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Abstract

In this note, a practical way to compute limit cycles in context of hybrid systems is investigated. As in many
hybrid applications the steady state is depicted by a limit cycle, control design and stability analysis of such hybrid
systems require the knowledge of this periodic motion. Analytical expression of this cycle is generally an impossible
task due to the complexity of the dynamic. A fast algorithm is proposed and used to determine these cycles in the
case where the switching sequence is known.

The proposed method is based on the rule played by the switching times in the sensitivity functions.
The stability of the cycle is also deduced at the end of the run thanks to the computation of the Jacobian

matrix of the linearized sampled time systems.
This work can be used as a starting point for sensibility analysis, measurement of attraction area and control

design.

Index Terms

limit cycles, hybrid systems, sensitivity functions, stability, power converters.

I. INTRODUCTION

Modern applications need to solve power conversion problems to achieve more efficiency in the control
design, functionality and reliability. Power supply systems involving static converters is currently embedded
in computers, mobile phones, electrical drives, etc. and constitute a wide and useful applications class of
hybrid systems.

In these hybrid applications, the steady state is generally depicted by a periodic motion. The difficulties
in analysis and control of such systems are certainly due to their hybrid nature [1].

A common approach consists in approximating the system using an averaged continuous model [2]
when it is possible.

This technic simplifies the controller design around the operating point as done in a linear design. The
resulting steady state for the original system is a limit cycle around this operating point. Unfortunately the
stability of the limit cycle which depends on the fast dynamics and the switching times is not guaranteed.
Subharmonic of the switching period or even chaotic behavior may appear and are highly undesirable
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[3]. So it is of importance to study these cycles [4], [5], [6] [7]. Classical approaches consist to use the
Poincaré Map technic. Then the problem of establishing stability of a periodic orbit reduces to the stability
problem of a fixed point of a discrete nonlinear dynamical system [8], [9], [10] and [11].

In this paper, we start in section II with recalling the general hybrid model used in this work. The
steady state resulting of a periodic motion is described. Then, in section III, we compute the sensitivity
of the state w.r.t. the initial conditions [12] and apply it to the search of a limit cycle. The resulting fast
Newton based algorithm allows to simulate the limit cycle thanks to the initial conditions. The proposed
methodology yields the eigenvalues of the linearized sampled time system via the Jacobian matrix and
the stability of the cycle is directly deduced. In section IV, we show how we can efficiently study the
sensitivity of the cycle w.r.t. a controller parameter. This work explains the rule played by the switching
times in the sensitivity functions w.r.t. a parameter and the proposed method appears as a practical way
in the simulation, the control and the stability investigation [13]. We end the paper by a Phase-Locked
Loop (PLL) application in section V.

II. PROBLEM FORMULATION

A. Hybrid system modelling
The general class of hybrid systems under consideration are defined by :
• A finite set of discrete locations (or discrete states) Q = {1, ..., l}
• An associated set of differential equations

ẋ(t) = fq(x(t), u(t), t) (1)

where q ∈ Q, the continuous state x(.) ∈ R
n (n ∈ N), the continuous input u(.) ∈ R

m (m ∈ N), the
vector fields fq are supposed defined and continuously differentiable on R

n × R
m × R, ∀q ∈ Q

• A discrete transition function σ that orchestrates the autonomous and/or controlled switchings-jumps.
Typically we mean σ as a map of the form

(q(t+), x(t+)) = σ(q(t−), x(t−), d(t), u(t−), t) (2)

where d takes his values in a finite discrete set and plays the rule of a discrete input. It is supposed
that the set of time where (q(t+), x(t+)) 6= (q(t−), x(t−)) (corresponding to the discrete dynamic) is
finite for all bounded time intervals.

A precise modelling of power supply systems involving static converters can easily be put into this
framework.

B. Periodic Motion
Considering that the control strategy leads to a periodic motion, each period can be divided in m

subintervals corresponding to a single location phase. So, on the interval i of the period n, the system is
described (see figure(1)) by

dx

dt
(t) = fi(x(t), u(t), t), t

n
i−1 ≤ t ≤ tni for i = 1, ...,m (3)

where the subscript i = 1, ...,m corresponds to the element i of the finite location sequence sq =
{s1, s2, ..., sm} ∈ Qm, tni is the switching time i of the period n and tnm = tn+1

0 .
We assume that the switching strategy is such that each switching time tni , i = 0, ...,m is given by a

switching constraint
gi(x(t

−), u(t−), t−) = 0 (4)

which implicitly depends on the current and next discrete states. gi:Rn × U × R → R is supposed
continuously differentiable. At the switching instants, a jump on the state is defined using a set of
continuously differentiable jump functions γi : R

n → R
n such that:

x(tn+
i ) = γi(x(t

n−
i )) (5)



For given initial conditions, integrating (3) on time interval [tn0 tnm] with the switching times defined
by (4) and the jumps by (5), one can obtain the discrete dynamic model which describes the continuous
states at the beginning of each period:

xn+1
0 = x(tnm) = F(x

n
0 , u

n, T n) (6)

subject to the constraint
G(xn

0 , u
n, T n) = G(xn

0 , x
n
1 , ..., x

n
m, u

n, T n) = 0 (7)

with
xn

0 = x(tn0 ), the initial state
un = u|[tn

0
tnm] , the input function

T n = [tn0 , t
n
1 , ..., t

n
m]

T , the switching times vector
G = [g0, g1, ..., gm]

T , the switching constraints vector.
Naturally, a periodic trajectory implies : xn+1

0 = xn
0 . So, a fixed point evaluation for this constraint

recurrent relation can be really useful for determined the steady state corresponding to a limit cycle.
Remark 1: The existence of a symmetry in the steady state can allow us to reduce of the studies

period: we have to defined a permutation matrix P and the steady state is thus given by the solution of
the following Pxn

0 = F(x
n
0 , u

n, T n) (see the section concerning the PLL example).
Generally, it is impossible to express analytically the relations (6)(7) no more than the initial conditions.

Only numerical evaluations can be made.

III. COMPUTING THE LIMIT CYCLE

For simplicity of notation, we do not mention in the sequel upperscript n. Fixed point methods for
(6)(7) imply repeated simulations of (3), (4) and (5) on a long time duration. Significant computation
time can be saved using Newton based methods.

Formally, initial conditions x0 and switching instants T can be determined by the following Newton
algorithm :

Algorithm 2:
(

x0

T

)

k+1

=

(

x0

T

)

k

− Jk
−1

(

xm − x0

G

)

k

(8)

with

Jk =

(

∂xm

∂x0
− I ∂xm

∂T
∂G
∂x0

∂G
∂T

)

(9)

In counter part, a good computation of ∂xm

∂x0
, ∂xm

∂T
, ∂G
∂x0

and ∂G
∂T

requires to take into account the discon-
tinuities of the system at switching/jump instants. We must keep in mind that xm and G are implicitly
functions of (x0, T ).

As jumps occur, we have to distinguish in the sequel the period before and after times ti, so we notice
for a given function h, h+

i = lim
t↓ti

h(t) and h−i = lim
t↑ti

h(t). Moreover, we have chosen to determine xm just

before the jump i.e x−m from x−0 , see figure(1).
The Jacobian matrix J can be computed from the following proposition:
Proposition 3: 1. The sensitivity of the state vector x−

m at the end of the cycle with respect to the initial
condition x−0 is given by

∂x−m
∂x−0

= Π(tm, t0) (10)

where for j > i, i = 1, ...,m,

Π(tj, ti) = ϕj(tj, tj−1)
dγj−1

dx
ϕj−1(tj−1, tj−2) · · ·

dγi+1

dx
ϕi+1(ti+1, ti)

dγi

dx
,
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Fig. 1. The hybrid dynamic of the cycle

dγi

dx
= dγi

dx

∣

∣

x(t−
i

)
and the transition matrices ϕi are defined by,

{

d
dt
ϕi(t, ti−1) =

∂fi

∂x
ϕi(t, ti−1) ti−1 ≤ t ≤ ti

ϕi(ti−1, ti−1) = I
(11)

2. The sensitivity of the state vector x−m at the end of the cycle with respect to the switching instants
T is given by

∂x−m
∂T

=

















∂x−m
∂t0

= −Π̃(tm, t0)f0

∂x−m
∂t1

= Π̃(tm, t1)∆P1

· · ·
∂x−m

∂tm−1
= Π̃(tm, tm−1)∆Pm−1

∂x−m
∂tm

= fm

















T

(12)

where ∆Pi =
(

dγi

dx
fi(x

−
i , u, ti)

)

− fi+1(x
+
i , u, ti) denote the jump of the vector field at the switching

instants ti, i = 0, ...,m and where for j > i,

Π̃(tj, ti) =
∂x−j

∂x+
i

= ϕj(tj, tj−1)
dγj−1

dx
ϕj−1(tj−1, tj−2)...

dγi+1

dx
ϕi+1(ti+1, ti) (13)

3. The sensitivity of the (m+1)-constraint G with respect to the initial condition x−
0 is given by

∂G

∂x−0
=













∂g0

∂x−
0

∂g1

∂x−
0

= ∂g1

∂x−
1

∂x−
1

∂x−
0

= ∂g1

∂x−
1

Π(t1, t0)

· · ·
∂gm

∂x−
0

= ∂gm

∂x−m

∂x−m
∂x−

0

= ∂gm

∂x−m
Π(tm, t0)













(14)



4. The sensitivity of the (m+1)-constraint G with respect to the switching instants T is given by

∂G

∂T
=









dg0
dt0

dg0
dt1

· · · dg0
dtm

dg1
dt0

dg1
dt1

· · · dg1
dt0

· · ·
dgm

dt0

dgm

dt1
· · · dgm

dtm









(15)

with the following three cases:

tj < ti,
dgi

dtj
=

∂gi

∂tj
+

∂gi

∂x−i
Π̃(tj, ti)∆Pj +

∂gi

∂u

∂u

∂tj
(16)

tj = ti,
dgi

dti
=

∂gi

∂ti
+

∂gi

∂x−i
fi(x

−
i , u, ti) +

∂gi

∂u

∂u

∂ti
(17)

tj > ti,
dgi

dtj
= 0 (18)

Proof: 1. We can cut out ∂xm

∂x0
on each subinterval :

∂x−m
∂x−0

=
∂F

∂x−0
(19)

=
∂x−m
∂x+

m−1

∂x+
m−1

∂x−m−1

∂x−m−1

∂x+
m−2

· · ·
∂x−2
∂x+

1

∂x+
1

∂x−1

∂x−1
∂x+

0

∂x+
0

∂x−0
(20)

with x±i = x(t±i ). As

∂x−i+1

∂x+
i

= ϕi+1(ti+1, ti) (21)

∂x+
i

∂x−i
=

dγi

dx

∣

∣

∣

∣

x(t−
i

)

=
dγi

dx
(22)

where the transition matrices ϕi , i = 1, ...,m are defined by,
{

d
dt
ϕi(t, ti−1) =

∂fi

∂x
ϕi(t, ti−1) ti−1 ≤ t ≤ ti

ϕi(ti−1, ti−1) = I
(23)

we get the following

∂x−m
∂x−0

= ϕm(tm, tm−1)
dγm−1

dx
ϕm−1(tm−1, tm−2) · · ·

dγ2

dx
ϕ2(t2, t1)

dγ1

dx
ϕ1(t1, t0)

dγ0

dx

2. The computation of the term ∂xm

∂T
is a little more complicated. We have to consider ∂x+

i

∂ti
= lim

t↓ti

∂x(t)
∂ti

and ∂x−
i

∂ti
= lim

t↑ti

∂x(t)
∂ti

. Integrating (3) between ti − ε and ti, x(ti) = x(ti − ε) +

∫ ti

ti−ε

fi(x, u, t)dt leads, by

differentiation to:
∂x−i
∂ti

= fi(x
−
i , u, ti) (24)

In the same way, differentiating the integral equation written after time ti, i.e. x(t) = x(t+i )+

∫ t

ti

fi+1(x, u, s)ds

and using (24) and x(t+i ) = γi(x(t
−
i )), we get taking t→ ti:

∂x+
i

∂ti
=

dγi

dx
fi(x

−
i , u, ti)− fi+1(x

+
i , u, ti) (25)



According to the chain rule, we have, for t > ti:

∂xm

∂ti
=

∂x−m
∂x+

i

∂x+
i

∂ti
(26)

= Π̃(tm, ti)

(

dγi

dx
fi(x

−
i , u, ti)− fi+1(x

+
i , u, ti)

)

where for j > i,

Π̃(tj, ti) = ϕj(tj, tj−1)
dγj−1

dx
ϕj−1(tj−1, tj−2)...

dγi+1

dx
ϕi+1(ti+1, ti)

Letting for i = 0, ...,m− 1,

∆Pi =
dγi

dx
fi(x

−
i , u, ti)− fi+1(x

+
i , u, ti), (27)

we obtain finally

∂F

∂T
=

















∂x−m
∂t0

= −Π̃(tm, t0)f1(x
+
0 , u, t0)

∂x−m
∂t1

= Π̃(tm, t1)∆P1

· · ·
∂x−m

∂tm−1
= Π̃(tm, tm−1)∆Pm−1

∂x−m
∂tm

= fm(x
−
m, u, tm)

















T

(28)

3. To compute ∂G
∂x

: as G = [g0, g1, ..., gm]
T and as the gi are functions of (x−i , t

−
i , u

−), one obtains:

∂G

∂x−0
=













∂g0

∂x−
0

∂g1

∂x−
0

= ∂g1

∂x−
1

∂x−
1

∂x−
0

= ∂g1

∂x−
1

Π(t1, t0)

· · ·
∂gm

∂x−
0

= ∂gm

∂x−m

∂x−m
∂x−

0

= ∂gm

∂x−m
Π(tm, t0)













(29)

4. Finally, we have to compute

∂G

∂T
=









∂g0
∂t0

∂g0
∂t1

· · · ∂g0
∂tm

∂g1
∂t0

∂g1
∂t1

· · · ∂g1
∂t0

· · ·
∂gm

∂t0

∂gm

∂t1
· · · ∂gm

∂tm









(30)

with the following three cases

dgi

dtj
=

∂gi

∂tj
+

∂gi

∂x−i

∂x−i
∂tj

+
∂gi

∂u

∂u

∂tj
if tj < ti

=
∂gi

∂tj
+

∂gi

∂x−i
Π̃(ti, tj)∆Pj +

∂gi

∂u

∂u

∂tj
if tj < ti (31)

dgi

dti
=

∂gi

∂ti
+

∂gi

∂x−i
fi(x

−
i , u, ti) +

∂gi

∂u

∂u

∂ti
if tj = ti (32)

dgi

dtj
= 0 if tj > ti (33)

Remark 4: In certain applications, the switching frequency can be fixed. It means that the switching
times can be chosen following t0 = nT, ∀n. In that case, we have just to remove the part concerning the
sensitivity with respect to t0 and tm.



Remark 5: Moreover it is important to notice that control parameters tuning, sensitivity w.r.t. a parame-
ter and stability analysis can be performed from this point [13]. In fact, at the end of a run of the proposed
algorithm, we get directly the matrix of the linearized sampled time system thanks to the jacobian matrix.
So the stability of the cycle can be deduced from the eigenvalues of the Jacobien matrix.

IV. SENSITIVITY ANALYSIS W.R.T. A PARAMETER: THE RULE OF THE SWITCHING TIMES

In the same way , if we suppose that the hybrid system depends on a parameter vector α, it will be
interesting to compute sensitivity with respect to this parameter.

In that case, the dynamic can be written as

∂x

∂t
= fi(x, t, α) for ti−1 ≤ t ≤ ti (34)

where the switching instants ti are defined by the constraints

gi(x(t(α), α), t, α)|t=ti
= 0. (35)

It can be noticed that the constraints define implicitly a dependence of the switching times with respect
to the parameter α, i.e. ti(α).

Let σα
x = ∂x

∂α
be the sensitivity of the state w.r.t. α. We assume that the fi, gi , i = 1, ...,m are

continuously differentiable functions which implies x to be a piecewise C 2 function.
How can we compute the sensitivity σα

x ? First we can observe as it is shown in the Appendix, that the
derivative of the sensitivity function w.r.t. the time, leads to the following expression: for ti−1 < t < ti

∂σ

∂t
=

∂fi(x(t, α), t, α)

∂x
σα
x (t) +

∂fi(x(t, α), t, α)

∂α
(36)

and is discontinuous at the switching instants ti, i = 0, ...,m with jumps equal to

∆
∂σ

∂t
(ti) =

dti(α)

dα
(fi(x(ti, α), ti, α) −fi+1(x(ti, α), ti, α)) (37)

The term dti(α)
dα

in the last formula can be expressed using the constraint gi(x(t(α), α), t(α), α)|t=ti
≡ 0.

As
d gi (x (t,α) , t, α)|t=ti

dα
=

∂gi

∂x

(

∂x

∂α
+
∂x

∂t

dti

dα

∣

∣

∣

∣

t=t−
i

)

+
∂gi

∂t

dti

dα
+
∂gi

∂α
≡ 0 (38)

we obtain
dti(α)

dα
= −

(

∂gi
∂t
+
∂gi

∂x

∂fi

∂t

∣

∣

∣

∣

t=ti

)−1
(

∂gi

∂x
σα
x |t=t−

i

+
∂gi
∂α

)

(39)

To conclude, starting from the ad-hoc initial conditions and integrating (34, 36) and evaluating (??, 39)
at switching instants defined by (35), one gets the sensitivity σα

x of the trajectory w.r.t. α.

V. APPLICATION

PLL stands for ’Phase-Locked Loop’ and is basically a closed loop frequency control system, which
behavior is based on the phase sensitive detection of phase difference between the input and output signals
of the controlled oscillator. The phase detector (see Fig.2) is a device that compares two input frequencies,
generating an output that is a measure of their phase difference . If fV e doesn’t equal fV s, the phase-error
signal, after being filtered and amplified, causes the VCO (Voltage Controlled Oscillator) frequency to
deviate in the direction of fV e.

If conditions are right, the VCO will quickly ”lock” to fV e maintaining a fixed relationship with the
input signal.
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Fig. 2. The 4046 pll circuit

In our case, the output Vs of the VCO is a square signal whose frequency can be written as an affine
function, fV s = f0+αvpll where α and f0 are constant numbers. V e is also square and the phase detector
is a XOR function.(see figure (2)). V s the output is directly recording to the sign of the internal state
xpll and its slope vpll.

Now we consired the closed loop formed by the PLL and a RLC circuit where the sign of the current
irlc of the load is used as the input of the pll :Ve = sign(irlc) and where the tension applied to the load
is defined by Vrlc = sign(irlc)(1− Vxor).

The figure (3) shows the shape of the characteristic signals where
irlc is the current of the load,
vs is the output of the PLL ,
xpll is the internal state of the VCO,
vxor is the output of the XOR function,
vpll the slope of xpll,
vrlc the input of the load,
irlc the output of the load.
For ti−1 < t < ti, i = 1, ..., 4, the hybrid dynamic are given by four distinct modes:

Ẋ = AiX +Bi (40)

where AiX + Bi =









0 κ(i) 1
τ

0 0
0 − 2

τ1
0 0

0 0 0 1
0 0 −w2

0 −2mw0

















xpll

vpll
vcap
irlc









+









κ(i)v0
τ

u+Eζ(i)
τ1
0

η(i)w2
0









, with κ(i) =















1, if i = 1
−1, if i = 2
−1, if i = 3
1, if i = 4

,

ζ(i) =















1, if i = 1
0, if i = 2
1, if i = 3
0, if i = 4

, and η(i) =















0, if i = 1
1, if i = 2
0, if i = 3
−1, if i = 4

.

The transition between the different discrete states are obtained with the following constraints
• the time t1 is determined by the constraint: g1 = [1 0 0 0]X(t1)− 2Vref = 0
• the time t2 is determined by the constraint: g2 = [0 0 0 1]X

−
2 = 0

• the time t3 is determined by the constraint: g3 = [1 0 0 0]X(t3) + 2Vref = 0
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Fig. 3. The characteristic signals

• the time t4 is determined by the constraint: g4 = [0 0 0 1]X
−
4 = 0

The state x jump to zero at time t1 and t3 and we have for i = 0, 1, the jump matrices γ2i = Id and

γ2i+1 =









0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









.

Let Xi the state of the system at time ti
To compute the steady state, i.e. X4 = X0, it can be observed (see figure (3) and eq. (40)) that the

symmetry of the signals can be used to reduce the dimension of the problem. As X4 = PX2 with

P = P−1 =









−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1









the time interval is reduced to [t0, t2].

Applying the result concerning the calculus of the limit cycles, one gets




X0

t1
t2





k+1

=





X0

t1
t2





k

− J−1
k





X2 − PX0

[1 0 0 0]X−
1 − 2Vref

[0 0 0 1]X−
2





with

Jk =







∂X2

∂X0
− P ∂X2

∂t1

∂X2

∂t2

[1 0 0 0]
∂X−

1

∂X0
[1 0 0 0]

∂X−

1

∂t1
[1 0 0 0]

∂X−

1

∂t2

[0 0 0 1]
∂X−

2

∂X0
[0 0 0 1]

∂X−

2

∂t1
[0 0 0 1]

∂X−

2

∂t2
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Fig. 4. Efficientcy of the proposed method

From proposition 2, we obtain directly the terms:

∂X−
1

∂X0

= eA1(t1)

∂X2

∂X0

= eA2(t2−t1)γ1e
A1(t1)

∂X−
1

∂t1
= A1X

−
1 +B1

∂X2

∂t1
=

∂X2

∂X+
1

∂X+
1

∂t1
= eA2(t2−t1)

([

γ1

(

A1X
−
1 +B1

)]

−
[

A2X
+
1 +B2

])

∂X−
1

∂t2
= 0

∂X2

∂t2
= A2X

−
2 +B2

The figure (4) shows the ability of the proposed method to get a good accuracy in a short time. The
step responses of the system are shown on the figure (5).

Using the Jacobian matrix at the end of the run, we get the eigenvalues of the linearized sampled time
model which are all into the unit circle. So, the local stability of the cycle can be deduced from the unicity
and the continuity of the trajectory w.r.t. the initial conditions.

VI. CONCLUSION

In this paper, we have proposed a Newton based algorithm to study limit cycles of hybrid systems.
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Fig. 5. Step response

In the calculus of the sensitivity functions, hybrid phenomena such that switchings and jumps on the
state were taken into account The resulting algorithm yields initial conditions of the cycle. It permit us
to save time in parameter/control tuning or in the study of bifurcation diagram. As the Jacobian matrix
is computed during the run, the stability of the cycle is directly obtained at the end.

We applied the algorithm on a PLL problem and the result shows clearly the advantage of the method
compared to a fixed point method. The sensibility of the cycle versus a parameter is also investigated.
The use of these sensibility function is of importance to improve the robustness of the system.

VII. APPENDIX: EXPRESSION OF ∂σ
∂t

Recall that x is a piecewise C2 function w.r.t. (t, α). For all test function ϕ ∈ D(R) (i.e. ϕ ∈ C∞(Rn)
and the closure of the set {x : ϕ(x) 6= 0} is compact), we can consider ∂σ

∂t
as an element of the dual space

of D(Rn), i.e. D′(Rn) and write
〈

∂σ

∂t
, ϕ

〉

=

〈

∂2x

∂α∂t
, ϕ

〉

=
∂

∂α

〈

∂x

∂t
, ϕ

〉

(41)

As ∂x
∂t

is locally integrable (L1
loc), one gets

〈

∂σ
∂t
, ϕ
〉

=
∑

i,n
∂
∂α

∫ ti(α)

ti−1(α)
fi(x(t, α), t, α)ϕ(t)dt. Then the

derivative of the integral can be expressed by,
〈

∂σ

∂t
, ϕ

〉

=
∑

i,n

∫ ti(α)

ti−1(α)

∂fi(x(t, α), t, α)

∂x
σα
x (t) +

∂fi(x(t, α), t, α)

∂α
ϕ(t)dt

+
∑

i,n

(

dti(α)

dα

∂

∂ti
−
dti−1(α)

dα

∂

∂ti−1

)∫ ti(α)

ti−1(α)

fi(x(t, α), t, α)ϕ(t)dt (42)



The last term can be reduced to
〈

∂σ

∂t
, ϕ

〉

=
∑

i,n

∫ ti(α)

ti−1(α)

∂fi(x(t, α), t, α)

∂x
σα
x (t) +

∂fi(x(t, α), t, α)

∂α
ϕ(t)dt

+
∑

i,n

dti(α)

dα
fi(x(ti, α), ti, α)ϕ(ti)−

dti−1(α)

dα
fi(x(ti−1, α), ti−1, α)ϕ(ti−1)

Which can be rewritten as
〈

∂σ

∂t
, ϕ

〉

=
∑

i,n

∫ ti(α)

ti−1(α)

(
∂fi(x(t, α), t, α)

∂x
σα
x (t) +

∂fi(x(t, α), t, α)

∂α
)ϕ(t)dt

+
∑

i,n

(fi(x(ti, α), ti, α)− fi+1(x(ti, α), ti, α))
dti(α)

dα
ϕ(ti)

It can be concluded that in the sense of distributions the derivative of the sensitivity function w.r.t. the
time leads to the following expression :

∂σ

∂t
=
∑

i,n

(
∂fi(x, t, α)

∂x
σα
x (t) +

∂fi(x, t, α)

∂α
)1

(t)
[ti−1 ti[

+
∑

i,n

dti(α)

dα
(fi(x(ti, α), ti, α)− fi+1(x(ti, α), ti, α)) δti (43)

where the indicating function is defined by 1[ti−1 ti[(t) =

{

1 if t ∈ [ti−1 ti[
0 otherwise and δti is the Dirac

distribution at time ti.
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