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Nonlinear self-sustained structures and fronts in
spatially developing wake flows

By B E N O Î T P I E R† AND P A T R I C K H U E R R E

Laboratoire d’Hydrodynamique (LadHyX), CNRS – École polytechnique,
F-91128 Palaiseau cedex, France

(Received 29 February 2000 and in revised form 25 September 2000)

A family of slowly spatially developing wakes with variable pressure gradient is
numerically demonstrated to sustain a synchronized finite-amplitude vortex street
tuned at a well-defined frequency. This oscillating state is shown to be described
by a steep global mode exhibiting a sharp Dee–Langer-type front at the streamwise
station of marginal absolute instability. The front acts as a wavemaker which sends
out nonlinear travelling waves in the downstream direction, the global frequency
being imposed by the real absolute frequency prevailing at the front station. The
nonlinear travelling waves are determined to be governed by the local nonlinear
dispersion relation resulting from a temporal evolution problem on a local wake profile
considered as parallel. Although the vortex street is fully nonlinear, its frequency is
dictated by a purely linear marginal absolute instability criterion applied to the local
linear dispersion relation.

1. Introduction
The qualitative behaviour of spatially developing free shear flows such as wakes, jets

and mixing layers may be reasonably well understood within the framework of linear
instability theory. In this context, one may distinguish between amplifiers, the dynamics
of which are sensitive to inflow perturbations, and oscillators, which sustain intrinsic
global modes tuned at a well-defined frequency. Co-flow mixing layers, constant-
density jets, and wakes below the onset of Kármán vortex shedding belong to the
former class, while mixing layers with a sufficiently strong countercurrent (Strykowski
& Niccum 1991), wakes in the Kármán vortex shedding régime (Provansal, Mathis &
Boyer 1987; Triantafyllou, Triantafyllou & Chryssostomidis 1986), and inhomogenous
jets (Monkewitz et al. 1990) belong to the latter class. The amplifier or oscillator
behaviour is intimately related to the convective or absolute nature of the linear
instability (Huerre & Rossi 1998). Note however that absolute instability may also
induce a rapid transition to turbulence as strikingly demonstrated by Lingwood (1995,
1996) for rotating disk boundary layers.

One of the central problems regarding the dynamics of flow oscillators is concerned
with the prediction of the overall frequency and associated spatial structure, hereafter
referred to as the global mode. For real flows, governed by the Navier–Stokes equations,
this question has until now been studied solely in the framework of linear theory
(Monkewitz, Huerre & Chomaz 1993). The objective of the present analysis is to
address the same issue in the fully nonlinear régime.

† Present address: Department of Applied Mathematics and Theoretical Physics, University of
Cambridge, Silver Street, Cambridge CB3 9EW, UK.
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Koch (1985) appears to be the first to have related the onset of global oscillations in
wakes to the existence of an absolutely unstable region immediately downstream of the
obstacle. Further progress in our understanding of frequency selection mechanisms has
typically proceeded in two distinct steps. The theoretical formulation is first established
for relatively simple one-dimensional evolution models such as the celebrated complex
Ginzburg–Landau (CGL) equation (Cross & Hohenberg 1993). It is then adapted
and generalized to real flows governed by the Navier–Stokes equations. This line of
thought has been fully implemented in the linear approximation. Linear global modes
pertaining to the CGL equation with varying coefficients on an infinite interval
have been analysed by Chomaz, Huerre & Redekopp (1991), and Le Dizès et al.
(1996). The formulation essentially relies on the assumption of slow spatial variations
characterized by the slow space variable X = εx, where ε � 1 is a small non-
uniformity parameter. A complex local absolute frequency ω0(X) may then be defined
in classical fashion (Briggs 1964, Bers 1983, Huerre & Monkewitz 1990) by imposing
a zero group velocity condition on the local linear dispersion relation. Under these
conditions, the complex global frequency ωs of self-sustained linear structures is given
by the saddle point criterion

ωs = ω0(Xs) with
dω0

dX
(Xs) = 0, (1.1)

where it is understood that ω0(X) has been analytically continued in the complex X-
plane. Whenever ωs,i ≡ Imωs > 0, the medium is globally unstable. Global instability
then requires a finite region of local absolute instability where ω0,i(X) > 0 for real X,
as demonstrated by Chomaz et al. (1991) and Le Dizès et al. (1996). The same
criterion (1.1) was previously derived by Soward & Jones (1983) for oscillating states
in Taylor–Couette flow between concentric spheres. As shown by Monkewitz et al.
(1993) it also holds for the two-dimensional Navier–Stokes equations linearized about
an arbitrary slowly streamwise developing shear flow. It should be emphasized that
other frequency selection criteria have been proposed. In spatially developing flows
of semi-infinite streamwise extent, say x > 0, the global frequency is given by the
absolute frequency ω0(0) at the upstream boundary (Monkewitz et al. 1993; Woodley
& Peake 1997; Taylor & Peake 1999). The initial resonance principle conjectured by
Monkewitz & Nguyen (1987) is of particular interest in the present context: according
to these authors, in spatially developing flows with an absolutely unstable region, the
first streamwise station of non-negative absolute growth rate imposes its absolute
frequency on the global oscillations.

The theoretical prediction (1.1) has been tested in direct numerical simulations.
Schär & Smith (1993) have numerically investigated the flow behind a vertical
cylinder in the shallow-water wave régime. At a critical value of the Froude number,
the wake is observed to undergo a transition to large-scale Kármán vortex shedding.
When all nonlinear terms in the numerical code are turned off, the wake beats at
a global frequency ωg ∼ 0.17 + 0.045i. Application of criterion (1.1) leads to the
prediction ωg ∼ 0.19 + 0.040i, which compares very favourably with the computed
value. However, when all nonlinearities are restored, the observed global frequency
becomes ωg ∼ 0.27, which is noticeably different from the predicted linear value.
Such a comparison clearly calls for a fully nonlinear formulation of the global mode
problem. A similar comparative study has recently been undertaken by Hammond &
Redekopp (1997) in the case of the wake behind a blunt-edged plate. At a Reynolds
number 25% above global onset, the numerically determined non-dimensional global
frequency is found to be ωg/2π ∼ 0.1000, whereas the saddle-point criterion (1.1)
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yields ωs,r/2π ≡ Reωs/2π ∼ 0.1006. In view of the linear nature of the criterion,
such a close agreement is somewhat surprising. It is worth noting, however, that the
complex absolute frequency ω0(X) has been computed on the mean velocity profile in
the presence of finite-amplitude oscillations and not on the undisturbed basic flow, as
in the case of Schär & Smith (1993). Nonlinear effects are thereby partially accounted
for through the Reynolds stresses which produce the mean flow.

The next step in the theoretical analysis of spatially developing flows would nat-
urally involve a weakly nonlinear formulation in the vicinity of global mode onset.
As emphasized by Le Dizès et al. (1993), this approach is fraught with difficulties. For
slowly spatially developing flows the Landau constant governing the nature of the
bifurcation has neither a well-defined limit nor a constant sign as ε goes to zero. As a
result, the bifurcation keeps switching between subcritical and supercritical. In order
to circumvent these technical difficulties, it seems appropriate to directly proceed to a
fully nonlinear approach.

Most nonlinear studies have so far been restricted to amplitude evolution equa-
tions in one space dimension. Linear absolute/convective instability concepts have
been generalized to finite-amplitude disturbances by Chomaz (1992): the propagation
direction of fronts separating the basic state from the bifurcated state, as originally
defined by Dee & Langer (1983), Saarloos (1988, 1989) and Saarloos & Hohenberg
(1992), is found to essentially determine the absolute/convective nature of the in-
stability in the nonlinear régime. Fully nonlinear global modes on a semi-infinite
domain (x > 0) governed by Ginzburg–Landau-type model equations with constant
coefficients have been thoroughly analysed by Couairon & Chomaz (1996, 1997a, b).
Whenever the medium is nonlinearly absolutely unstable, an upstream travelling front
is pinned at the upstream boundary point and a nonlinear global mode is sustained.
The corresponding analysis of the finite interval problem has been addressed by
Tobias, Proctor & Knobloch (1998) and Chomaz & Couairon (1999). Couairon &
Chomaz (1999) have further investigated the existence of nonlinear global modes
of the real Ginzburg–Landau equation with varying coefficients on the semi-infinite
domain x > 0. In this case, spatial inhomogeneities due to both a boundary point and
varying bulk properties are combined. Although this model constitutes only a crude
approximation of real flows, predicted scaling laws for the global mode amplitude and
the position of its maximum agree surprisingly well with experimental and numerical
results pertaining to the wake structure behind bluff bodies.

Fully nonlinear global modes on an infinite interval, have also been investigated
for the CGL equation with varying coefficients in order to mimic the streamwise
non-uniformity of spatially developing shear flows. Two distinct varieties of nonlinear
objects are then possible. Soft global modes obtained by Pier & Huerre (1996) satisfy a
saddle-point frequency selection criterion applied to the local nonlinear dispersion re-
lation governing finite-amplitude states. The corresponding extended spatial structure
displays smoothly varying amplitude and wavenumber everywhere. By contrast, steep
global modes, as described by Pier et al. (1998), obey a marginal stability criterion:
the steep global frequency coincides with the real absolute frequency at the transition
station between linear convective and absolute instability. More specifically, the steep
global mode is triggered at the upstream boundary Xca of the absolutely unstable
domain and is tuned at the associated real absolute frequency

ωca
0 = ω0(X

ca) where ω0,i(X
ca) = 0. (1.2)

This condition is merely the linear frequency criterion put forward by Dee & Langer
(1983), according to which the front velocity is such that, in the co-moving frame, the
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medium is marginally absolutely unstable. The associated spatial structure consists of
a stationary sharp front located at the transition station and separating an upstream
decaying tail from a finite-amplitude downstream wavetrain. The front acts as a wave
maker and imposes its frequency on the entire flow. In contrast with soft global modes,
the wavenumber exhibits a sharp jump across the front. Similar nonlinear states
with sharp Dee–Langer-type fronts were previously identified in amplitude evolution
models of solar and stellar magnetic activity cycles by Meunier et al. (1997). The
reader is referred to Soward (2001) for a review of related wkbj asymptotic studies
in the astrophysical context.

The transition scenarii towards fully nonlinear global modes have been analysed
by Pier (1999) and Pier, Huerre & Chomaz (2001) for the CGL evolution model in
an infinite domain. The results of interest to the present investigation are as follows.
The onset of steep global modes takes place via a saddle node bifurcation as soon
as a point of local linear absolute instability appears within the medium. Since linear
global modes in general become unstable only for a finite region of local linear
absolute instability, the transition to a steep mode occurs while the medium is still
globally linearly stable. Paradoxically, the onset of local linear absolute instability is
seen to provide an accurate criterion for the bifurcation to fully nonlinear steep global
modes while it is only a necessary condition for linear global instability. Local linear
absolute instability in a sense prevails over global linear instability and dictates the
nature of the observed finite-amplitude state.

The objective of the present study is to demonstrate that nonlinear self-sustained
structures in real shear flows may be described in terms of steep global modes
triggered by a stationary front located at the streamwise station of marginal absolute
instability. Strong supporting evidence for this line of thought has recently been given
by Delbende & Chomaz (1998) in a direct numerical simulation of the nonlinear
impulse response in a parallel wake. The nonlinear wavepacket is observed to be
confined between the same leading and trailing edges as its linear counterpart. The
sharp fronts delineating the saturated wavepacket then travel according to the linear
Dee & Langer (1983) velocity selection criterion.

In order to strictly enforce the weak streamwise non-uniformity condition underly-
ing all the above notions, the basic flow must be carefully chosen. Bluff body wakes
present a recirculation bubble near the obstacle which violates this assumption. To
bypass this difficulty, we consider a ‘synthetic’ wake with no solid obstacle(!) and no
reverse flow region, which still displays the essential features of wake flows, namely a
region of local absolute instability. The basic ansatz is the same as in the numerical
simulations of wakes ‘without obstacles’ performed by Triantafyllou & Karniadakis
(1990): vortex streets are produced by a wavemaker within the wake flow itself and
the obstacle is only necessary in real laboratory experiments to generate the basic
flow!

The outline of the study is as follows. The general formulation is presented in § 2
together with the spatially developing basic wake flow derived as a solution of the
Prandtl boundary layer equations. The ensuing local properties of linear instability
waves are described in § 3 in terms of a local linear dispersion relation at each
downstream station. Corresponding local properties of fully nonlinear travelling
waves are presented in § 4 as solutions of a local nonlinear dispersion relation.
These linear and nonlinear waves constitute the elementary building blocks of the
globally synchronized structures in the upstream and downstream regions of the wake.
Attention is then given in § 5 to the missing link, namely the front structure supported
by the wake profile at the marginally absolutely unstable station. Following the
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procedure proposed by Pier (1999) and Pier et al. (2001), the front is obtained as the
limit state of the spatial response to time-harmonic forcing in a parallel wake, when
the convective/absolute transition is reached. The self-sustained structures supported
by the spatially developing basic flow are documented in § 6, as computed by direct
numerical simulation of the Navier–Stokes equations. Finally, § 7 is concerned with
the interpretation of these results in terms of the constitutive elements identified in
the previous sections.

2. General formulation and basic flow
Two-dimensional incompressible flows are conveniently studied in terms of the

streamfunction Ψ (x, y, t) governed by the vorticity equation(
∂

∂t
+
∂Ψ

∂y

∂

∂x
− ∂Ψ

∂x

∂

∂y

)
∆Ψ =

1

Re
∆2Ψ. (2.1)

From the start non-dimensional variables based on the characteristic length and
velocity scales `? and U? have been introduced (see below (2.5)). The Reynolds
number is then defined as Re = `?U?/ν, where ν is the kinematic viscosity. If x and
y denote the streamwise and cross-stream coordinates, the corresponding x and y
velocity components are obtained as ∂Ψ/∂y and −∂Ψ/∂x, and the vorticity as −∆Ψ .

The basic flow is steady and assumed to slowly develop in the streamwise direction.
This is the case at large Reynolds numbers, where viscous spreading takes place on a
slow streamwise scale. The order of magnitude of the weak streamwise non-uniformity
is then effectively defined as

ε =
1

Re
� 1, (2.2)

which is the only small parameter of the present investigation. Under this quasi-
parallel flow approximation, the basic flow streamfunction Ψb only depends on y and
the slow streamwise coordinate

X = εx,

and it is expanded as

Ψb(y;X) ∼ Ψ0(y;X) + εΨ1(y;X) + ε2Ψ2(y;X) + . . . . (2.3)

The leading-order basic flow approximation Ψ0 is then readily shown to obey the
Prandtl boundary layer equation(

∂Ψ0

∂y

∂

∂X
− ∂Ψ0

∂X

∂

∂y

)
∂Ψ0

∂y
= −dP

dX
+
∂3Ψ0

∂y3
, (2.4)

where the given streamwise pressure gradient dP/dX is the integration ‘constant’
arising in the integration of the leading-order vorticity equation. Corresponding basic
velocity components are then U0(y;X) = ∂Ψ0/∂y and εV1(y;X) = −ε∂Ψ0/∂X.

The basic flow is affected by viscous diffusion and by the externally applied
pressure field P (X) which allows its streamwise evolution to be precisely controlled.
The parabolic boundary layer equation (2.4) is numerically integrated from X = 0,
with the sech2 inlet velocity profile

U0(y; 0) = 1− ∆U

cosh2(y sinh−1 1)
. (2.5)

Such a non-dimensional representation holds when the previously introduced velocity
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Figure 1. Streamwise development of the basic flow. (a) Velocity profilesU0(y;X) at different stream-
wise X locations. (b) Evolution of centreline velocity U0(0;X). The smallest value U0(0;X) = 0.01
is reached at X = 0.4. (c) Basic pressure field P (X).

scale U? is specified to be the streamwise basic flow inlet velocity at y = ±∞. The
length scale `? is chosen to be the half-width of the wake so that, in non-dimensional
variables, U0(1; 0) = 1

2
[U(∞; 0) + U(0; 0)]. The non-dimensional parameter ∆U

measures the depth of the wake at the inlet and, in the present paper, we choose
∆U = 0.8.

In the upstream part of the flow, an adverse pressure gradient is carefully tailored
in order to generate a central region of absolute instability, while avoiding reverse
flow. The characteristics of the resulting basic flow are displayed in figure 1. For the
adverse pressure gradient sketched in figure 1(c), the centreline velocity (figure 1b)
decreases from 1− ∆U = 0.2 at the inlet to reach a minimum 0.01 at the streamwise
station X = 0.4. The relatively strong adverse pressure gradient close to the inlet
slows down the basic flow while increasing the wake depth and rounding off the dip
of the profile (figure 1a). Further downstream a uniform pressure is reached and thus
the flow evolves solely under the action of viscosity: the wake depth decreases and
slow diffusive spreading takes place.

Note that the Reynolds number in the boundary layer equation (2.4) has been
scaled out and incorporated in the slow streamwise variable X = εx. As a result, the
above basic flow applies to all large Reynolds numbers: changes in Re are simply
handled by a dilatation of the streamwise coordinate according to x/X = Re, the
velocity profile shapes remaining unaltered.

The total streamfunction is then decomposed into steady basic and unsteady
perturbation contributions according to

Ψ (x, y, t) = Ψb(y;X) + ψ(x, y, t). (2.6)

Substitution of (2.6) with (2.3) into the governing equation (2.1), yields

∆ψt + Ψ0,y∆ψx −Ψ0,yyyψx + (ψy∂x − ψx∂y)∆ψ
+ ε[Ψ1,y ∆ψx −Ψ0,X ∆ψy −Ψ1,yyyψx +Ψ0,Xyyψy − ∆2ψ] = O(ε2), (2.7)

where the subscripts t, x, y and X denote differentiation with respect to these variables.
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The slow streamwise variations of the basic flow call for an analysis of the per-
turbation field in terms of both linear and nonlinear wkbj approximations (Bender
& Orszag 1978). The properties of local linear and nonlinear wavetrain solutions
sustained by the basic flow are derived in the following two sections.

3. Local linear instability waves
Following e.g. Crighton & Gaster (1976) and Monkewitz et al. (1993), in the linear

approximation ψ is sought in the form of a slowly varying wavetrain of frequency ω:

ψ(x, y, t) = ψ?(y;X) exp

(
i

ε

∫ X

k(u)du− iωt

)
+ c.c., (3.1)

where k(X) denotes the local complex wavenumber and

ψ?(y;X) ∼ ψ0(y;X) + εψ1(y;X) + . . . (3.2)

accounts for the local cross-stream structure. Substitution of expressions (3.1), (3.2)
into the linearized version of (2.7) shows that the leading-order approximation ψ0 is
governed by the local Rayleigh equation

(kU0(y;X)− ω)

(
∂2ψ0

∂y2
− k2ψ0

)
− kU0,yy(y;X)ψ0 = 0. (3.3)

Linear eigenmodes Ψ`(y; k, X) that are solutions of (3.3) and exponentially decaying
at y = ±∞ are obtained when the complex frequency ω and complex wavenumber k
are bound by the local linear dispersion relation

ω = Ω`(k, X), (3.4)

at each station X. For a given wavenumber and a given wake velocity profile
there exists a set of eigenfunctions to the Rayleigh equation. We only consider the
sinuous mode (ψ even) since it is the most amplified (Drazin & Reid 1981). In what
follows, the functions Ψ` and Ω` always refer to this particular eigenfunction and
eigenvalue respectively. For definiteness, the linear Ψ` eigenfunctions are normalized
by Ψ`(0; k, X) = 1.

The Rayleigh equation (3.3) has been solved via a Chebyshev spectral method
(Canuto et al. 1988). The Chebyshev collocation points −16ξi=−cos[iπ/(ny+1)]6+1
for i = 0, . . . , ny + 1 are mapped onto −∞ 6 yi 6 +∞ through the transformation

√
2

ly
y =

ξ

1− ξ2
. (3.5)

The parameter ly dictates the distribution of collocation points on the y-axis: half
are located in the interval −ly < y < ly and are approximately equispaced; the re-
maining points extend towards y = ±∞ and their density decreases algebraically. For
a given k, the differential Rayleigh equation is thus recast into a linear eigenvalue
problem: the frequency ω and cross-stream distribution Ψ` are obtained as eigen-
values and eigenfunctions respectively. As many eigenfunctions as collocation points
are obtained. The relevant sinuous eigenfrequency is then identified by inspection of
its eigenfunction. The complete linear dispersion relation Ω`(k, X) is generated by
continuation in k and X. Note that, since the eigenfunctions Ψ` exponentially decay
towards y = ±∞ as e−|kry|, the transformation (3.5) is appropriate for this problem. In
general ny = 50 collocation points with ly = 5 are found to be sufficient to accurately
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Figure 2. Isocontours of sinuous mode temporal growth rates Ω`
i in the (X, k)-plane in the interval

0.2 < X < 2.0 of figure 1. Solid contours are separated by δΩ`
i = 0.01, dashed contours by

δΩ`
i = 0.002. Larger growth rates occur in the upstream region whereas instability weakens further

donwnstream. The unstable domain is bounded by the neutral curve kc(X) (thick line).

resolve the eigenfunction and precisely obtain the frequency; however for small values
of kr a larger ny is necessary. As a validation, the mode shape is required not to vary
when doubling the number of collocation points.

The dispersion relation (3.4) yields the local wavenumber k`(X,ω) as a function of
the global frequency. Thus at leading order in the wkbj expansion

ψ(x, y, t) ∼ A0(X)Ψ`
(
y; k`(X,ω), X

)
exp

(
i

ε

∫ X

k`(u, ω)du− iωt

)
+ c.c., (3.6)

where the slowly varying complex amplitude function A0(X) could be determined at
next order by a secularity condition.

Local linear instability is characterized by the temporal growth of real wavenum-
bers. Figure 2 illustrates the streamwise evolution of sinuous temporal growth
rates Ω`

i (k, X) ≡ ImΩ`(k, X) in the (X, k)-plane for the basic flow of figure 1. All wake
profiles exhibit long-wavelength instability and the wake flow remains linearly unstable
far downstream. However, the maximum temporal growth rate Max{Ω`

i (k, X), k real}
decreases with X. The unstable domain in the (X, k)-plane is defined by the condition
Ω`
i (k, X) > 0. Its boundary yields the neutral curve kc(X) (thick line in figure 2)

associated through (3.4) with a real frequency. Linear growth of unstable waves is
limited by nonlinear saturation effects: the corresponding nonlinear wavetrains are
then obtained as discussed in the next section.

The local complex absolute frequency ω0(X) and absolute wavenumber k0(X) are
defined via dispersion relation (3.4) as

ω0(X) = Ω`(k0(X), X) with
∂Ω`

∂k
(k0(X), X) = 0. (3.7)

The locus of ω0(X) pertaining to the basic wake flow is represented in the complex
ω-plane in figure 3(a) and the corresponding streamwise variation of absolute growth
rate ω0,i(X) is sketched in figure 3(b). According to these sketches, the properties of
the flow under consideration present the following desirable features. The upstream
region extending from the inlet at X = 0 to Xca = 0.24 is convectively unstable (CU).
The adverse pressure gradient prevailing in this domain induces an increase of ω0,i
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Figure 3. (a) Locus of local absolute frequency ω0(X) in the complex frequency plane.
(b) Local absolute growth rates ω0,i(X) as a function of streamwise station.

which leads to absolute instability at Xca. Beyond this station of marginal absolute
instability, the flow displays a central absolutely unstable (AU) region extending over
the interval Xca < X < Xac, with Xac = 0.55. In the absence of further adverse
pressure gradient, the flow then returns to convective instability far downstream
X > Xac.

According to Pier et al. (1998), the boundaries of the AU region are of par-
ticular interest. These specific locations are defined by real absolute frequencies,
ωca

0 ≡ ω0(X
ca) = 0.190 and ωac

0 ≡ ω0(X
ac) = 0.150 respectively. Note that ωca

0 > ωac
0 ,

a feature which has been observed for all wake flows of the present study. Although
not essential to the observation of steep global modes, this inequality was taken as a
working assumption in Pier et al. (2001). The largest absolute growth rate occurs at
Xmax = 0.38 where ωmax

0 ≡ ω0(X
max) = 0.144 + 0.010i.

Following Chomaz et al. (1991) and Monkewitz et al. (1993), we may analyse the
linear global instability of the present flow by applying the saddle point criterion (1.1).
The analytic continuation of ω0(X) in the complex X-plane yields a saddle point at
Xs = 0.43+0.03i, associated with a linear global mode of frequency ωs = 0.143+0.008i.
Since ωs,i > 0, the wake flow is linearly globally unstable.

4. Local fully nonlinear travelling waves
In regions where perturbations reach finite amplitude levels, the flow is governed

by the complete nonlinear equation (2.7). The experiments of Provansal et al. (1987)
as well as the numerical simulations of Hammond & Redekopp (1997) reveal that
nonlinear structures in wakes are propagating in the streamwise direction: they are
locally periodic and their (x, t)-dependence occurs solely via a phase function with
only slow streamwise deformations. Guided by these observations and following the
wkbj formalism, we seek nonlinear slowly varying wavetrains to equation (2.7) of the
form

ψ(x, y, t) = ψ?(θ, y;X) with θ =
1

ε

∫ X

k(u)du− ωt, (4.1)

where ψ? is a 2π-periodic function of θ, and k(X) is the real local wavenumber.
Following the nonlinear wkbj approximation scheme of Pier & Huerre (1996) and
Pier et al. (2001), the nonlinear wavetrain is again expanded as

ψ?(θ, y;X) ∼ ψ0(θ, y;X) + εψ1(θ, y;X) + . . . . (4.2)

At leading order, one obtains

(kU0(y;X)− ω)
∂

∂θ

(
∂2ψ0

∂y2
+ k2 ∂

2ψ0

∂θ2

)
− kU0,yy(y;X)

∂ψ0

∂θ

+ k

(
∂ψ0

∂y

∂

∂θ
− ∂ψ0

∂θ

∂

∂y

)(
∂2ψ0

∂y2
+ k2 ∂

2ψ0

∂θ2

)
= 0. (4.3)
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As shown below, this partial differential equation in θ and y admits periodic solutions
Ψn`(θ, y; k, X) when the real frequency ω and the real wavenumber k are related by
the local nonlinear dispersion relation

ω = Ωn`(k, X), (4.4)

at each station X. The dispersion relation (4.4) yields the local nonlinear wavenum-
ber kn`(X,ω) as a function of the global frequency. Thus at leading order in the
nonlinear wkbj expansion

ψ(x, y, t) ∼ Ψn`

(
1

ε

∫ X

kn`(u, ω)du− ωt+ θ0(X), y; kn`(X,ω), X

)
, (4.5)

where the slowly varying phase function θ0(X) could be determined at next order by
a solvability condition.

Due to the separation of scales, the phase function θ governs the fast oscillations
on a typical instability length scale, whereas X accounts for the slow development of
the basic velocity profile and is not involved in spatial differentiation. Hence local
properties at a given streamwise station X are recovered by freezing the X-dependence
of the velocity profile and studying the corresponding strictly parallel flow. Thus the
term ‘local’ always refers to properties of strictly parallel flows obtained by extending
towards x = ±∞ the velocity profile prevailing at a specific downstream station X.

The local nonlinear travelling waves Ψn`(θ, y; k, X) are now shown to arise nat-
urally from a purely temporal analysis of the strictly parallel flow U0(y;X) obtained
by freezing X. To this extent, the slow coordinate X is regarded as an external
control parameter, frozen at a constant value although x varies on the entire real
axis. The initial value problem of interest is the study of the development of a
spatially periodic perturbation of given real wavenumber k. The initial evolution of
such a small-amplitude perturbation is dictated by the linear temporal growth rate
Ω`
i (k, X). Whenever Ω`

i > 0, its amplitude exponentially grows until nonlinearity sets
in. Stabilizing nonlinearities lead to saturation at finite amplitude and, at large time, a
fully nonlinear solution is obtained with streamwise periodicity imposed by the initial
wavenumber k. In the absence of secondary instabilities, a propagating nonlinear wave
solution is reached, and its frequency yields the nonlinear dispersion relation (4.4).
The same thought experiment may be carried out at each streamwise station X. It
should be emphasized that, without viscous dissipation, the above procedure does not
single out a unique attracting wavetrain solution onto which the system converges
for large time. In order to circumvent this difficulty, we have chosen to regard the
pertinent finite-amplitude states as long-time saturated solutions of the full viscous
vorticity equation(

∂

∂t
+U0(y)

∂

∂x

)
∆ψ0 −U0,yy(y)

∂ψ0

∂x
+

(
∂ψ0

∂y

∂

∂x
− ∂ψ0

∂x

∂

∂y

)
∆ψ0 =

1

Re
∆2ψ0, (4.6)

for the perturbation stream function ψ0. In the above expression, the basic flow is
strictly parallel and its parametric dependence on X has been omitted. Note that
the viscous term ∆2ψ0/Re would only appear at higher order if the wkbj asymptotic
scheme were strictly applied. The use of a large but finite Re is brought in to select
a unique periodic nonlinear wavetrain. The precise value of Re will later be proven
unimportant.

One should also note that such a solution can only be preserved at large time
if the basic wake shear is maintained steady and parallel. In the calculation, this
is achieved by separating basic and perturbation fields. In effect, as in the direct
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numerical simulations of shear flows, e.g. Ehrenstein & Koch (1995), it is implicitly
assumed that a body force is present to counteract viscous diffusion of the basic
flow. Note that the extra terms introduced in the equations for the basic flow and
perturbations are higher-order corrections: they are introduced for computational
convenience, and in the limit ε = 1/Re→ 0 the original equation is recovered.

The temporal evolution of an initial spatially periodic perturbation ψ0(x, y, t) of real
wavenumber k is treated by solving (4.6) on a streamwise periodic interval of given
wavelength 2π/k. The temporal linear sinuous eigenmode of real wavenumber k
is chosen as initial perturbation, and, in the linear régime, it evolves according
to Ω`(k, X). Whenever Ω`

i (k, X) > 0, it is amplified, and nonlinear terms come
into play to promote higher harmonics as well as a non-fluctuating mean flow
correction. The long-time finite-amplitude state is precisely the nonlinear travelling
wave ψ0(x, y, t) = Ψn`(kx−ωt, y) solution of frequency ω of the nonlinear dispersion
relation (4.4) for the basic flow at the station X under consideration. In order to
complete the specification of the temporal evolution problem, we assume that the
flow rate is unaltered by the presence of the finite-amplitude perturbations.

An example of a nonlinear travelling wave state of wavenumber k = 0.30 is
illustrated in figure 4 for the basic velocity field (thick line in figure 4a) at X = 1.0.
This wavenumber is linearly amplified according to Ω` = 0.183 + 0.029i. Beyond a
transient régime, a periodic state is reached, at the numerically determined nonlinear
frequency Ωn`(k, X) = 0.205. In figure 4(a), the basic velocity profile U0(y) (thick
line) is compared with the nonlinear mean flow correction u(0)(y) (thin line) and
the total mean flow U0 + u(0) (dashed line). The non-fluctuating component of the
perturbation field is seen to essentially reduce the depth of the wake and to increase
its width. Contour levels of the perturbation vorticity field −∆ψ0 are displayed in
figure 4(b). The periodic spatial structure is seen to consist of a double row of
counter-rotating vortices as one would expect in a Kármán vortex street. The main
vortex street is surrounded by two vortex rows of smaller amplitude and opposite
sign. The whole nonlinear structure propagates in the downstream direction at the
celerity Ωn`/k = 0.68, slower than the far-field basic velocity U0(±∞) = 0.84. Since the
basic flow is maintained, such a periodic state persists at large time and the nonlinear
frequency is well defined. Note however that the mean flow correction u(0)(y) (thin
line in figure 4a) is observed to slowly diffuse in the y-direction over a slow viscous
time scale.

Such nonlinear states naturally only exist in the unstable domain of the (X, k)-plane,
defined by a positive linear growth rate (figure 2). Isocontours of Ωn` in this region
are represented in figure 5(a) and they should be compared to the corresponding
isocontours of Ω`

r displayed in figure 5(b). At the neutral stability boundary (thick
curves in figure 5), the linear temporal growth rate vanishes and the finite-amplitude
wavetrains smoothly turn into the linear neutral eigenmodes. As a result, on the
neutral curve

Ωn`(k, X) = Ω`
r (k, X) and Ω`

i (k, X) = 0.

Note that linear and nonlinear frequencies identically vanish for k = 0.
A careful comparison of figures 5(a) and 5(b) reveals that the nonlinear frequencies

are always larger than the linear ones. Thus nonlinear interactions tend to increase
the celerity ω/k of the wavetrains. It should be emphasized that the nonlinear iso-
frequency curves in the (X, k)-plane displayed in figure 5(a) precisely coincide with the
nonlinear spatial branches kn`(X,ω) at the corresponding frequency, as introduced in
the nonlinear wavetrain (4.5).
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The numerical technique used to solve (4.6) is based on the spectral method of
Ehrenstein & Koch (1989) suitably adapted to wake flows. The streamfunction is
decomposed into harmonic components as

ψ0(x, y, t) =
∑

−∞<n<∞
φ(n)(y, t)e

inkx, (4.7)
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with φ(−n)(y, t) = φ?(n)(y, t), where ? denotes the complex conjugate. Substitution of (4.7)
into the governing equation (4.6) and identification of corresponding exponentials
leads to the modal equations[

∂tDn + ink[U0(y)Dn −U0,yy(y)]− 1

Re
D2
n

]
φ(n) + ik

∑
−∞<m<∞

Nn−m,m = 0, (4.8)

where Dn = ∂yy − (nk)2 and

Nn,m = m(∂yφ(n))(Dmφ(m))− nφ(n)(Dm∂yφ(m)). (4.9)

Assuming that the nonlinear perturbation does not change the pressure gradient at
y = ±∞ and leaves the flow rate unaltered, equation (4.8) may be integrated twice
for n = 0 to obtain the mean flow distortion equation

∂φ(0)

∂t
− 1

Re

∂2φ(0)

∂y2
= 2kIm

∑
m>0

mφ?(m)

∂φ(m)

∂y
. (4.10)

The unknown functions φ(n)(y, t) all vanish at y = ±∞, and the mean flow correction
reads u(0) = ∂φ(0)/∂y.

The set of modal equations (4.8), (4.10) is truncated at a finite number of harmonics
|n| 6 nh and again a Chebyshev collocation method with ny collocation points is
implemented in the y-direction together with the mapping (3.5). Thus the governing
equation (4.6) has been recast as a system of ny(2nh + 1) real algebraic ordinary
differential equations of the first order in time. These are solved via a fourth-order
Runge–Kutta scheme of time step δt. In the particular example of figure 4 at Re = 100
and t = 6000, nh = 5, ny = 71, ly = 5 and δt = 0.05. It has been checked that higher
resolutions leave the results unchanged.

The temporal evolution of the wavenumber spectrum is illustrated in figure 6. The
kinetic energy En(t) of each harmonic is sketched as a function of time on both loga-
rithmic and linear scales. If u(n) = ∂yψ(n)e

inkx + c.c. and v(n) = −inkψ(n)e
inkx + c.c. denote

the velocity field associated with the nth harmonic (n > 0), its energy is defined as

En(t) =

∫ +∞

−∞

∫ 2π/k

0

1
2
(u2
n + v2

n)dx dy.

During the linear growth phase (t < 800, figure 6a), all harmonics are exponentially
amplified. The measured slope of the fundamental E1 (thick line) in the semi-log
plot is 0.0255, and precisely coincides with its theoretical value given by 2Ω`

i / ln 10.
Higher harmonics En(t) (n > 1, dashed lines) are naturally slaved to the fundamental
and grow as [E1(t)]

n whereas the mean flow correction E0(t) (thin solid line) scales as
[E1(t)]

2.
Beyond the nonlinear transient régime (800 < t < 2000), the system relaxes towards

a quasi-stationary travelling wave state. The duration of the transients depends on the
dissipation time scale as dictated by the magnitude of the selected Reynolds number.
The choice Re = 100 appears to be a good compromise between reasonably long
transients and inviscid-like dynamics. Although the motion is fully nonlinear, only
a few harmonic components partake in the dynamics. Even for the most unstable
wavenumber, only three harmonics are necessary to accurately capture the saturated
wave state.

The final nonlinear propagating wave and its frequency hardly depend on the
particular value of the Reynolds number, as illustrated in figure 7. For Re > 50, the
frequency changes by less than 0.0025. It is only for Re < 20 that drastic changes
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Figure 7. Variation of the nonlinear frequency Ωn` associated with k = 0.30 and X = 1.0 as a
function of the Reynolds number Re. Note the magnified vertical scale.

in the frequency occur! This insensitivity to Reynolds number fully justifies the
approach adopted in the present study. The addition of the viscous term in (4.6)
does not significantly affect the properties of the nonlinear wavetrain. In the present
calculation, the value Re = 100 has been deemed sufficient.
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5. Nonlinear spatial response and fronts in parallel wakes
At each downstream location we have now at our disposal a complete family of

linear as well as nonlinear local wavetrains which constitute the elementary building
blocks of a globally synchronized flow. Whereas the upstream region extending to the
inlet is expected to sustain small perturbation levels, correctly handled within a linear
approximation, the downstream wake should be made up of fully nonlinear travelling
wavetrains. In the framework of one-dimensional evolution models, it has been
demonstrated (Pier 1999) that, for steep global modes, a stationary front constitutes
the missing link converting the upstream linear waves into the downstream nonlinear
waves at a station of marginal local absolute instability. In this section it is shown
that an analogous front structure exists in wake flows. According to Dee & Langer
(1983) and van Saarloos (1987, 1988), a propagating front moves towards its decaying
edge if the basic state is AU, towards its finite-amplitude edge if the basic state is
CU, and a stationary front is obtained when the medium is exactly at the CU/AU
transition.

Here a slightly different point of view is adopted: instead of studying front propa-
gation, we focus on the spatial response of a CU profile to a localized time-harmonic
forcing and argue that the stationary front is recovered at the CU/AU transition.
This approach is motivated by the difficulty in directly computing the propagation
of a front connecting a fully nonlinear wavetrain to an unperturbed wake profile: in
the co-moving frame the flow is marginally AU and thus very sensitive to various
uncontrolled perturbations. In contrast, the signalling problem in a CU flow is not
affected since the response to noise is swept away, and the stationary régime is easily
identified.

Consider again a strictly parallel wake profile at a given streamwise station X. The
forced perturbation vorticity and streamfunction fields $ and ψ are then governed by(

∂

∂t
+U0(y)

∂

∂x

)
$ +U0,yy(y)

∂ψ

∂x
+

(
∂ψ

∂y

∂

∂x
− ∂ψ

∂x

∂

∂y

)
$ =

∆$

Re
+ S(x, y, t), (5.1a)

∆ψ = −$, (5.1b)

where the temporally harmonic forcing function is taken to be of the form

S(x, y, t) = H(t)Af exp

(
−x

2 + (y − yf)2

`2
f

)
cosωft, (5.2)

with H(t) denoting the Heaviside unit step function, and ωf and Af the forcing fre-
quency and amplitude. The forcing is applied in a region of size `f centred at (0, yf).
Switching on the forcing at t = 0 produces a transient wavepacket together with
the steady-state response at the forcing frequency. Whenever the basic flow is CU,
transients move away from the source and a steady-state signal is left at the forcing
frequency. When the medium is AU, switch-on transients overwhelm the response at
the forcing frequency and the signalling problem is ill-posed. Hence only the spatial
problem for CU velocity profiles is considered in the following discussion.

The linear signalling problem in shear flows has been investigated by Huerre &
Monkewitz (1985). Here, the linear dispersion relation (3.4) gives rise to two linear
spatial branches k`+(X,ω) and k`−(X,ω). The response streamfunction then reads

ψ(x, y, t) ∝ Af
Ψ`(y; k`±(X,ωf), X)

(∂Ω`/∂k)(k`±(X,ωf), X)
exp i

[
k`±(X,ωf)x− ωft]+ c.c., (5.3)

where labels (+) and (−) pertain to the downstream (x > 0) and upstream (x < 0)
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Figure 8. Spatial response of a CU parallel wake to harmonic forcing of frequency ωf = 0.19,
amplitude Af = 10−3 and width `f = 1 applied at the origin and given by (5.2). Re = 100. (a) Basic
velocity profile at X = 1. (b) Total vorticity levels at t = 500. Positive contours 0.02, 0.04, . . . ,
0.14 and negative contours −0.02,−0.04, . . . , −0.14 are represented by solid and dashed lines
respectively. (c) Corresponding perturbation streamlines. Solid (dashed) isocontours pertain to the
levels 0.2, 0.4, . . . , 1.4 (−0.2, −0.4, . . . , −1.4). Close to the forcing location the downstream response
grows exponentially to reach a finite amplitude around x = 70. Further downstream, a nonlinear
travelling wave is generated. The entire streamwise extent −10 < x < 190 of the computational
domain is shown.

response respectively. Note again that for convenience the viscous dissipation term
∆$/Re has been added to (5.1a). Thus the linear dispersion relation Ω` and corre-
sponding eigenfunctions Ψ` are derived from the Orr–Sommerfeld equation rather
than the Rayleigh equation (3.3), the streamwise decay or growth rates being dictated
by k`±i ≡ Im k`±. An extensive survey of all the CU velocity profiles encountered
in the present study reveals that the linear k`−(X,ω) branches always remain in the
ki < 0 half-plane and thus never give rise to upstream amplification. Only downstream
spatial branches k`+ grow in a certain frequency range.

Whenever a linear spatial branch is amplified, nonlinear terms have to be taken into
account at some distance from the source, however small the forcing amplitude. As the
response reaches finite amplitude, nonlinear saturation prevents further amplification
and leads to a nonlinear travelling wave at the excitation frequency for some real
wavenumber kn`. Since this nonlinear propagating wavetrain is reached downstream
of the source, it is denoted as kn`+(X,ω). The forcing frequency ωf and the nonlinear
response wavenumber kn`+ satisfy the nonlinear dispersion relation (4.4). For a more
complete discussion of the relationship between linear and nonlinear spatial branches,
see Pier (1999) and Pier et al. (2001).

Figure 8 illustrates the spatial response of the parallel CU wake velocity profile (a)
prevailing at X = 1, at a Reynolds number Re = 100. Forcing is applied at the origin
yf = 0 with a frequency ωf = 0.19, amplitude Af = 10−3 and `f = 1. Total isovorticity
contours and perturbation streamlines are displayed in (b) and (c) respectively. Close
to the forcing location, the downstream response grows exponentially to reach a
finite amplitude around x ∼ 70. The measured nonlinear saturation wavenumber is
kn`+(X,ωf) = 0.27. The solid dot at (k, X) = (0.27, 1) in figure 5(a) lies close to the
contour level Ωn` = ωf = 0.19, which confirms that kn`+ = 0.27 is indeed a solution
of the nonlinear dispersion relation (4.4).

The signalling problem (5.1) is numerically integrated via a finite difference scheme
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with nx mesh points of size δx in the x-direction and ny Chebyshev collocation
points in the y-direction. According to the Poisson equation (5.1b), the perturbation
streamfunction ψ is generated by the vorticiy field $ which is confined within the shear
region. Thus, in general, ψ decays algebraically far away from the vortical region.
As a result, the algebraic transformation (3.5) is still well adapted to this problem.
The perturbation vorticity and streamfunction are both assumed to vanish at the
upstream boundary and at infinity in the cross-stream direction. The non-reflecting
boundary conditions introduced by Jin & Braza (1993)

∂$

∂t
= −

(
U0 +

∂ψ

∂y

)
∂$

∂x
+

1

Re

∂2$

∂y2
, (5.4a)

∂

∂t

∂ψ

∂x
= −

(
U0 +

∂ψ

∂y

)
∂2ψ

∂x2
+

1

Re

∂2

∂y2

∂ψ

∂x
, (5.4b)

are implemented at the outlet. The Poisson equation (5.1b) is solved by a generalized
Thomas algorithm with given boundary values of ψ at the inlet and ψx at the outlet.
Integration in time is performed with a second-order Runge–Kutta scheme of time
step δt.

The parameters chosen in the computation of figure 8 are nx = 400, δx = 0.5,
ny = 31, ly = 5, δt = 0.05. The entire streamwise extent of the computational domain
−10 < x < 190 is displayed to demonstrate that the outflow boundary is truly
non-reflecting.

In order to analyse the spatio-temporal structure of the nonlinear response, har-
monic components have been computed over one period in the stationary régime
according to the Fourier expansion

ψ(x, y, t) =
∑

−∞<n<+∞
φ(n)(x, y)e−inωft. (5.5)

Figure 9(a) displays a snapshot of the fundamental streamwise velocity u(1)(x, y) =
∂yφ(1)(x, y) + c.c. It is seen that at the onset of nonlinearity, the fluctuation amplitude
is higher than in the periodic nonlinear wavetrain reached further downstream.
The associated envelope |v(1)|(x, y) = 2|∂xφ(1)(x, y)| plotted in figure 9(b) effectively
represents the amplitude of the fundamental cross-stream velocity fluctuations. The
non-fluctuating component of the streamfunction at n = 0 is associated with the
nonlinear mean flow correction induced by Reynolds stresses. Figure 9(c) shows the
isocontours of the mean streamwise perturbation velocity u(0)(x, y) = ∂yφ(0)(x, y). In
the finite-amplitude region, the mean flow distortion is seen to fill up the dip of the
wake, thereby effectively reducing the shear experienced by the nonlinear travelling
waves.

The Fourier expansion (5.5) allows the streamwise evolution of the kinetic en-
ergy En(x) contained in each harmonic component to be monitored, defined as

En(x) =

∫ +∞

−∞

(|∂yφ(n)|2 + |∂xφ(n)|2
)

dy (n > 0), (5.6a)

E0(x) =

∫ +∞

−∞
1
2

(
(∂yφ(0))

2 + (∂xφ(0))
2
)

dy. (5.6b)

Semi-log plots of the streamwise evolution of En(x) are given in figure 10. In the
linear region, the fundamental component (thick line) grows exponentially according
to exp(−k`+i x) until a finite amplitude level is reached. The mean slope over the
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Figure 9. Same parallel wake spatial response as in figure 8. (a) Snapshot of fundamental streamwise
velocity u(1)(x, y). Solid (dashed) lines pertain to 0.02, 0.04, . . . , 0.14 (−0.02, −0.04, . . . , −0.14)
contour levels. (b) Contour levels of envelope of cross-stream velocity |v(1)|(x, y) (0.02, 0.04, . . . ,
0.20). (c) Isolevels of nonlinear mean streamwise velocity correction u(0)(x, y). Thick line separates
regions of positive (0.05, 0.10, . . . , 0.40 solid lines) and negative (−0.05 dashed line) levels.

interval 20 < x < 60 is 0.054, close to its theoretical linear value −2k`+i / ln 10 = 0.055
as predicted by the spatial branch k`+ = 0.316 − 0.064i computed from the Orr–
Sommerfeld equation. Although the numerical results are not as clean as in the
temporal evolution problem of figure 6, higher harmonics are nonetheless slaved to
the fundamental according to En(x) ∼ [E1(x)]n. Note however that the variations of the
mean-flow correction energy E0(x) are algebraic rather than exponential. Presumably,
the vortical structures produced in the nonlinear domain generate a global mean
pressure field which does not simply scale as [E1(x)]2 with the local linear spatial
instability properties. This feature is absent in the temporal evolution case where the
waves are strictly streamwise periodic.

With the exception of the mean flow correction, there is no feedback of the fully
nonlinear downstream wavetrain on the upstream linear region. A proof of this
assertion is obtained by measuring the nonlinear saturation location as a function
of the forcing amplitude. The saturation station xn` may be precisely defined from
the envelope of the fundamental cross-stream velocity component (see figure 9b)
along the centreline y = 0 as the location where |v(1)|(x, 0) reaches a preset value.
The resulting variation of xn` with − logAf displayed in figure 11 is clearly linear
with a measured slope of 35.5, which favourably compares with the theoretical value
− ln 10/k`+i = 36.0 predicted by linear theory. The nonlinear saturation station is
thus solely controlled by the linear growth phase: it depends only on the forcing
amplitude Af and linear spatial growth rate −k`+i .
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wake. All other parameter settings same as in figure 8.

The signalling problem (5.1) may be solved for any forcing frequency ωf and any
station X associated with a given CU wake velocity profile. As the AU threshold
at Xca is approached, the receptivity of the flow to forcing at the corresponding real
absolute frequency ωca

0 increases (Pier et al. 2001). At the marginal AU station Xca,
upstream and downstream spatial branches pinch, i.e. k`+(Xca, ωca

0 ) = k`−(Xca, ωca
0 ) =

k0(X
ca) ≡ kca0 and by definition Ω`

k (k
ca
0 , X

ca) = 0. Thus, according to (5.3), the spatial
response diverges. In other words, the forcing amplitude required to maintain a fixed
location of nonlinear saturation xn` vanishes as (X,ωf) → (Xca, ωca

0 ). In this limit,
a front structure is obtained connecting a downstream fully nonlinear wavetrain
to an upstream decaying tail without any forcing. This is precisely the stationary
Dee–Langer front residing in the marginally AU medium.

A numerical implementation of this strategy is illustrated in figure 12(a, b). The
forcing frequency is kept constant at ωf = 0.19 ' ωca

0 and the signalling problem
is solved at X = 0.20 and X = 0.22, all other parameters being kept at the same
settings. The resulting perturbation field is seen to only weakly depend on X as
the limit Xca = 0.24 is approached. The spatial response distribution arising from a
forced problem on the CU side of Xca in effect provides a good approximation of
the self-sustained front structure prevailing at Xca in the absence of forcing. The fact
that resonance takes place at Xca is not associated with any drastic change in the
perturbation field. It is only manifested by pinching of k`+ and k`− branches in the
complex k-plane.

It is naturally impractical to perform a numerical simulation at the actual CU/AU
transition since in this limit the forcing problem becomes ill-defined. However, one
may attempt to verify that the spatial response would reach such a self-sustained front-
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Figure 12. Parallel wake spatial response to forcing at frequency ωca
0 = 0.19 as CU/AU transition

station Xca = 0.24 is approached: isocontours of fundamental streamwise velocity at (a) X = 0.20
(b) X = 0.22 (0.05, 0.10, 0.15, 0.20 solid lines, −0.05, −0.10, −0.15, −0.20 dashed lines).
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Figure 13. Evolution of spatial response nonlinear saturation station xn` as the marginal AU
wake profile at Xca is approached. Comparison of numerical measurements (dots) and theoretical
prediction derived from the linear dispersion relation (solid line).

like structure by tracking the nonlinear saturation station xn` as (X,ωf)→ (Xca, ωca
0 ).

Accordingly, the station xn` is measured for different wake velocity profiles pertaining
to X < Xca = 0.24, for ωf = ωca

0 = 0.19 while keeping the forcing amplitude Af at a
fixed constant value. Results are displayed in figure 13 together with the theoretically
predicted curve

xn` =
ln |Ω`

k (k
`+(X,ωca

0 ), X)|
−k`+i (X,ωca

0 )
+ const., (5.7)

arising from the forced response (5.3). It is straightforward to demonstrate via a Taylor
expansion of Ω`

k (k
`+(X,ωca

0 ), X) in the neighbourhood of Xca that |Ω`
k | ∝ |X−Xca|1/2.

Thus, according to (5.7), the nonlinear saturation station xn` scales as

xn` ∼ 1
2

ln |X −Xca|+ const. when X ↑ Xca.

The constant appearing in the theoretical prediction (5.7) depends on the forcing
amplitude Af and would in principle be determined by calculating the multiplicative
constant in (5.3). We are solely concerned here with the functional form of xn` versus X
and the constant has been adjusted to achieve a reasonable fit with the numerical
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data points. Due to the slow logarithmic divergence and the insufficient accuracy of
the measured xn` values, the theoretical curve only poorly fits the numerical data. This
somewhat mixed result is not too surprising: the perturbation field is exponentially
growing along the stream, and in order to check the validity of the scaling law (5.7),
one must extract from the numerics the prefactor multiplying the exponential term.
This process is numerically risky since a small error in the evaluation of the growth
rate drastically contaminates the evaluation of the prefactor. It is well known that
asymptotic limits are often hard to reach numerically!

6. Self-sustained global structures in a spatially developing wake
This part of the study is devoted to the detailed presentation of globally syn-

chronized self-sustained structures, as obtained by direct numerical simulation of the
spatially developing wake flow defined in § 2. Their interpretation in terms of the
previously identified elements is postponed to the next section.

Numerical simulations are performed in the vorticity/streamfunction formulation(
∂

∂t
+U0(x, y)

∂

∂x

)
$ +U0,yy(x, y)

∂ψ

∂x
+

(
∂ψ

∂y

∂

∂x
− ∂ψ

∂x

∂

∂y

)
$ =

1

Re
∆$, (6.1a)

∆ψ = −$, (6.1b)

governing the dynamics of the perturbation fields. Note that the spatial variation of
the basic flow is here expressed in terms of x = XRe. The following results pertain to
a simulation at Re = 100 over the domain 0 < x < 200 (0 < X < 2). The numerical
scheme exactly follows the method implemented for the signalling problem in § 5 with
the parallel basic flow being replaced by the spatially developing wake. Harmonic
forcing is suppressed and perturbations are triggered by a small-amplitude initial
impulse close to the inlet. The precise localization of the impulse is unimportant
and it has been checked that the same final state is obtained for a variety of initial
conditions. In the initial stage, the impulse wavepacket grows and spreads in space to
perturb the entire domain. Perturbations at each streamwise station slowly synchronize
and eventually lead to a global structure tuned at an overall frequency. The following
results were obtained at t = 5000, with the parameters nx = 200, δx = 1.0, ny = 61,
ly = 6, δt = 0.05.

Isolines of basic and total vorticity are shown in figure 14(a, b), and of basic and
total streamwise velocity in figure 14(c, d). Comparison of basic and total fields shows
that the region close to the inlet is governed by small-amplitude dynamics, whereas
a nonlinear wavetrain develops further downstream. In figure 14(b) the two vorticity
layers of opposite sign are seen to be unstable and to give rise to periodic vortices
which completely mask the underlying basic wake flow. The Kármán-like vortex street
is more vividly illustrated by the streaklines in figure 14(e). Note that in sketches (a–d)
the cross-stream scale has been magnified for clarity, while x- and y-coordinates are
on the same scale in (e).

Snapshots of the perturbation vorticity, u- and v-velocity contours and streamlines
are displayed in figure 15(a–d). The interpretation of the global mode in terms of an
extended nonlinear wavepacket is illustrated by the centreline cross-stream velocity
v(x, 0, t) shown in figure 16.

Vorticity time series have been recorded at different locations within the flow in or-
der to ascertain the synchronized behaviour of the global structure. The examination
of the associated frequency spectra (figure 17) indicates that all stations are tuned to
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Figure 14. Self-sustained global structure at Re = 100 and t = 5000 in spatially developing wake
flow defined in figure 1. (a, b) Basic and total vorticity contours. Solid lines pertain to positive
levels (0.05, 0.10, 0.15, 0.20), dashed lines to negative levels (−0.05, −0.10, −0.15, −0.20). (c, d) Basic
and total streamwise velocity. Dashed lines represent the levels 0.95, 0.90, 0.85 above the outlet
free-stream velocity, solid lines pertain to the levels 0.80, 0.75, . . . , 0.10. (e) Corresponding streaklines.

the same global fundamental frequency ωg = 0.186± 0.002 and its harmonics. At the
station (x, y) = (54, 0) (figure 17a) the fluctuations are seen to be almost sinusoidal.
Further downstream on the centreline at (x, y) = (150, 0) (figure 17c) higher odd
harmonics are excited. Sketch (b) at (x, y) = (114, 5.6) shows that off the centerline all
harmonics are represented. Following the analysis of Dušek, Le Gal & Fraunié (1994)
and Dušek (1996), the spatial distribution of different harmonics may be computed
as displayed in figure 18. These graphs clearly demonstrate the wavetrain nature of
the global mode in the downstream region. The nonlinear structures sustained by
the basic wake flow give rise to a finite mean-flow distortion as shown in figure 19.
Reynolds stresses are seen to induce a mean-flow modification in the form of a pair of
counter-rotating large-scale vortices (figure 19a). The associated streamwise velocity
contours displayed in figure 19(b) reveal that the velocity defect of the basic wake
profiles has been reduced by nonlinearities. The corresponding overall entrainment
pattern is displayed in figure 19(c). Most of the dominant dynamics are captured by
the fundamental and mean-flow components: superposition of the u-velocity contours
pertaining respectively to the fundamental (figure 18a) and mean-flow distortion (fig-
ure 19b) yields a pattern which is indeed close to the total perturbation u-velocity
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Figure 16. Global mode structure: instantaneous centreline cross-stream velocity v(x, 0, t).
Same conditions as in figure 14.

contours (figure 15b). In the same line of thought as in § 5, one may display the stream-
wise evolution of the energy En(x) contained in each harmonic (see equations (5.6))
as shown in figure 20. Higher harmonics (n > 1) are seen to reach very low amplitude
levels even in the nonlinear region. This observation is also corroborated by the power
spectra of figure 17.

It may be concluded that the spatio-temporal development of the vortex street
is essentially determined by three components: the imposed unstable basic flow, the
fundamental wavetrain of frequency ωg which it sustains and the ensuing mean-flow
distortion produced by Reynolds stresses.
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Figure 17. Global mode power spectrum of vorticity time series at stations (a) x = 54, y = 0,
(b) x = 114, y = 5.6, (c) x = 150, y = 0, based on signal recorded over 5000 < t < 10000. Same
conditions as in figure 14.
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Figure 18. Global mode structure: fundamental velocity components. (a) Streamwise velocity
contours (0.05, 0.10, 0.15 solid lines, −0.05, −0.10, −0.15 dashed lines). (b) Cross-stream velocity
contours (0.05, 0.10, 0.15, 0.20 solid lines, −0.05, −0.10, −0.15, −0.20 dashed lines). Same conditions
as figure 14.

7. Interpretation of the vortex street as a steep global mode
The objective of this section is to demonstrate that the vortex street observed in

the direct numerical simulations of spatially developing wakes in § 6 is indeed a steep
global mode as defined by Pier et al. (1998). In other words, its frequency obeys the
marginal stability criterion (1.2) and its spatio-temporal structure is controlled by a
front which generates nonlinear travelling wavetrains further downstream.

The application of the steep frequency selection criterion (1.2) to the local absolute
frequency ω0(X) calculated in § 3 and displayed in figure 3 yields

Xca = 0.24 and ωca
0 = ω0(X

ca) = 0.190, (7.1)

to be compared with the observed global vortex street frequency ωg = 0.186. The
prediction (7.1), which is only a leading-order approximation in ε = 1/Re = 0.01,
is seen to be in excellent agreement with the value obtained by direct numerical
simulation. The observed frequency should also be compared with the complex
linear global frequency ωs = 0.143 + 0.008i obtained from the linear saddle-point
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Figure 20. Semi-log plot of global mode spatial energy distribution of different harmonics En(x).
Same conditions as in figure 14.

criterion (1.1). The complex ωs only applies to uniformly linear global mode structures,
and does not capture the nonlinear dynamics governing the present vortex street.

The global mode spatial distribution is compared with the associated front struc-
ture and local nonlinear travelling wavetrains in figure 21. Contour levels of the
fundamental streamwise velocity pertaining to the vortex street (figure 21a, already
displayed in figure 18a) are compared with the same field for the quasi-front of
frequency ωca

0 = 0.19 at X = 0.22 (figure 21b, already displayed in figure 12b). The
pattern in figure 12(b) has been suitably shifted in the streamwise direction and in
time so as to adjust amplitude and phase to those of figure 21(a). Although this
X-station is below the absolute transition point Xca = 0.24, the structure of the
fundamental is seen to be approximately reproduced by the front.

The same vortex street contour levels (figure 21a) are compared with those for
a fully nonlinear travelling wave at X = 1.40 obtained via temporal numerical
simulation (figure 21c). More specifically, the local wavenumber kn`+ = 0.27 prevailing
at X = 1.40 and ωca

0 = 0.19 is determined from the local nonlinear dispersion relation
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travelling waves (c). Isolevels of fundamental streamwise velocity component are shown (0.05, 0.10,
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plotted in figure 5(a), and a streamwise periodic temporal simulation is performed
as detailed in § 4. Here again, the downstream region of the global mode is seen to
be approximately represented by nonlinear wavetrains which travel according to the
local nonlinear dispersion relation at each streamwise station.

Note however that the characteristic wavelengths of the quasi-front in (b) and
nonlinear travelling wave in (c) appear to be somewhat smaller to those of the
corresponding global mode structure in (a). This feature may be related to the
frequency difference between the two cases: ωca

0 = 0.190 in (b, c) and ωg = 0.186
in (a). The wavemaker triggering the vortex street is located at the marginally
AU station xca = ReXca = 24; however, full nonlinearity is only attained about a
wavelength downstream of this location. Thus the region where the global mode
structure reaches finite amplitude is actually pushed to the downstream side of the
AU region 24 < x < 55. This result is not all that surprising: the front characterizing
the streamwise transition between linear waves and a fully nonlinear wavetrain is
known to typically extend over one wavelength (see e.g. van Saarloos 1987).

8. Conclusion
This study has demonstrated that the steep global modes previously identified

and analysed in one-dimensional CGL evolution equations also arise in spatially
developing shear flows exhibiting a region of absolute instability. The self-sustained
structures have been shown to be controlled by a front located at the upstream edge
of the AU region which acts as a wavemaker to generate nonlinear travelling waves
in its wake. Provided that the streamwise variations of the underlying basic flow
are sufficiently slow (wkbj approximation), such wavetrains are governed at each
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station by the associated local nonlinear dispersion relation obtained from a purely
temporal evolution problem on the local shear flow profile considered as parallel. Fast
streamwise variations are confined to the front layer where the full Navier–Stokes
equations have to be resolved for the wave field on the fast x-scale.

It should again be noted that the stationary fronts identified in the present shear
flow framework are of the same nature as the propagating fronts studied in the
context of pattern formation: the criterion (1.2) is merely an application of the
marginal instability criterion of Dee & Langer (1983) and van Saarloos (1987, 1988).
The present findings are also consistent with the nature of the nonlinear impulse
response in parallel wakes studied by Delbende & Chomaz (1998). Furthermore, the
conjecture put forward by Monkewitz & Nguyen (1987) has been fully confirmed:
the first streamwise station Xca of non-negative absolute growth rate indeed supports
a front which imposes its frequency ωca

0 on the entire flow.
The present approach constitutes a significant departure from the landmark non-

linear hydrodynamic instability analyses of spatially evolving shear flows developed
by Goldstein & Leib (1988) and Goldstein & Hultgren (1988). These investigations
require the simultaneous enforcing of the assumptions of overall small wave amplitude
and slow streamwise variations. As a result, finite-amplitude effects arise only within
nonlinear critical layers of small cross-stream extent. An asymptotically consistent
description of the streamwise development of perturbations of given frequency may
then be obtained for convectively unstable shear flows. In the present study, the
small-amplitude assumption has been totally relaxed and only the slow streamwise
variation hypothesis has been retained. The fully nonlinear evolution of perturbations
of order unity may then be captured either for the forced problem in CU flows or for
self-sustained structures in flows with an AU region. Nonlinearities then extend over
the entire shear region in the cross-stream direction. Whereas critical layer studies
succeed in achieving a quasi-analytic formulation of the forced dynamics, the present
approach relies on local numerical simulations to identify the various constitutive
elements of the dominant wkbj approximation. It is surmised that the same fully
nonlinear theory is applicable to a wide variety of spatially evolving shear flows
whether they are in a self-sustained mode or subjected to forcing.

A systematic asymptotic approximation scheme of the kind presented in Pier et al.
(2001) has not been attempted here. Furthermore, the Reynolds number has been
kept relatively small at Re = 100. Larger values of Re increase the streamwise extent
of the computational domain and computing time. Moreover, exploratory simulations
indicate that secondary instabilities occur for the present basic flow beyond Re ∼ 200.
However, computation of the local nonlinear wavetrains on a streamwise periodic
interval is not affected by secondary instabilities. We therefore presume that a syn-
chronized finite-amplitude vortex shedding régime exists analytically for all large Re
but is unstable in the spatially developing simulation beyond Re ∼ 200. It is thus
impractical to push Re up to larger values in order to move closer to the wkbj limit
ε = 1/Re = 0.

It should be emphasized that the steep frequency selection criterion (1.2) which
has been demonstrated here to apply to real flows is purely based on the local linear
dispersion relation, although it pertains to fully nonlinear sychronized structures.
The saddle-point criterion (1.1) is also linear but it is solely applicable to strictly
linear global modes. And indeed, the numerically obtained ωg = 0.186 is much
closer to ωca

0 = 0.190 of criterion (1.2) than to ωs = 0.143 + 0.008i of criterion (1.1),
which in any case is incompatible with the saturated nonlinear wavetrains observed
downstream of the front at Xca. Furthermore, as demonstrated by Pier (1999), steep
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global modes are triggered as soon as local linear absolute instability appears, while
linear global modes become unstable only when the linear AU region is of sufficiently
large extent (Chomaz et al. 1991). To confirm this argument, the same simulation has
been carried out with a spatially developing wake obtained for a pressure gradient
designed to yield a minimum centerline velocity of 0.047 instead of 0.010 as in
figure 1. The saddle-point frequency is then ωs = 0.155 − 0.001i, which corresponds
to a decaying linear global mode. Nevertheless, there is still a small locally absolutely
unstable region 0.34 < X < 0.44 with ωmax

0,i = 0.001. In this case, a steep global mode
is observed in the direct numerical simulation, whereas no self-sustained structure
survives if nonlinear terms are turned off. This result is entirely consistent with the
transition scenario outlined in Pier et al. (2001).

It is somewhat paradoxical that the intricate complex X-plane analyses developed
over the years to uncover the selection properties of linear global modes are masked
in practice by the onset of local absolute instability which immediately prevails and
imposes its frequency and the overall structure of the synchronized oscillations.

As a final note of caution, it should be stressed that the present analysis cannot be
obviously extended to bluff-body wakes where the AU region lies immediately behind
the obstacle. In spite of the fact that the synthetic wake considered here is purely
co-flowing, it can nonetheless sustain a synchronized vortex street which qualitatively
displays the same features.

The authors are grateful to Jean-Marc Chomaz and Arnaud Couairon for en-
lightening discussions. The expert advice and suggestions of Carlo Cossu played an
essential rôle in the design and validation of the numerical scheme.
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