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Multilayered Decision Problems
Dmitrii Lozovanul∗, Stefan Pickl†

Abstract

If we generalize the Kyoto game which was presented at Lamsade-Dimacs work-
shop in 2004, we obtain a decision problem which can be described by a multilay-
ered structure. This structure represents a hidden multiobjective control problem of
a time-discrete systems with given starting and final states. The dynamics of the sys-
tem are controlled byp actors (players). Each of the players intends to minimize his
own integral-time cost of the system’s passages using a certain admissible trajectory.
At each stage (level) decisions are made by the players.

Nash Equilibria conditions can derived and algorithms for solving dynamic games
in positional form are described. The existence theorem for Nash equilibria is related
with the introduction of an auxiliary dynamic c-game.

We present the decision problem in that c-game which is defined on a special
layered structure. The algorithmic principle which exploits this special structure for
the decision processes will be described. New complexity results are presented and
first numerical results are discussed.

Key words : Decision Theory, c-Game, Layered Network

1 Introduction - The General Model

In the following we describe the general underlying model for our decision problem. This
is a short summary. For details we refer to [3, 4].
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Multilayered Decision Problems

Let L be a discrete dynamical system with the set of statesX ⊆ Rm. At every time-
stept = 0, 1, 2 . . . the state ofL is x(t) ∈ X. Two statesx0 andxf are given inX, where
x0 = x(0) represents the starting point ofL andxf is the state into which the systemL
must be brought, i.e.xf is the final state ofL. We assume that the systemL reaches the
final statexf at the time stepT (xf ) such that

T1 ≤ T (xf ) ≤ T2,

whereT1 andT2 are given. The dynamics of the system are described as follows

x(t + 1) = gt(x(t), u(t)), t = 0, 1, 2, . . .

where
x(0) = x0

andu(t) ∈ Rm represents the vector of control parameters.

Foru(t) at any time stept let there be given a nonempty setUt(x(t)) such that

u(t) ∈ Ut(x(t)), t = 0, 1, 2, . . . , (1)

i.e. Ut(x(t)) is the admissible (decision) set for vector of control parameters at the time-
stept when the state of systemL is x = x(t) ∈ X. We assume that the derivatives
gt(x(t), u(t)) are known and uniquely determinex(t + 1) for givenx(t) andu(t) at every
moment of timet = 0, 1, 2, . . . . In addition we assume that at each point in timet the cost
ct(x(t), x(t + 1)) is known withct(x(t), x(t + 1)) = ct(x(t), gt(x(t), u(t))) of system’s
passage from the statex(t) to the statex(t + 1).

Let
x0 = x(0), x(1), x(2), . . . , x(t), . . .

be the trajectory generated by given vectors of control parameters

u(0), u(1), . . . , u(t − 1), . . . .

Either this trajectory passes through the statexf at timeT (xf ) or it does not pass through
xf . By

Fx0xf
(u(t)) =

T (xf )−1∑

t=0

ct(x(t), gt(x(t), u(t))) (2)

we denote the integral-time cost of system’s passage fromx0 to xf if T1 ≤ T (xf ) ≤ T2;
otherwise we stipulateFx0xf

(u(t)) = ∞.
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Multiobjective Control Problem

The multiobjective control problem is defined in the following way:
Minimize the functionFx0xf

(u(t)) which is defined by (2) according to (1).

Thus, we consider the discrete control problem which consists of cases with a fixed
number of stages (T1 = T2) and the number of stages is not limited (T1 = 1, T2 = ∞).

Before we deal with the decision problem we introduce in the following section the
special structure of Nash equilibria.

2 Problem Formulation for Determining a Nash Equilib-
rium

In order to characterize suitable Nash equilibria we consider the dynamic systemL over
discrete moments in timet = 0, 1, 2, . . . . At every time-stept the state of thisL is
x(t) ∈ X ⊆ Rm. The dynamics of the systemL are controlled byp players and it is
described as follows

x(t + 1) = gt(x(t), u1(t), u2(t), . . . , up(t)), t = 0, 1, 2, . . . . (3)

Herex(0) = x0 is the starting point of the systemL andui(t) ∈ Rmi represents
the vectors of control parameters of playeri, i ∈ {1, 2, . . . , p}. The statex(t + 1) of the
systemL at time-stept+1 is obtained uniquely if the statex(t) at the time-stept is known
and the players1, 2, . . . , p fix their vectors of control parametersu1(t), u2(t), . . . , up(t),
respectively. For each playeri, i ∈ {1, 2, . . . , p} the admissible setsU i

t (x(t)) for the
vectors of control parametersui(t) are given, i.e.

ui(t) ∈ U i
t (x(t)), t = 0, 1, 2, . . . ; i = 1, p.

We assume thatU i
t (x(t + 1)), t = 0, 1, 2, . . . ; i = 1, p, are non-empty finite sets and that

U i
t (x(t)) ∩ U j

t (x(t)) = ∅, i 6= j, t = 0, 1, 2, . . .

We assume that the players1, 2, . . . , p fix their vectors of control parameters
u1(t), u2(t), . . . , up(t); t = 0, 1, 2, . . . ,

respectively, and the starting statex0 and final statexf of the systemL are known. Then
for fixed vectors of control parametersu1(t), u2(t), . . . , up(t) either a unique trajectory

x0 = x(0), x(1), x(2), . . . , x(T (xf )) = xf

275



Multilayered Decision Problems

from x0 to xf exists andT (xf ) represents the time-moment when the statexf is reached,
or such trajectory fromx0 to xf does not exist. We denote by

F i
x0xf

(u1(t), u2(t), . . . , up(t)) =
T−1∑

t=0

ci
t(x(t), gt(x(t), u1(t), u2(t), . . . , up(t)))

the integral-time cost of system’s passage fromx0 to xf for the playeri, i ∈ {1, 2, . . . , p}
if the vectorsu1(t), u2(t), . . . .up(t) generate a trajectory

x0 = x(0), x(1), x(2), . . . , x(T (xf )) = xf

from x0 to xf such that

ui(t) ∈ U i
t (x(t)), t = 0, 1, 2, . . . , T (xf ) − 1,

and
T1 ≤ T (xf ) ≤ T2.

Otherwise we stipulate

F i
x0xf

(u1(t), u2(t), . . . , up(t)) = ∞.

Note thatci
t(x(t), gt(x(t), u1(t), u2(t), . . . , up(t))) = ci

t(x(t), x(t + 1)) represent the
costs of the system’s passage from the statex(t) to the statex(t + 1) at the stage[t, t + 1]
for the playeri. Then we obtain the following problem on networks:

Problem: Decison Problem on Networks

If we find vectors of control parameters

u1∗(t), u2∗(t), . . . , ui−1∗(t), ui∗(t), ui+1∗(t), . . . , up∗(t)

which satisfy the following condition

F i
x0xf

(u1∗(t), u2∗(t), . . . , ui−1∗(t), ui∗(t), ui+1∗(t), . . . , up∗(t)) ≤

≤ F i
x0xf

(u1∗(t), u2∗(t), . . . , ui−1∗(t), ui(t), ui+1∗(t), . . . , up∗(t))

∀ui(t) ∈ Rmi , t = 0, 1, 2. . . . ; i = 1, p

(the expressioni = 1, p is equivalent toi = {1, . . . , p}.), then we get a solution in the
sense of Nash for our control problem on a network. In the following we present a sketch
of the algorithmic principle.
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3 Algorithmic Determination - Layered Structure

If we search for an suitable algorithmic principle we can orientate on similar problems
of shortest path on a network. For that reason we present an application of Dijkstra’s
algorithm for a multiobjective version of the optimal paths problem in a weighted directed
graph. The algorithm is able to determine the stationary Pareto strategys∗ ∈ S of the
players for the multiobjective control problem on the network(G,X, c1, c2, . . . , cp, x0, xf ,
T1, T2) with an arbitrary starting positionx ∈ X and given final positionsxf ∈ X. We
then obtain a tree which obtains all Pareto optimal paths from everyx ∈ X to xf .

4 Complexity Results

If we consider the following

INSTANCE: [Multiobjective Decision Problem]
Let L be a dynamic system with a finite set of statesX, |X| = n. We interprete these
states as nodes of a graphG(X,E) whereX is now the set of nodes (i.e. the states of our
dynamic system) andE is a set of edges which have the following property:

At every discrete moment of timet = 0, 1, 2, . . . the state of the systemL isx(t) ∈ X.
Note, that here we associatex(t) with anabstract element. Furthermore we have a multi-
objective control problem on the network(G,X, c1, c2, . . . , cp, x0, xf ) with p players:
The dynamics of the system L is described by a directed graph of passages in the graph
G = (X,E). Two statesx0 andxf are chosen inX, wherex0 is a starting point of the
systemL, x0 = x(0), andxf is a final state of the system, i.e.xf is a state in which
the systemL must be brought. Anedge e = (x, y) signifies the possibility of passages
of the systemL from the statex = x(t) to the statey = x(t + 1) at any point in time
t = 0, 1, 2, . . . , T (xf ). (We assume that the systemL reaches the final statexf at the
time stepT (xf )). For simplicity we assume that the graphG = (X,E) is connected. To
each edgee = (x, y) ∈ E of the graph of passagesp functionsc1

e(t), c
2
e(t), . . . , c

p
e(t) are

assigned, whereci
e(t) expresses the cost of system’s passage from the statex = x(t) to

the statey = x(t + 1) at the stage[t, t + 1] for the playeri. For the stationary case the
functionsci

e(t) do not depend ont.

According to the algorithmic principle the existence of a partitionX = X1(t) ∪
X2(t) ∪ . . . ∪ Xp(t), (X i(t) ∪ Xj) = ø, i 6= j can be proved. Here,X i(t) correspond
to the set of positions of playeri at time-stept. The proposed algorithm determines the
optimal strategys∗ which is closely related with a distinguished partition for the setX.

According to following input parameter we define the problem for the instanceMulti-
objective Decision Problem:
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Instance Multiobjective Decision Problem
Input Parameter: n, p, T

PROBLEM: Determine a stationary Pareto strategy.

Then we can prove that

Theorem: Our constructive algorithm determines for the instanceMultiobjective De-
cision Problem Pareto stationary strategies of the players for every given starting position
x and final positionxf . The running-time of the algorithm is O(n3Tp).

5 Conclusion

Games which are defined on networks are very interesting from a practical and theoretical
point of view. We present a decision problem in the context of emissions trading. A
special structure is exploited to obtain a polynomial algorithm. First numerical results
will be discussed.
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