’ﬁ‘

caying towardsX= +o andX= —«, respectively.

In unstable regions the CGL equation admits local non-

linear traveling wave solutions of the formy
=R(X)exp((i/e) *k(u)du—iwt), with real wave numberk,
real frequencyw andreal amplitudeR governed by théocal
nonlinear dispersion relation

w=wo(X)+ 70 X)(k—ko(X))?+ y(X)R?. (4)

Letters

¥

T

il
"

FIG. 1. (a) Envelope| | and real party, of steep global mode with sharp
front at upstream boundary; of AU region (in gray). (b) Corresponding

linear and nonlinear spatial branches in ¥k, plane. Local wave number
making up solution ina) follows path indicated by a thick line. The wave

This complex equation with three real unknowns can easilypumber jump at the front is indicated by repeated arrows.

be cast in the form

w=0"(k,X) (5a)

and
R2=R,(k,X), (5b)

where the function€)" and R, are quadratic polynomials in
k with X-dependentreal coefficients. The real nonlinear
wave number branchésd'= (X:w) are derived fron{5a); the
allowed wave numbers are those for whigh(k,X)>0. We
only consider CGL coefficients for which the finite ampli-
tude traveling waves are stable.

Global mode solutions over the entire flow are obtained

streamwise directioX, as shown by solid and dashed lines
in the X-k, plane of Fig. 1b). The local wave number mak-
ing up the actual solution follows the path indicated by a
thick line in Fig. 1(b). Except for the jump at the frojre-
peated arrows in Fig. 1(bldcal wave number and amplitude
vary slowly. The nonlinear solution prevails in the region
X;<X<X, which extends beyond the AU region.

The steep global frequeney; and the front locatiorX;
are then solely determined by applying the following crite-
rion to the locallinear dispersion relation:

by asymptotically matching together local traveling wave so-where the pair K¢, Xs) satisfies
lutions of the same frequency. By definition, a global mode 20

is necessarily made up of the decayklg branch forx—
—o and the decayin'"™ branch forX— +o. The fre-

guency selection gives rise to a nonlinear eigenvalue probmn terms ofwy(X) these conditions read

lem: the matching of finite amplitude oscillations in a central

region to exponentially decaying tails in both upstream and

w1 =Q' (ke Xy), (6)
—ic (ke Xp=0 and Q!(k¢,X;)=0. 7)
o= wo(Xs) and wg;(X;)=0. 8

downstream directions can only be achieved for a specifiThe above equations are reminiscent of the Dee—Langer se-

frequency.
This problem has been solved for purdigear global
modesin Ref. 6. In the fully nonlinear regimesoft global

lection criteriort® for a propagating front connecting an un-
stable state/=0 to a fully nonlinear wave pattern in a ho-
mogeneous medium undergoing a supercritical bifurcation.

modeswith an overall slowly varying spatial envelope have According to this criterion, a stationary front exists in homo-
been identified and described in Ref. 14; their real globabeneous media only when the control parameters are chosen
frequencywg is obtained at a saddle poinky,Xs) of the to be exactly at the CU/AU transition. In the present inho-
nonlinear dispersion relatioR"'(k,X). The objective of this mogeneous, i.e., spatially varying context, the CU/AU tran-

letter is to report the existence of a second type of fullysition precisely occurs at the single locatip. The front at

nonlinear solutions: in situations whessft modes fail to
exist, they are replaced bysdeepmode with a sharp front.

this station has the overall frequenay and the complex
wave number at the decaying front edge coincideg. 1(b)]
The spatial structure of a steep global mode of frequencyvith

the local absolute wave numbek;=Kky(Xs)

s is given in Fig. 1(a). Such a solution is characterized by a=k'* (X;,wy).

sharp front at the upstream boundaty of the AU region
indicated in gray. Associated linet™ and nonlineak"*
wave number branches at the frequenrgyvary along the

By definition of the absolute wave number, the linear
k'* branches meet &; for w=w; andX=X;. In a neigh-
borhood ofX;, the upstreank'~ branch decays toward$
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=—o when X<X;, whereas the downstream spatially am- modes is that steep global modes only involve one nonlinear
plified k'* branch is replaced by the nonlineidl' ™ branch  spatial branchk™*. The sharp front allows an immediate
whenX>X; . The front atX; exactly connects the lineét™ crossover from the linear to the nonlineart branch. Gen-
branch in the CU regiorX<X; with the nonlineark™ * eralization of the present theory to real flows is in progress:
branch prevailing in the AU regioXX> X; . Further down- In the context of free shear flows governed by the Navier—
stream the nonlineak™* branch eventually returns to the Stokes equations, the lodel' "™ is represented by fully non-
lineark'" via a neutral stability statioX, where the nonlin- linear saturated solutions on a streamwise periodic domain as
ear amplitude vanishes, exactly as for soft global mdfles. obtained in direct numerical simulations for a given parallel
A front located at the upstream boundary of the AU re-basic flow. To our knowledge loc&" ~ branches for free

gion is a stable configuration due to the following argumentshear flows have never been identified. It therefore seems
Consider a small displacement from the front equilibriumlikely that fully nonlinear global modes in wakes, jets or
position atX; towardsX>X;. The front now experiences a shear-layers may be described as steep rather than soft global
slightly AU medium and hend@ propagates slowly towards modes.
its decaying edge, i.e., upstream. When the front is displaced
e o e e e ey s prc gty
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