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We consider the generalized version in continuous time of the parking problem of Knuth introduced in [1]. Files arrive following a Poisson point process and are stored on a hardware identified with the real line, at the right of their arrival point. We study here the evolution of the extremities of the data block straddling 0, which is empty at time 0 and is equal to R at a deterministic time.

Introduction

This paper is a continuation of [START_REF] Bansaye | On a model for the storage of files on a hardware I : Statistics at a fixed time and asymptotics[END_REF] but it can be read independently. We consider a generalized version in continuous time of the original parking problem of Knuth, as a model for the storage of files on a hardware. We are interested in the evolution of a typical data block while files are stored on the hardware and we shall characterize the process of the extremities and the length of this block.

We recall now the process of storage of files. In the original problem of Knuth, files arrive successively at location chosen uniformly among n spots. They are stored in the first free spot at the right of their arrival point (see [START_REF] Chassaing | Hachage, arbres, chemins[END_REF][START_REF] Flajolet | On the analysis of linear probing hashing[END_REF][START_REF] Foata | Mappings of acyclic and parking functions[END_REF]). In the model considered here, the hardware is identified with the real line and a file labelled i of length (or size) l i arrives at time t i on the real line at location x i . The storage of this file uses the free portion of size l i of the real line at the right of x i as close to x i as possible (see Figure 1). That is : it covers [x i , x i + l i [ if this interval is free at time t i . Otherwise it is shifted to the right until a free space is found and it may be split into several parts which are stored in the closest free spots. The arrival of files follow a Poisson point process (PPP) : {(t i , x i , l i ) : i ∈ N} is a PPP with intensity dt ⊗ dx ⊗ ν(dl) on R + × R × R + . We denote ν(x) = ν(]x, ∞]) and we assume m := ∞ 0 lν(dl) < ∞. So m is the mean of the total sizes of files which arrive during a unit interval time on some interval with unit length. In [START_REF] Bansaye | On a model for the storage of files on a hardware I : Statistics at a fixed time and asymptotics[END_REF], this random covering has been constructed rigorously and some statistics of this covering were given. We proved that the hardware becomes full at a deterministic time equal to 1/m, studied the asymptotics at this saturation time and characterized the distribution of the covering at a fixed time by giving the joint distribution of the block of data straddling 0 and the free spaces on the sides of this block.

In this work, we focus on the dynamics of the covering and we shall study the block of data straddling a typical point, say 0 for simplicity, which is denoted by B 0 . Thus B 0 (t) is the block of data of the hardware containing 0 at time t. We will show that its extremities and its length are pure jump Markov processes. Specifically, if a file arrives at time t at the left of B 0 (t-) and cannot be stored entirely at its left, it yields a jump of the left extremity of B 0 . The data of this file which cannot be stored at the left of B 0 (t-) are called remaining data. These remaining data yield a jump of the right extremity of B 0 (see Figure 2). We shall prove that these events happen at instants which accumulate at 1/m and induce a random partition of the time interval [0, 1/m] with the Poisson-Dirichlet distribution (Theorem 2) and that the jumps of the extremities at these instants form a PPP on [0, 1/m] × R + × R + (Proposition 2). Moreover the successive quantities of remaining data form an iid sequence (Corollary 2). If a file arrives on B 0 , it yields a jump of the right extremity only (see Figure 3). The other files do not induce immediately a jump of B 0 and we get the evolution of (B 0 (t)) t≥0 (Theorem 4). Finally, we prove that the process describing the length of (B 0 (t)) t≥0 is a branching process with immigration (Corollary 5). 

Preliminaries

The covering C(t) described in Introduction has been constructed in Section 2.1 in [START_REF] Bansaye | On a model for the storage of files on a hardware I : Statistics at a fixed time and asymptotics[END_REF] and we recall some useful results of this work. We denote by R(t) the complementary set of C(t). It is natural and convenient to decide that files and so C(t) and R(t) are closed at the left, open at the right. We introduce the process (Y (t)

x ) x∈R defined by

Y (t) 0 := 0 ; Y (t) b -Y (t) a = t i ≤t x i ∈]a,b] l i -(b -a) for a < b. (1) 
It has càdlàg paths and stationary independent increments. The process (Y

(t)
x ) x≥0 is then a Lévy process. Its drift is equal to -1 and its Lévy measure is equal to tν. Its Laplace exponent Ψ (t) defined by

∀ ρ ≥ 0, E(exp(-ρY (t) x )) = exp(-xΨ (t) (ρ)), (2) 
is given by

∀ ρ ≥ 0, Ψ (t) (ρ) = -ρ + ∞ 0 1 -e -ρx tν(dx). (3) 
Introducing also its infimum process I (t)

x := inf{Y (t) y

: y ≤ x} for every x ∈ R, we got the following expression for the covering and the free space 

C(t) = {x ∈ R : Y (t) x > I (t) x }, R(t) = {x ∈ R : Y (t) x = I (t) x } a.s. ( 4 
)
B 0 (t) = [g(t), d(t)[, l(t) = d(t) -g(t).
We will also need the free space at the right of B 0 (t) denoted by -→ R(t) and at the left of B 0 (t), turned over, closed at the left and open at the right, denoted by

←- R(t). If R ⊂ R and R = ⊔ n∈N [a n , b n [, we denote by R = ⊔ n∈N [-b n , -a n [
the symmetric set closed at the left and open at the right. Then we can define (see Section 3 in [START_REF] Bansaye | On a model for the storage of files on a hardware I : Statistics at a fixed time and asymptotics[END_REF] for details)

-→ R(t) := (R(t) -d(t)) ∩ [0, ∞], ←- R(t) := -→ R(t),
which satisfy the following identity

R(t) = (d(t) + -→ R(t)) ⊔ (-g(t) + ←- R(t)).
(5)

In [START_REF] Bansaye | On a model for the storage of files on a hardware I : Statistics at a fixed time and asymptotics[END_REF] Section 3, we proved that

-→ R(t) and ←- R(t) are the range of the processes ( → τ (t)
x ) x≥0 and (

← τ (t)
x ) x≥0 respectively defined by

→ τ (t) x := inf{y ≥ 0 : | -→ R(t) ∩ [0, y]| > x}, ← τ (t) 
x := inf{y ≥ 0 :

| ←- R(t) ∩ [0, y]| > x}.
Moreover denoting by κ (t) the inverse function of -Ψ (t) and by Π (t) its Lévy measure :

κ (t) • (-Ψ (t) ) = Id, ∀ρ ≥ 0, κ (t) (ρ) = ρ + ∞ 0 (1 -e -ρx )Π (t) (dx), (6) 
enabled us to describe R(t) in the following way : t) are two indepedent subordinators with Laplace exponent κ (t) , which are independent of (g(t), d(t)).

Theorem 1. (i) The processes → τ (t) and ← τ ( 
(ii) The distribution of (g(t), d(t)) is specified by :

(g(t), d(t)) = (-U l(t), (1 -U )l(t)), P(l(t) ∈ dx) = (1 -mt) δ 0 (dx) + 1l {x>0} xΠ (t) (dx)
where U uniform random variable on [0, 1] independent of l(t).

For the basic example ν = δ 1 , we got for all x ∈ R + and n ∈ N,

P(Y (t) x + x = n) = e -tx (tx) n n! , (7) 
P( → τ (t) x = x + n) = x x + n e -t(x+n) (t(n + x)) n n! , Π (t) (n) = (tn) n n.n! e -tn (8) 
Thus l(t) follows a size biased Borel law :

P(l(t) = n) = (1 -t) (tn) n n! e -tn .
We proved also the following identities :

Π(t) (0) = tν(0), ∞ 0 xΠ (t) (dx) = mt 1 -mt , [κ (t) ] ′ (0) = 1 1 -mt , (9) 
and the following identities of measures on

R + × R + , xP( ← τ (t) l ∈ dx)dl = xP( → τ (t) l ∈ dx)dl = lP(-Y (t) x ∈ dl)dx. ( 10 
)
Finally, we recall a useful expression for the law of g(t). For all t ∈ [0, 1/m[ and λ ≥ 0,

E exp λg(t) = exp ∞ 0 (e -λx -1)x -1 P(Y (t) x > 0)dx . ( 11 
)
We can focus now on the evolution of the block containing 0, B 0 . First, we prove some properties of absence of memory (Section 3) : the evolution of B 0 after time t depends from the past of this block only through l(t) (Markov property). Then we focus on the left extremity : it is an additive process and we give its Lévy measure. As a consequence, we get the distribution of the instants at which the left extremity jumps (Section 4). We then derive the distribution of the remaining data which completes the description of the process of storage at the left extremity (Section 5). By taking also into account the data fallen on B 0 , we get then the evolution of (g(t), d(t)) (Section 6). The latter characterizes the evolution of the right extremity and the length (Section 7).

Markov property of B 0

We have already proved that R(t) enjoys a 'spatial' regeneration property (see Proposition 3 in [START_REF] Bansaye | On a model for the storage of files on a hardware I : Statistics at a fixed time and asymptotics[END_REF]). To study the evolution of B 0 , we need 'time' regeneration property. Here we prove that the evolution of the block containing 0 up to time t is independent of the covering outside [g(t), d(t)] up to time t. In Section 5, this property will ensure that the evolution of B 0 after time t depends from the past of this block only through l(t) (Markov property).

Proposition 1. For every t ∈ [0, 1/m[, the following three processes with values in the space of subsets of R .

(

g(t) -R(s)) ∩ [0, ∞[, 0 ≤ s ≤ t, . (R(s) -d(t)) ∩ [0, ∞[, 0 ≤ s ≤ t, . R(s) ∩ [g(t), d(t)], 0 ≤ s ≤ t, are independent.
Remark 1. Actually, we have the following regeneration property :

∀t ∈ [0, 1/m[, ∀x ∈ R, (R(s) -d x (R(t))) ∩ [0, ∞[: s ∈ [0, t] is independent of (R(s) -d x (R(t)))∩] -∞, 0] : s ∈ [0, t] and is distributed as (R(s) -d 0 (R(t))) ∩ [0, ∞[: s ∈ [0, t] .
This result is a direct consequence of the following lemma where we consider the point processes of files until time t at the left of/at the right of/inside [g, d] : x ) x≥0 the càdlàg version of (Y

P g (t) := {(t i , g -x i , l i ) : t i ≤ t, x i < g}, P d (t) := {(t i , x i -d, l i ) : t i ≤ t, d < x i }, P d g (t) := {(t i , x i , l i ) : t i ≤ t,
(t) -x ) x≥0
. This is a spectrally negative Lévy process with bounded variation, which drifts to ∞. Note that,

g(t) = g 0 (R(t)) = sup{x ≤ 0 : Y (t) x = I (t) x } = sup{x ≤ 0 : Y (t) x -= I (t) 0 } = -inf{x ≥ 0 : Y (t) x = inf{ Y (t) z : z ≥ 0}}. Then ( Y (t) -g(t)+x -Y (t) -g(t) ) x≥0 is independent of ( Y (t)
x ) 0≤x≤-g(t) (decomposition of a Lévy process at its infimum [START_REF] Millar | Zero-one laws and the minimum of a Markov process[END_REF]). Considering the locations and sizes of the jumps of these two processes yields

{(g(t) -x i , l i ) : t i ≤ t, x i < g(t)} is independent of {(x i , l i ) : t i ≤ t, g(t) ≤ x i ≤ 0}. Adding that {(x i , l i ) : t i ≤ t, x i > 0} is independent of {(x i , l i ) : t i ≤ t, x i ≤ 0} and g(t) is {(x i , l i ) : t i ≤ t, x i ≤ 0} measurable, we get {(g(t) -x i , l i ) : t i ≤ t, x i < g(t)} is independent of {(x i , l i ) : t i ≤ t, x i ≥ g(t)}.
We now extend the preceding by incorporating the times (t i ) i∈N . In this direction, we recall that if ( x i , l i ) i∈N is a PPP on R × R + with intensity tdx ⊗ ν(dl) and ( t i ) i∈N is an iid sequence distributed uniformly on [0, t], then {( t i , x i , l i ) : i ∈ N} is distributed as

{(t i , x i , l i ) : i ∈ N, t i ≤ t}. Adding that g(t) is {(x i , l i ) : i ∈ N, t i ≤ t} measurable, we get {(t i , g(t) -x i , l i ) : t i ≤ t, x i < g(t)} is independent of {(t i , x i , l i ) : t i ≤ t, x i ≥ g(t)}.
This ensures that P g(t) (t) is independent of (P

d(t) g(t) (t), P d(t) (t)).
One can prove similarly that P d(t) (t) is independent of (P g(t) (t), P

d(t) g(t) (t)) using that (Y (t) d(t)+x -Y (t) d(t) ) x≥0 is independent of (Y (t) x ) x≤d(t) or Lemma 2 in [1].
This guarantees the absence of memory at the left of B 0 (t). First we have : Corollary 1. (g(t)) t∈[0,1/m] has decreasing càdlàg paths with independent increments. Proof. Let 0 ≤ t < t + s ≤ 1/m. The increment g(t + s) -g(t) just depends on ←-R(t) and the point process of files which arrive after time t at the left of B 0 (t) (t i , x i -g(t), l i ) : t i > t, x i < g(t) . By the Poissonian property, these two quantities are independent and (g(u) : u ∈ [0, t]) is independent of this point process of files. Moreover (g(u

) : u ∈ [0, t]) is also independent of (g(t) -R(t)) ∩ [0, ∞[ by Proposition 1. So (g(u) : u ∈ [0, t]) is independent of g(t + s) -g(t).
This explains the observation made in [START_REF] Bansaye | On a model for the storage of files on a hardware I : Statistics at a fixed time and asymptotics[END_REF] Section 3 that the distribution of g(t) is infinitively divisible (see [START_REF] Feller | An introduction to probability theory and its applications[END_REF] on page 174 or [START_REF] Sato | Lévy processes and infinitely divisible distributions[END_REF] on page 47 for details).

Evolution of the left extremity

Now we describe the process (g(t)) t∈[0,1/m[ . We know that its increments are independent and (11) specifies its marginals. We shall determine its Lévy measure and prove that its mass is finite (see [START_REF] Sato | Lévy processes and infinitely divisible distributions[END_REF] for terminology). This means that the instants when a file arrives at the left of B 0 and joins this data block during its storage do not accumulate before time 1/m, even if ν(0) = ∞ (files arrive densely near the data block). Proposition 3 in [START_REF] Bansaye | On a model for the storage of files on a hardware I : Statistics at a fixed time and asymptotics[END_REF] ensures that the first time T 1 when 0 is covered, which is also the first jump time of (g(t)) t∈[0,1/m] , is uniformly distributed on [0, 1/m]. Actually the second jump time is uniformly distributed in [T 1 , 1/m] and so on ... More precisely, we have : Theorem 2. The jump times of (g(t)) t∈[0,1/m] are given by an increasing sequence (T i ) i∈N which accumulate at 1/m. More precisely, using the convention T 0 = 0, it holds that for every i ≥ 1, conditionally on T i-1 = t, T i is independent of (T j ) 0≤j≤i-1 and is uniformly distributed on [t, 1/m].

Then, denoting by -G i the jump of (g(t)) t∈[0,1/m] at time T i for every i ∈ N, we have

g(t) := - T i ≤t G i where {(T i , G i ) : i ∈ N} is a PPP on [0, 1/m[×R + with intensity dtdx ∞ 0 P(Y (t) x ∈ -dl)ν(l).
In other words, (g(t)) t∈[0,1/m] is an additive process and its generating triplet is

0, t 0 ds ∞ 0 P(Y (s) x ∈ -dl)ν(l), 0 .
In particular, the interarrival times of {T i : i ∈ N} form a 'continuous uniform stick breaking sequence' (see the residual allocation model in [START_REF] Pitman | Combinatorial stochastic processes[END_REF] on pages 63-64) : the distribution of (T i+1 -T i )/m i∈N is the Griffiths-Engen-McCloskey distribution with parameter (0, 1) (i.e. rearranging these increments in the decreasing order yield the Poisson-Dirichlet distribution of parameter (0, 1)).

Further, for every i ∈ N, conditionally on T i = t, the law of G i is given by

P(G i ∈ dx) = dx 1 -mt m ∞ 0 P(Y (t) x ∈ -dl)ν(l), (12) 
and as a consequence,

E(G i ) = 1 (1 -mt) 2 + 1 2 m 1 -mt ∞ 0 l 2 ν(dl).
Example 1. For the basic example (ν = δ 1 ), conditionally on T i = t, we have,

P(G i ∈ dx) = (1 -t)e -tx (tx) [x]
[x]! dx, writing [x] = sup{n ∈ N : n ≤ x} and using [START_REF] Feller | An introduction to probability theory and its applications[END_REF].

For the proof, we need the following identity Lemma 2. Let (S t ) t≥0 be a subordinator with no drift and Lévy tail μ. Then for all (t, x) ∈ R 2 + , we have

P(S t > x) = t 0 ds x 0 P(S s ∈ db)μ(x -b).
Proof. As S has no drift, we have for all t > 0 and x > 0,

S t > x ⇔ ∃! s ∈]0, t] : S s -≤ x, ∆S s > x -S s - a.s.
We get then, using also the compensation formula (see [START_REF] Bertoin | Lévy processes[END_REF] on page 7),

P(S t > x) = E( 0<s≤t 1l {S s -≤x} 1l {∆Ss>x-S s -} ) = E( t 0 ds1l {Ss≤x} μ(x -S s ))
which completes the proof. One can also give an analytic proof by computing the Laplace transform of the right hand side for q > 0 and using Fubini :

∞ 0 dxe -qx t 0 ds x 0 P(S s ∈ db)μ(x -b) = t 0 ds ∞ 0 µ(dy) ∞ 0 P(S s ∈ db) e -qb -e -q(b+y) q = t 0 dse -φ(q)s ∞ 0 µ(dy) 1 -e -qy q = 1 -e -φ(q)t φ(q) × φ(q) q = ∞ 0 dxe -qx P(S t > x)
which proves the lemma.

We are now able to establish Theorem 2.

Proof. We know from Corollary 1 that (g(t)) t∈[0,1/m] is an additive process. Moreover for every x ≥ 0, (Y (t)

x + x) t≥0 is a subordinator with no drift and Lévy measure xν (see ( 1)). So Lemma 2 ensures that

P(Y (t) x > 0) = P(Y (t) x + x > x) = t 0 ds x 0 P(Y (s) x + x ∈ db)xν(x -b) = t 0 ds ∞ 0 P(Y (s) x ∈ -dl)xν(l).
Using [START_REF] Millar | Zero-one laws and the minimum of a Markov process[END_REF], we get

E exp λg(t) = exp ∞ 0 dx(e -λx -1) t 0 ds ∞ 0 P(Y (s) x ∈ -dl)ν(l) .
So (g(t)) t∈[0,1/m] is an additive process with generating triplet 0,

t 0 ds ∞ 0 P(Y (s)
x ∈ -dl)ν(l), 0 using Definition 8.2 and Theorem 9.8 in [START_REF] Sato | Lévy processes and infinitely divisible distributions[END_REF]. This characterizes the distribution of (g(t)) t∈[0,1/m] (by Theorem 9.8 in [START_REF] Sato | Lévy processes and infinitely divisible distributions[END_REF]) and proves that

{(T i , G i ) : i ∈ N} is a PPP on [0, 1/m[×R + with intensity dtdx ∞ 0 P(Y (t) 
x ∈ -dl)ν(l). One can also compute the distribution of g(t + s) -g(t) using the independence of increments and ( 11) : this proves that that g(.) is the sum of jumps given by a PPP.

By projection, {T

i : i ∈ N} is a PPP on [0, 1/m[ with intensity m(1 -mt) -1 dt. Indeed, for every t ∈ [0, 1/m[, ∞ 0 dx ∞ 0 P(Y (t) x ∈ -dl)ν(l) = ∞ 0 P( → τ (t) l ∈ dx) ∞ 0 dl x l ν(l) using (10) = ∞ 0 dl E( → τ (t) l )ν(l) l = E( → τ (t) 1 ) ∞ 0 ν(l)dl = m 1 -mt using (9). Thus, writing N t ′ t := card{i ∈ N : T i ∈]t, t ′ ]}, we have N t 0 < ∞ a.
s. for every t ∈ [0, 1/m[. We we can then sort the times T i and we have

P(T i+1 > t ′ | T i = t) = P(N t ′ t = 0) = exp - t ′ t ds m 1 -ms = 1 -mt ′ 1 -mt , meaning that T i+1 is uniformly distributed in [T i , 1/m].
The independence is a consequence of the Poissonian property of {T i : i ∈ N} and we get the theorem.

Finally, this proves [START_REF] Pitman | Combinatorial stochastic processes[END_REF] and for every i ∈ N, conditionally on T i = t, we get

E(G i ) = 1 -mt m ∞ 0 dl E([ → τ (t) l ] 2 )ν(l) l using again (10) = 1 -mt m ∞ 0 dlν(l) l m 1 -mt 2 + ∞ 0 l 2 ν(dl) (1 -mt) 3
since [κ (t) ] ′ (0) is given by ( 9) and [κ (t) ] ′′ (0) is given by Proposition 4 in [START_REF] Bansaye | On a model for the storage of files on a hardware I : Statistics at a fixed time and asymptotics[END_REF].

The process of remaining data

We still consider the files which arrive at the left of B 0 , the block containing 0, and cannot be entirely stored at the left of this block (see Figure 2). Such events occur at the jump times of (g(t)) t∈[0,1/m] , that is at time T i . We focus here on the portions of these files which cannot be stored at the left of B 0 and are shifted to the right of B 0 (T i -) to find a free space. They are called remaining data and denoted by R i . Thus R i is the quantity of data which arrives at the left of B 0 at time T i and is stored at the right of B 0 . Then it is also the quantity of data over g(T i-1 -) at time T i (see Section 2.1 in [START_REF] Bansaye | On a model for the storage of files on a hardware I : Statistics at a fixed time and asymptotics[END_REF] for details) and it is given by

∀i ≥ 1, R i := Y (T i ) g(T i-1 -) -I (T i ) g(T i-1 -) .
We aim at determining the distribution of {(T i , G i , R i ) : i ∈ N} which is the key to the characterization of the jumps of (g(t), d(t)) t∈[0,1/m] . In that view, we need to describe the arrival of files which induce the jumps (G i , R i ). So we consider the half hardware at the left of g(t), which we turn over, so that it is now identified with R + and its free space is given by ←-R(t) (see Section 2). The size of free space and the first free plots of this half hardware are given by the processes (L

(t) x ) x≥0 and (D (t) x ) x≥0 defined by ∀t ∈ [0, 1/m[, ∀x ≥ 0, L (t) x =| ←- R(t) ∩ [0, x] |, D (t) x = inf{y > x : y ∈ ←- R(t)}.
When at time t, a file of length l arrives at location -x + g(t-) on the hardware (i.e. at location x on the half hardware), it yields a jump of g(.) if the free space L (t-) x between -x + g(t-) and g(t-) is less than l. Then the quantity of remaining data is l -L (t-) x and the jump of the left extremity is D (t-) x (see Figure 2). So we naturally introduce the measure ρ (t) on R 2 + defined by

ρ (t) (dydz) := ∞ 0 dx ∞ 0 ν(dl)P(D (t) x ∈ dy, l -L (t) x ∈ dz).
In forthcoming Lemma 3, we give a useful alternative expression of ρ (t) . This measure gives the intensity of the point process {(T i , G i , R i ) : i ∈ N}, as stated by the following result.

Theorem 3. {(T i , G i , R i ) : i ∈ N} is a PPP on [0, 1/m[×R 2 + with intensity dtρ (t) (dydz).
A remarkable consequence is that (R i ) i∈N is an iid sequence : whereas the rate at which jumps occur increases as time gets closer to 1/m, the quantity of remaining data keeps the same distribution.

Corollary 2. {(T i , R i ) : i ∈ N} is a PPP on [0, 1/m[×R + with intensity dtdz ν(z)
1-mt . In other words, (R i ) i∈N is iid, independent of (T i ) i∈N and its distribution is given by :

P(R i ∈ dz) = m -1 ν(z)dz, z ≥ 0.
Example 2. Using the expression of ρ (t) given by Lemma 3 below, the expressions ( 23) and ( 24) in [START_REF] Bansaye | On a model for the storage of files on a hardware I : Statistics at a fixed time and asymptotics[END_REF] yield an expression of ρ (t) for the basic example and the gamma distribution which is quite heavy and not mentioned here. Nonetheless the quantity of remaining data can be often calculated explicitly. For the basic example (ν = δ 1 ), the remaining data are uniform random variables on [0, 1]. For the exponential distribution (ν(dl) = 1l {l≥0} e -l dl), the remaining data are also exponentially distributed.

The proofs of these results are organized as follows. First, in Lemma 3, we give a more explicit expression of ρ (t) which will be useful for the proofs and will enable us to derive Corollary 2 from Theorem 3. Second, we prove that ρ (t) gives the intensity of the point process

{(T i , G i , R i ) : i ∈ N} (Lemma 4). That is for every t ∈ [0, 1/m[ and A =]a 1 , b 1 ]×]a 2 , b 2 ] ⊂ R 2
+ , we have :

lim h→0 P(∃i ∈ N : T i ∈]t, t + h], (G i , R i ) ∈ A) h = ρ (t) (A).
The lowerbound appears naturally by considering the arrival of one single file independently of the past which induces a jump of the left extremity, as described at the beginning of this section (see also Figure 2). However, in the case ν(0) = ∞, some jumps of the left extremity could be due to the successive arrival of many files during a short time interval ]t, t + h]. Thanks to Theorem 2, we already know the rate at which jumps occur (i.e. the total intensity). This will give us the upperbound. Finally, we prove that the point process {(T i , G i , R i ) : i ∈ N} enjoys a memoryless property (Lemma 5), which is a direct consequence of results of Section 3. We get then the complete description of this point process, which enables us to prove Theorem 3. Corollary 2 follows by integrating ρ (t) with respect to the first coordinate.

Recall the notation in Theorem 1 and (6).

Lemma 3. For every t ∈ [0, 1/m[, the measure ρ (t) (dydz) can also be expressed as

dz ∞ z ν(dl) P( ← τ (t) l-z ∈ dy) + y 0 P( ← τ (t) l-z ∈ dx)(y -x)Π (t) (dy -x) = ∞ z ν(dl)(l -z) y -1 dyP(Y (t) y + l ∈ dz) + y 0 P(Y (t) x + l ∈ dz)(yx -1 -1)Π (t) (dy -x)
Proof. By Lemma 1.11 in Chapter 1 of [START_REF] Bertoin | Subordinators, Lévy processes with no negative jumps and branching processes[END_REF] applied to (

← τ (t)
x ) x≥0 , we have for all a, b ≥ 0 and q > 0 (t is fixed and omitted in the notation), ∞ 0 dxe -qx E(exp(-bL x -aD x )) = κ(a + q) -κ(a) q(κ(a + q) + b) .

Letting q → 0, we get

∞ 0 dxE(exp(-bL x -aD x )) = κ ′ (a) κ(a) + b = ∞ 0 dze -bz κ ′ (a)e -κ(a)z .
From κ ′ (a) = ∞ 0 e -ay (δ 0 (dy) + yΠ(dy)) and e -κ(a)z = ∞ 0 e -ay P(

← τ z ∈ dy), we deduce ∞ 0 dxE(exp(-bL x -aD x )) = ∞ 0 dz ∞ 0 γ z (dy)e -bz-ay , (13) 
where γ z is the convolution of δ 0 (dy) + yΠ(dy) and P( ← τ z ∈ dy). Thus,

γ z (dy) = y 0 P( ← τ z ∈ dx)(δ 0 (dy -x) + (y -x)Π(dy -x)) = P( ← τ z ∈ dy) + y 0 P( ← τ z ∈ dx)(y -x)Π(dy -x).
And the identification of Laplace transforms in [START_REF] Sato | Lévy processes and infinitely divisible distributions[END_REF] entails that

∞ 0 dxP(L x ∈ dz, D x ∈ dy) = dz P( ← τ z ∈ dy) + y 0 P( ← τ z ∈ dx)(y -x)Π(dy -x) , (14) 
which proves the first identity of the lemma integrating with respect to l. Using [START_REF] Kingman | Poisson processes[END_REF] gives the second one.

Remark 2. A recent work of Winkel (Theorem 1 in [START_REF] Winkel | Electronic foreign-exchange markets and passage events of independent subordinators[END_REF]) enables to calculate differently the law of P(L x ∈ dz, D x ∈ dy) (L x corresponds to T x in [START_REF] Winkel | Electronic foreign-exchange markets and passage events of independent subordinators[END_REF] and D x to X(T x-) + ∆ x ) :

∞ 0 dxP(L x ∈ dz, D x ∈ dy) = dyP(H y ∈ dz) + dz ∞ 0 P( ← τ x ∈ dx)(y -x)Π(dy -x),
where

H x = inf{a ≥ 0, ← τ a = x}.
Then observe that the measures on R 2 + dyP(H y ∈ dz) and dzP( ← τ z ∈ dy) coincide by computing their Laplace transform using (4) in [START_REF] Winkel | Electronic foreign-exchange markets and passage events of independent subordinators[END_REF]. This proves [START_REF] Winkel | Electronic foreign-exchange markets and passage events of independent subordinators[END_REF].

Second, for every Borel set B of [0, 1/m[×R 2 + , we define N B := card{i ∈ N : (T i , G i , R i ) ∈ B} and we say that A is a rectangle of D ⊂ R d if A is a subset of D of the form {x = (x 1 , x 2 , .., x d ), a 1 < x 1 ≤ b 1 , .., a d < x d ≤ b d }.
Then, we have Lemma 4. For all t ∈ [0, 1/m[ and A rectangle of R 2 + , we have :

lim h→0 P(N ]t,t+h]×A ≥ 1) h = ρ (t) (A).
Proof. First we prove the lowerbound. Second, we check that the convergence holds for A = R 2 + .

• Let ǫ > 0, A =]a, b]×]c, d] and work conditionally on ←-R(t). We consider a file labelled i which arrives at time t i ∈]t, t + h] at location x i < g(t). We put x i := g(t) -x i ≥ 0 the arrival point on the half line at the left of g(t) and require that

l i -L (t) x i ∈]c, d -ǫ], D (t) x i ∈]a, b -ǫ], |L (t i -) x i -L (t) x i | ≤ ǫ, |D (t i -) b -D (t) b | ≤ ǫ. Then file i verifies l i -L (t i -) x i ∈]c, d], D (t i -) x i ∈]a, b].
So this file induces a jump of the left extremity and N ]t,t+h]×A ≥ 1 (see the beginning of this section or Figure 2 for details) and we get the lowerbound :

P N ]t,t+h]×A ≥ 1 | ←- R(t) ≥ P ∃i ∈ N : t i ∈]t, t + h], l i -L (t) x i ∈]c, d -ǫ], D (t) 
x i ∈]a, b -ǫ], |L (t i -) x i -L (t) x i | ≤ ǫ, |D (t i -) b -D (t) b | ≤ ǫ | ←- R(t) ≥ A t (h).B t (h) (15) 
where

A t (h) := P ∃i ∈ N : t i ∈]t, t + h], l i -L (t) x i ∈]c, d -ǫ], D (t) 
x i ∈]a, b -ǫ] | ←- R(t) , B t (h) := P sup t ′ ∈[t,t+h] {|L (t ′ ) b -L (t) b |} ≤ ǫ, sup t ′ ∈[t,t+h] {|D (t ′ ) b -D (t) b |} ≤ ǫ | ←- R(t) .
1) By Theorem 2, P(N t+h t = 0) h→0 -→ 0 so a.s for h small enough, g(t + h) = g(t). Then, using the Hausdorff metric on R + (denoted by H(R + ) in Section 2 in [START_REF] Bansaye | On a model for the storage of files on a hardware I : Statistics at a fixed time and asymptotics[END_REF]), we have

←- R(t+h) h→0 -→ ←- R(t) a.s.
Then B t (h) converges a.s. to 1 as h tends to 0.

2

) As {(t i , x i , l i ) : i ∈ N, t i ∈]t, t + h], x i < g(t)} is a PPP on ]t, t + h] × R 2 + with intensity dt⊗dx ⊗ ν(dl) independent of ←- R(t), A t (h) = 1 -exp -h ∞ 0 dx ∞ 0 ν(dl)1l {l-L (t) x ∈]c,d-ǫ],D (t) x ∈]a,b-ǫ]} a.s.
This term is a.s. equivalent when h tends to 0 to

h ∞ 0 dx ∞ 0 ν(dl)1l {l-L (t) x ∈]c,d-ǫ],D (t) x ∈]a,b-ǫ]} .
Then, letting h → 0 in (15), 1) and 2) give

lim inf h→0 P N ]t,t+h]×A ≥ 1 | ←- R(t) h ≥ ∞ 0 dx ∞ 0 ν(dl)1l {l-L (t) x ∈]c,d-ǫ],D (t) 
x ∈]a,b-ǫ]} a.s.

Integrating this inequality and using Fatou's lemma yield lim inf

h→0 P N ]t,t+h]×A ≥ 1 h ≥E ∞ 0 dx ∞ 0 ν(dl)1l {l-L (t) x ∈]c,d-ǫ],D (t) x ∈]a,b-ǫ]} ≥ρ (t) (]a, b -ǫ]×]c, d -ǫ]).
As ρ (t) (]a, b] × {d} ∪ {b}×]c, d]) = 0 (use the two equalities of Lemma 3), we get letting ǫ tend to 0 :

lim inf h→0 P N ]t,t+h]×A ≥ 1 h ≥ ρ (t) (A).
• We derive the upperbound from Theorem 2. First,

P N ]t,t+h]×R 2 + ≥ 1 h = P(∃i ∈ N : T i ∈]t, t + h]) h h→0 -→ m 1 -mt .
and identity (17) below gives

ρ (t) (R 2 + ) = m 1 -mt .
So we just need to prove the following result : Let (µ n ) n∈N and µ be finite measures on R 2 + such that for every A rectangle of R 2 + : lim inf n→∞ µ n (A) ≥ µ(A) and lim n→∞ µ n (R 2 + ) = µ(R 2 + ). Then for every A rectangle of R 2 + , lim n→∞ µ n (A) = µ(A). In that view, suppose there exist a rectangle A, ǫ > 0 and a sequence of integers k n such that µ kn (A) ≥ µ(A) + ǫ. Choose B union of disjoint rectangles all disjoint from A such that µ(B ∪ A) ≥ µ(R 2 + ) -ǫ/2. Then,

lim inf n→∞ µ kn (R 2 + ) ≥ lim inf n→∞ µ kn (A ∪ B) ≥ µ(A) + ǫ + µ(B) ≥ µ(R 2 + ) + ǫ/2,
which is a contradiction with lim n→∞ µ n (R 2 + ) = µ(R 2 + ).

To prove the theorem, it remains to prove the absence of memory.

Lemma 5. Let t ∈ [0, 1/m[, then (T i , G i , R i ) : i ∈ N, T i ≤ t is independent of (T i , G i , R i ) : i ∈ N, T i > t . Proof. First (T i , G i , R i ) : T i ≤ t is given by (t i , l i , x i ) : t i ≤ t, x i ∈ [g(t), d(t)] . Moreover (T i , G i , R i ) : T i > t depends on (R(t) -g(t))∩] -∞, 0] and (t i , x i - g(t), l i ) : t i > t, x i < g(t) which are independent. Moreover (R(t) -g(t))∩] -∞, 0] is independent of (t i , l i , x i ) : t i ≤ t, x i ∈ [g(t), d(t)
] by Lemma 1 and so is (t i , x ig(t), l i ) : t i > t, x i < g(t) by Poissonian property. This proves the result.

We can now prove the theorem and its corollary.

Proof of Theorem 3. We prove now that for every B finite union of disjoint rectangles of [0, 1/m[×R 2 + : B) , where γ(dtdydz) = dtρ (t) (dydz). ( 16)

P(N B = 0) = e -γ(
As γ is non atomic (use Lemma 3), this will ensure that {(T i , G i , R i ) : i ∈ N} is a PPP with intensity γ (use Renyi's Theorem [START_REF] Kingman | Poisson processes[END_REF]).

Let t ∈ [0, 1/m[ and A a finite union of rectangles of R 2 + . We consider H(s) := P(N ]t,t+s]×A = 0) for s ∈ [0, 1/m -t[. Lemma 5 entails that H(s + h) = P(N ]t,t+s]×A = 0)P(N ]t+s,t+s+h]×A = 0) = H(s)P(N ]t+s,t+s+h]×A = 0).

We write A = ⊔ N i=1 A i where A i rectangle of R 2 + . Theorem 2 and Lemma 4 ensure respectively that for all 1 ≤ i, j ≤ N such that i = j:

lim h→0 P(N ]t,t+h]×A i ≥ 1, N ]t,t+h]×A j ≥ 1) h = 0 ; lim h→0 P(N ]t,t+h]×A i ≥ 1) h = ρ (t) (A i ).
Then

lim h→0 P(N ]t,t+h]×A ≥ 1) h = N i=1 lim h→0 P(N ]t,t+h]×A i ≥ 1) h = ρ (t) (A),
and the derivative of H is given by

lim h→0 H(s + h) -H(s) h = H(s) lim h→0 1 -P(N ]t+s,t+s+h]×A = 0) h = H(s)ρ (t+s) (A).
Thus H(s) satisfies a differential equation of order 1 and we get (16

) for B =]t, t + s]× A. H(s) = exp - s 0 duρ (t+u) (A) = exp - t+s t duρ (u) (A) = e -γ(]t,t+s]×A)
Using again Lemma 5 and additivity of measures proves (16) for every B finite union of rectangles of [0, 1/m[×R + × R + .

Proof of Corollary 2. As projection of the PPP {(T

i , G i , R i ) : i ∈ N}, {(T i , R i ) : i ∈ N } is a PPP with intensity dt y∈[0,∞] ρ (t) (dydz)
. By Lemma 3, we have :

y∈[0,∞] ρ (t) (dydz) = dz ν(z) + ∞ z ν(dl) ∞ 0 P( ← τ (t) l-z ∈ dx) ∞ x Π (t) (dy -x)(y -x) = dzν(z)(1 + ∞ 0 Π(dy)y) = dz ν(z) 1 -mt by (9) (17) 
which gives the intensity of {(T i , R i ) : i ∈ N}. In other words, (R i ) i∈N is an iid sequence independent of (T i ) i∈N such that P(R i ∈ dz) = m -1 ν(z)dz, (z ≥ 0).

Evolution of B 0

The processes (g(t)) t∈[0,1/m] and (d(t)) t∈[0,1/m] of the left and the right extremities of B 0 have a quite different evolution, even though their one-dimensional distributions coincide. The process (d(t)) t∈[0,1/m] jumps each time (g(t)) t∈[0,1/m] jumps and each time a file arrives on B 0 . More precisely, there are two kinds of jumps of (B 0 (t)) t∈[0,1/m] corresponding respectively to :

-files which arrive at the left of B 0 and cannot be entirely stored at its left (recall the previous section). These files induce the jumps (-G i , D i ) of the extremities of B 0 at time T i independently of the past (see Figure 2).

-files which arrive on B 0 . These files induce jumps of the right extremity d(.) only, with total rate equal to l(t)ν(0) (see Figure 3). This rate is infinite when ν(0) = ∞. Observe also that the jumps depend from the past of B 0 through the value of the length l(t).

Note that a file which arrives at the left of B 0 (t-) at time t with remaining data of size R induces the same jump of the right extremity as a file of size R which arrives on B 0 (t-) at time t. Obviously, the other files (files which are entirely stored at the left of B 0 or which arrive at the right of B 0 ) do not yield a jump of B 0 . Thus, we define

D i := d(T i ) -d(T - i ) and we decompose the process (g(t), d(t)) t∈[0,1/m[ into two processes (C 1 (t)) t∈[0,1/m[ and (C 2 (t)) t∈[0,1/m[ ,
which give the variation of the extremities of B 0 respectively at times (T i ) i∈N (due to the arrival of a file at the left of g(t)) and between successive times (T i ) i∈N (due to the arrival of files on B 0 (t)). That is, for every t ∈ [0, 1/m[,

C 1 (t) := T i ≤t (-G i , D i ), C 2 (t) := 0, 0≤s≤t s / ∈{T i :i∈N} ∆d(s) , (g(t), d(t)) = C 1 (t) + C 2 (t).
First, we specify the distribution of (C 1 (t)) t∈[0,1/m] (see below for the proofs).

Proposition 2. The point process (T

i , G i , D i ) : i ∈ N is a PPP on [0, 1/m] × R 2
+ with intensity dtµ (t) (dydx), where

µ (t) (dydx) = ∞ 0 ρ (t) (dydz)P( → τ (t) z ∈ dx).
We can now specify the distribution of the process (g(t), d(t)) t∈[0,1/m[ as follows.

Theorem 4. (g(t), d(t)) t∈[0,1/m[ is a pure jump Markov process equal to

(C 1 (t) + C 2 (t)) t∈[0,1/m] such that for all 0 ≤ t ≤ t + s ≤ 1/m, (i) C 1 (t + s) -C 1 (t) is independent of (g(u), d(u)) u∈[0,t] . (ii) Conditionally on l(t) = l, C 2 (t + s) -C 2 (t) is independent of (g(u), d(u)) u∈[0,t] .
Conditionally also on T i ≤ t ≤ t + s < T i+1 for some i ∈ N :

C 2 (t + s) -C 2 (t) d = (0, → τ (t+s) S sl ),
where (S x ) x≥0 is a subordinator with no drift and Lévy measure ν, which is independent of (

→ τ (t+s) x ) x≥0 .
We recall that vague convergence of measures on A is the convergence of the integrals of measures against continuous functions with compact support in A. The jump rate of (g(t), d(t)) t∈[0,1/m[ is then given by :

Corollary 3. If t ∈ [0, 1/m[, we have the following vague convergence of measures on [0, ∞[×]0, ∞[ when h tends to 0 : h -1 P(g(t) -g(t + h) ∈ dy, d(t + h) -d(t) ∈ dx | l(t) = l) w =⇒ µ (t) (dydx) + lδ 0 (dy) ∞ 0 ν(dz)P( → τ (t) z ∈ dx).
We begin with two lemmas which state the independences needed for the proofs.

Lemma 6. {(T i , G i , D i ) : i ∈ N, T i > t} is independent of (g(u), d(u)) u∈[0,t] .
Proof. Using (18) below, we see that

{(T i , G i , D i ) : i ∈ N, T i > t} is given by {(T i , G i , R i ) : i ∈ N, T i > t} and ( → R(s)) s>t .
These quantities depend from the past through (

←- R(t), -→ R(t)) which is independent of (g(u), d(u)) u∈[0,t] by Proposition 1. Lemma 7. Let i ∈ N and 0 ≤ t ′ < t ≤ 1/m. Conditionally on T i-1 = t ′ and T i = t, ( -→ R(u)) u∈[t ′ ,t[ is independent of the point process P g(t ′ ) (t).
Proof. Conditioning by T i-1 = t ′ and T i = t ensures that all the data arrived at the left of g(t ′ ) during the time interval [t ′ , t[ are stored at the left of g(t ′ ). So (

-→ R(u)) u∈[t ′ ,t[
depdns only on the point process P

d(t ′ ) g(t ′ ) (t) ∪ P d(t ′ ) (t) which is independent of P g(t ′ ) (t) by Lemma 1.
Proof of Proposition 2. At time T i , the quantity of remaining data R i is stored at the right of B 0 (T i -). It induces a jump D i = d(T i ) -d(T i -) of the right extremity which is equal to R i plus the sum of the lengths of blocks at the right of B 0 (T i -) which are reached during the storage of these data (see Figure 2). More precisely :

D i = inf{x ≥ 0, | R(T i -) ∩ [d(t), d(t) + x[| = R i } = inf{x ≥ 0, | -→ R(T i -) ∩ [0, x] |= R i } = → τ (T i -) R i , ( 18 
)
by definition of → τ (see Section 2). Lemma 7 ensures that conditionally on

T i = t, ( → τ (T i -) x
) x≥0 is independent of (G i , R i ) and distributed as (

→ τ (t)
x ) x≥0 . Then denoting by µ t the law of (G i , D i ) conditioned by T i = t, we have

µ t (dydx) = P(G t ∈ dy, → τ (t) Rt ∈ dx), (19) 
where (G t , R t ) is a random variable independent of (

→ τ (t) 
x ) x≥0 and distributed as

(G i , R i ) conditioned on T i = t. By Lemma 6, (T i , G i , D i ) : i ∈ N, T i > t is independent of (T i , G i , D i ) : i ∈ N, T i ≤ t . Then conditionally on (T i ) i∈N , (G i , D i ) i∈N are independent. Adding that {T i : i ∈ N} is a PPP on [0, 1/m] with intensity dtm/(1 -mt) ensures that (T i , G i , D i ) : i ∈ N is a (marked) PPP with intensity m 1 -mt dtµ t (dydx).
Furher, by (19), this intensity is eqaul to

dt ∞ 0 P( → τ (t) z ∈ dx) m 1 -mt P(G t ∈ dy, R t ∈ dz) = dt ∞ 0 P( → τ (t) z ∈ dx)ρ (t) (dydz)
using Theorem 3. This completes the proof.

Proof of Theorem 4.

(i) Thanks to Lemma 6, C 1 (t + s) -C 1 (t) is independent of (g(u), d(u)) u∈[0,t] .
(ii) We condition by T i ≤ t ≤ t + s < T i+1 for some i ∈ N and l(t) = l. Then g(t + s) -g(t) = 0 and no data arrived at the left of B 0 (t) during the time interval ]t, t + s] is stored at the right of this block. So the increment d(t + s) -d(t) is caused by files arriving on B 0 (t) : they are stored at the right on B 0 (t) and may join data already stored. Note that we can change the order of arrival of files between t and t + s (use identity ( 4)). Thus, we first store the files which arrive at the right of d(t) between times t and t + s, then the files which arrive on B 0 (t) between times t and t + s and we forget the files which arrive at the left of g(t).

STEP 1 : At time t, we consider the half hardware at the right of d(t) which we identify with [0, ∞[. Its free space is equal to -→ R(t). We store the files i ∈ {i ∈ N : t i ∈ ]t, t+s], x i > d(t)} on this half hardware [0, ∞[ at location x i -d(t) following the process described in Introduction (the size of the file i is still l i ). Following Section 2.1 in [START_REF] Bansaye | On a model for the storage of files on a hardware I : Statistics at a fixed time and asymptotics[END_REF], we get the counterpart of the characterization of the free space (4). That is, the new free space of the half hardware is equal to {x ≥ 0 : Y x = I x } , where for every x ≥ 0,

Y x = -x + 0≤t i ≤t+s d(t)≤x i ≤d(t)+x l i , I x := inf{ Y y : 0 ≤ y ≤ x}.
Using Lemma 1, we see that

{(t i , x i -d(t), l i ) : x i ≥ d(t)} is a PPP on R +3 with intensity dt ⊗ dx ⊗ ν(dl). Then, Y x x≥0 d = Y (t+s) x x≥0
is a Lévy process with Laplace exponent Ψ (t+s) . As [Ψ (t+s) ] ′ (0) < 0, Y x x≥0 is regular for ] -∞, 0[, in the sense that it takes negative values for some arbitrarily small x (Proposition 8 on page 84 in [START_REF] Bertoin | Lévy processes[END_REF]). So for every stopping time T such that Y T = I T , there is the identity T = inf{z ≥ 0 : Y z < Y T }. This ensures that the free space {x ≥ 0 : Y x = I x } of the half hardware is the range of ( τ x ) x≥0 defined by

τ x := inf{z ≥ 0 : Y z < -x}.
By Theorem 1 on page 189 in [START_REF] Bertoin | Lévy processes[END_REF], ( τ x ) x≥0 is a subordinator with Laplace exponent κ (t+s) , which is the inverse function of -Ψ (t+s) . So ( τ x ) x≥0 is distributed as (

→ τ (t+s) x ) x≥0 . By Lemma 1 again, {(t i , x i -d(t), l i ) : x i > d(t)} is independent of (g(u), d(u)) u∈[0,t] . So ( τ x ) x≥0 is independent of (g(u), d(u)) u∈[0,t] .
STEP 2 : To obtain the covering C(t + s), we now store the files {i :

t i ∈]t, t + s], x i ∈ [g(t), d(t)[}.
It amounts to store these files in the first free spaces (i.e. as much on the left as possible) of the half hardware considered above, whose free space is the range of ( τ x ) x≥0 . The variation of the right extremity is equal to the sum of the sizes of these files, say S t+s t , plus the sizes of the lengths of the blocks of the half hardware joined during their storage. That is, as for (18),

C 2 (t + s) -C 2 (t) = (0, τ S t+s t ),
where S t+s t :=

t<t i ≤t+s x i ∈[g(t),d(t)[ l i .
Conditionally on l(t) = l, by Poissonian property, S t+s t d = S sl , where (S x ) x≥0 is a subordinator with no drift and Lévy measure ν. Adding that S t+s t is independent of ( τ x ) x≥0 gives the law of C 2 (t + s) -C 2 (t). As ( τ x ) x≥0 and S t+s t are independent of (g(u),

d(u)) u∈[0,t] , so is C 2 (t + s) -C 2 (t).
These properties ensure that (g(t), d(t)) t∈[0,1/m[ is a Markov process.

To prove Corollary 3, we need the following result which uses notation of Theorem 4.

Lemma 8. We have the following vague convergence of measure on ]0, ∞[ :

h -1 P → τ (t) S hl ∈ dx v =⇒ l ∞ 0 ν(dz)P( → τ (t) z ∈ dx).
Proof. Denoting by φ the Laplace exponent of (S x ) x≥0 ,

→ τ (t)
S xl x≥0 is a subordinator of Laplace exponent lφ•κ (t) (see [START_REF] Bertoin | Lévy processes[END_REF]). Moreover for every λ ≥ 0, φ(λ) = ∞ 0 (1-e -λy )ν(dy), which entails that

φ • κ (t) (λ) = ∞ 0 1 -e -zκ (t) (λ) ν(dz) = ∞ 0 E 1 -e -λ → τ (t) z ν(dz) = ∞ 0 (1 -e -λx ) ∞ 0 ν(dz)P( → τ (t) z ∈ dx). Then → τ (t)
S xl x≥0 is a subordinator with no drift and Lévy measure

l ∞ 0 ν(dz)P( → τ (t) z ∈ dx).
Using Exercise 1 Chapter I in [START_REF] Bertoin | Lévy processes[END_REF] or [START_REF] Bertoin | Subordinators: examples and applications[END_REF] on page 8 completes the proof.

Proof of Corollary 3. We consider first the case when the increment of the left extremity is zero.

• Let c > 0 such that ∞ 0 ν(dz)P( → τ (t) z = c) = 0.
Using Theorem 4 and recalling that N t+h t = N ]t+t+h]×R 2 + = card{i ∈ N : T i ∈]t, t + h]}, we have

P (g(t + h) -g(t) = 0, d(t + h) -d(t) ≥ c | l(t) = l) = P(N t+h t = 0)P( → τ (t) S hl ≥ c). (20) 
Adding that P(N t+h t = 0) h→0 -→ 1 and using Lemma 8 give

h -1 P (g(t+h)-g(t) = 0, d(t+h)-d(t) ≥ c | l(t) = l) h→0 -→ l ∞ 0 ν(dz)P( → τ (t) z ≥ c). (21) 
• Let a, b > 0 and write

P (t, t + h) = P(g(t) -g(t + h) ≥ a, d(t + h) -d(t) ≥ b | l(t) = l).
By Proposition 2, (T i , G i , D i ) : i ∈ N is a PPP on [0, 1/m] × R 2 + with intensity dtµ (t) (dydx). The latter verifies P(N t+h t > 1) = o(h) (h → 0), so we have

h -1 P(C 1 (t + h) -C 1 (t) ∈] -∞, -a] × [b, ∞]) h→0 -→ µ (t) ([a, ∞[×[b, ∞]). (22) 
We can prove now that

lim h→0 h -1 P (t, t + h) = µ (t) ([a, ∞[×[b, ∞[). (23) 
-First we give the lowerbound.

P (t, t + h) ≥ P(C 1 (t + h) -C 1 (t) ∈] -∞, -a] × [b, ∞] | l(t) = l)
Using that C 1 (t + h) -C 1 (t) is independent of l(t) and ( 22), we get

lim inf h→0 h -1 P (t, t + h) ≥ µ (t) ([a, ∞[×[b, ∞]). (24) 
-For the upperbound, observe that

P (t, t + h) ≤ P(C 1 (t + h) -C 1 (t) ∈] -∞, -a] × [b -ǫ, ∞] | l(t) = l) + P(N t+h t ≥ 1, C 2 (t + h) -C 2 (t) ∈ {0} × [ǫ, ∞[ | l(t) = l).
Using again C 1 (t + h) -C 1 (t) is independent of l(t) with ( 22) and Theorem 4 gives

lim sup h→0 h -1 P (t, t + h) ≤ µ (t) ([a, ∞[×[b -ǫ, ∞]).
Letting ǫ tend to 0 gives the upperbound :

lim sup h→0 h -1 P (t, t + h) ≤ µ (t) ([a, ∞[×[b, ∞[).
The two limits ( 21) and ( 23 

dt z∈[0,∞] dzν(z)P( → τ (t) z ∈ dx) 1 -mt , and 
(T i , D i ) : i ∈ N, T i > t is independent of (d(u)) u∈[0,t] . (ii) For all 0 ≤ t ≤ t + s < 1/m : Conditionally on l(t) = l, d(t + s) -d(t) is independent of (d(u)) u∈[0,t] .
Conditionally also on T i ≤ t ≤ t + s < T i+1 for some i ∈ N :

d(t + s) -d(t) d = → τ (t+s) 
S sl , where (S x ) x≥0 is a subordinator with no drift and Lévy measure ν, that is independent of (

→ τ (t+s) x ) x≥0 .
The jump rate of (d(t)) t∈[0,1/m[ is given by the following vague convergence of measures on ]0, ∞[ for h tending to 0 :

P(d(t + h) -d(t) ∈ dx | l(t) = l) h w =⇒ ∞ 0 dzν(z)P( → τ (t) z ∈ dx) 1 -mt +l ∞ 0 ν(dz)P( → τ (t) z ∈ dx).
We stress that (d(t)) t∈[0,1/m[ is not a Markov process since the jumps D i before time t give informations about l(t) and thus about the future of the process. Note also that we can derive the law of d(t) conditionally on l(t) using Theorem 1. More precisely, conditionally on l(t) = l,

∀d > 0, P(l(t) ∈ dl | d(t) = d) = 1 l≥d Π (t) (dl) Π(t) (d) .
Finally we turn our interest to the process of the length (l(t)) t∈[0,1/m] . Its increments which are due to files arrived at the left of g(t) which are not stored entirely at the left g(t), are denoted by L i :

L i := l(T i ) -l(T - i ) = G i + D i .
The other increments of (l(t)) t∈[0,1/m] are due to files which arrive on B 0 . We can view (l(t)) t∈[0,1/m] as a branching process in continuous time with immigration L i at time T i (with no death, inhomogeneous branching and inhomogeneous immigration) :

Corollary 5. (l(t)) t∈[0,1/m[ is an inhomogeneous pure jump Markov process satisfying (i) {(T i , L i ) : i ∈ N} is a PPP on [0, 1/m[×R + with intensity dt z∈[0,∞] ν(dz)P( → τ (t) z ∈ dx)x,
and {(T i , L i ) : i ∈ N, T i > t} is independent of (l(s)) s∈[0,t]

(ii) Conditionally on T i ≤ t ≤ t + s < T i+1 for some i ∈ N, (l(t + u)) u∈[0,t-s] satisfies the branching property : the law of (l(t + u)) u∈[0,t-s] conditioned on l(t) = x + y is equal to the law of the sum of two independent processes whose laws are respectively equal to (l(t+u)) u∈[0,t-s] conditioned on l(t) = x and (l(t+u)) u∈[0,t-s] conditioned on l(t) = y.

The jump rate of (l(t)) t∈[0,1/m[ is given by the following vague convergence of measures on ]0, ∞[ for h tending to 0 :

P(l(t + h) -l(t) ∈ dx | l(t) = l) h w =⇒ (x + l) ∞ 0 ν(dz)P( → τ (t) z ∈ dx).
Example 3. For the basic example ν = δ 1 , the jump rate of the lenght is equal to

∞ n=1 n + l n e -tn (tn) n-1 (n -1)! δ n (dx).
This is a consequence of the last displayed limit and (8).

Proof of Corollary 4. Using (17), we get :

z∈[0,∞] P( → τ (t) z ∈ dx) y∈[0,∞] ρ (t) (dydz) = z∈[0,∞] dzν(z)P( → τ (t) z ∈ dx) 1 -mt ,
which gives the intensity of (T i , D i ) : i ∈ N by Proposition 2.

Proof of Corollary 5. (i) Writing

L i = G i + D i , Proposition 2 entails that (T i , L i ) : i ∈ N is a PPP on [0, 1/m] × R + with intensity dt µ t (dx) where µ t is a measure on R + defined for a Borel set A of R + by µ t (A) = R 2 + 1l {y+y ′ ∈A} ∞ 0 P( → τ (t) z ∈ dy ′ )ρ (t) (dydz).
To determine µ t , we compute its Laplace transform using Lemma 3 :

∞ 0 e -λx µ t (dx) = R +3 e -λ(y+y ′ ) ρ (t) (dydz)P( → τ (t) z ∈ dy ′ ) = R +3 e -λy ′ P( → τ (t) z ∈ dy ′ )dz ∞ z ν(dl) e -λy P( → τ (t) l-z ∈ dy) + y 0 e -λx P( → τ (t) l-z ∈ dx)(y -x)e -λ(y-x) Π (t) (dy -x) = ∞ 0 dze -zκ (t) (λ) ∞ z ν(dl)e -(l-z)κ (t) (λ) 1 + ∞ 0 e -λu uΠ (t) (du) = ∞ 0 ν(dl)le -lκ (t) (λ) [κ (t) ] ′ (λ) = - ∂ ∂y ∞ 0 ν(dl)e -lκ (t) (y) (λ) = - ∂ ∂y ∞ 0 e -yx ∞ 0 ν(dl)P( → τ (t) l ∈ dx) (λ) = ∞ 0 e -λx x ∞ 0 ν(dl)P( → τ (t) l ∈ dx). Then µ t (dx) = x ∞ 0 ν(dz)P( → τ (t) 
z ∈ dx), which gives the intensity of (T i , L i ) : i ∈ N .

(ii) The branching property can be seen as a consequence of the determination of the jump rate. We give here a more intuitive approach : We condition by l(t) = x + y and by T i ≤ t ≤ t + s < T i+1 and we make the decomposition effective by splitting B 0 (t) in two segments of length x and y. First we store the files {i :

t i ∈]t, t + s], x i > d(t)}.
The free space of the half line at the right of B 0 (t) is now the closed range a subordinator distributed like ( → τ (t+s) x

) x≥0 (see STEP1 in the proof of Corollary 4). Then we store successively the files {i : t i ∈]t, t + s], x i ∈ [g(t), g(t) + x]} and {i : t i ∈]t, t + s], x i ∈]g(t) + x, d(t)]} which induce two successive increments of the length. The free space at the right of 0 after the first storage keeps the same distribution and is independent of the first increment by strong regeneration. So the two increments are independent and distributed respectively like l(t + s) -l(t) conditioned by l(t) = x and by l(t) = y. This gives the result since l(t) is Markovian. Formally l(t + s) -l(t) is equal to Using Corollary 3 and recalling the definition of µ t given at the beginning of the proof ensures that h

-1 P(l(t + h) -l(t) ∈ dx | l(t) = l) converges to µ t (dx) + l ∞ 0 ν(dz)P( → τ (t) z ∈ dx).
The completes the proof, since µ has been determined above.

Complements

8.1 Distribution of {(T i , G i ) : i ∈ N} derived from Theorem 3

In Section 5, we used the total intensity of the PPP {(T i , G i ) : i ∈ N} to prove that the intensity of the PPP {(T i , G i , R i ) : i ∈ N} is equal to dtρ (t) (dydz) (Theorem 3). Here we check that integrating this intensity with respect to the third coordinate enables us to recover the intensity of {(T i , G i ) : i ∈ N} given in Theorem 2. For that purpose, use Lemma 3 to rewrite ρ (t) as ρ (t) (dydz) = dz x ∈ -dl)ν(l).

Direct proof of Corollary 2 using fluctuation theory

Here we determine the distribution of the remaining data using fluctuation theory : we get laws at fixed times and do not need Theorem 2, as for the proof of Section 5.

We fix t,h and x ≥ 0 . We add the lengths of files fallen in [g(t) -x, g(t)] during the time interval ]t, t + h]. Then we remove the free space in [g(t) -x, g(t)] at time t which is equal to L (t)

x . The sum of data arrived at the left of B 0 (t) not stored at the left of B 0 (t) between time t and t + h is equal to the maximum in x ≥ 0 of this difference. It is also the quantity of data which has tried to occupy the location g(t) (successfully or not) between time t and t+h : Y Note also that using (9), we have

κ (t) • (hφ) -id ′ (0) = [κ (t) ] ′ (0).h.φ ′ (0) -1 = 1 1 -mt mh -1, (25) 
which is negative since 0 ≤ t + h < 1/m. Then identity [START_REF] Winkel | Electronic foreign-exchange markets and passage events of independent subordinators[END_REF] in [START_REF] Bansaye | On a model for the storage of files on a hardware I : Statistics at a fixed time and asymptotics[END_REF] or Theorem 5 in [START_REF] Bertoin | Lévy processes[END_REF] ensure that ∀λ > 0, ∀h ∈ [0, 1/m -t[, E exp(-λS (t,h) ) = 1 1 -mt mh -1 λ (κ (t) • (hφ) -id)(λ) We can now prove the convergence of h -1 P(S (t,h) > x) when h tends to 0. which proves the convergence of P(S (t,h) ∈ dx)/h to ν(x)dx/(1 -mt). Indeed, introduce the measures µ h (dx) and µ(dx) on R + whose tails are given by µ h (]x, ∞]) = e -x P(S (t,h) > x)/h, µ(]x, ∞]) = e -x ∞ x ν(a)da/(1 -mt).

The last displayed limit entails the weak convergence of µ h (dx) to µ(dx) when h tends to 0, by convergence of Laplace transforms. As µ is non atomic, for every x ≥ 0, µ h (]x, ∞]) tends to µ(]x, ∞]), which proves that P(S (t,h) > x)/h tends to ∞ x ν(a)da/(1 -mt).

Remark 3. Denote γ (t,h) the a.s instant at which the supremum S (t,h) is reached. To obtain the distribution of {(T i , G i , R i ) : i ∈ N} by this way, we need to know the joint law of (S (t,h) , ← τ (t) γ (t,h) ) which we cannot derive directly from fluctuation theory.

Figure 1 .

 1 Figure 1. Arrival and storage of a file on the hardware, where the data blocks are represented by black rectangles.

Figure 2 .

 2 Figure 2. Jumps of the extremities of B 0 (∆g(t) and ∆d(t)) and remaining data induced by the arrival of a file at time t at the left of B 0 (t-).

Figure 3 .

 3 Figure 3. Jump of the right extremity of B 0 (∆d(t)) induced by the arrival of a file at time t on B 0 (t-).

Figure 4 .

 4 Figure 4. Representation of Y on a part of the hardware.

  ) ensure the convergence of measures for sets of the form {0} × [c, d[ (with c > 0) and [a, b[×[c, d[ (with a > 0), which completes the proof. 7 Evolution of the right extremity and of the length Proposition 2, Theorem 4 and Corollary 3 give by projection : Corollary 4. (d(t)) t∈[0,1/m[ is a jump process satisfying (i) (T i , D i ) : i ∈ N is a PPP on [0, 1/m[×R + with intensity

lle

  ∈ dx)(y -x)Π (t) (dy -x)and calculate the Laplace transform of z∈[0,∞] ρ (t) (dydz). ∈ dx)(y -x)Π (t) (dy -x) -λ(y-x) (y -x)Π (t) (dy -x) = ∞ 0 dlν(l)e -lκ(λ) [κ (t) ] ′ (λ) (t)y ∈ -dl)ν(l) using[START_REF] Kingman | Poisson processes[END_REF].

Proposition 3 . 0 ( 1

 301 g(t). So, we have Lemma 9. Let 0 ≤ t < 1/m and h ≥ 0, thenY ) = sup{S hx -L (t) x , x ≥ 0} = sup{S h ← τ (t) x -x, x ≥ 0} a.s,where (S x ) x≥0 is a subordinator with drift d = 0 and Lévy measure ν(dx), which is independent of (L x ≥ 0}, we have for all 0 < a ≤ b,lim h→0 h -1 P(S (t,h) ∈ [a, b]) = lim h→0 h -1 P(∃i ∈ N : (T i , R i ) ∈]t, t + h] × [a, b])and we find the law given in Corollary 2 : We have the following weak convergence of bounded measures on ]0, ∞[ when h tends to 0 : P(S (t,h) ∈ dx) x≥0 is a lévy process with negative drift -1, no negative jumps and bounded variation. Its Laplace exponent is κ (t) • (hφ) -id, where φ is the Laplace exponent of S and is defined by ∀λ ≥ 0, φ(λ) =∞ -e -λx )ν(dx).

  t) • (hφ) -id)(λ) λ = κ (t) (hφ(λ)) h→0 (h). So E exp(-λS (t,h) ) = 1 + 1 1 -mt φ(λ) λ -m h + • h→0 (h).

lim h→0 ∞ 0 e= lim h→0 1 -

 01 -λx P(S (t,h) > x) h E exp(-λS (t,h) )

  g ≤ x i ≤ d}.

	Lemma 1. For every t ∈ [0, 1/m[, the point processes P g(t) (t), P g(t) (t) and P d(t) (t) are d(t) independent.
	Proof. First we prove a weaker result, where times (t i ) i∈N are not taken into account. Denote by ( Y (t)