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An axiomatic characterization of the prudent
order preference function

Claude Lamboray∗

Abstract

In this paper, we will axiomatize a preference function that associates to a profile
of linear orders the set of its corresponding prudent orders. We will introduce ax-
ioms that will restrict the set of linear orders to the set of prudent orders. By slightly
adapting these axioms, the prudent order preference function can be fully character-
ized. Finally, we will characterize the extended prudent order preference function by
introducing an additional Condorcet-like criterion.

Key words : Prudent Orders, Axiomatization

1 Introduction

Arrow and Raynaud[1] introduced a set of axioms that a ranking rule which combines a
profile of linear orders into a compromise ranking should verify. Among these, axiom
V’ states that the compromise ranking should be a so-called prudent order. Intuitively,
a prudent order is a linear order such that the strongest opposition against this solution
is minimal, which is considered by the authors to be an interesting compromise ranking
when working in an industrial or business-like context.

Apart from the works of Arrow and Raynaud [1] and Debord [3], prudent orders have
also been analyzed by Lansdowne [9, 10] who compared their properties to other social
ordering rules. However, the particular question of characterizing the set of prudent or-
ders has not been addressed yet. This will be the topic of this paper.
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An axiomatic characterization of the prudent order preference function

A characterization will be useful to highlight the particularities of prudent orders with
respect to other common social ordering rules. The results presented in this paper can
also be seen as a first step toward characterizing other prudent ordering rules, such as for
instance the ranked pairs rule proposed by Tideman [15, 18].

Let us emphasize that, in our setting, the type of solution which we will characterize
will be neither a ranking, nor a choice subset, but asetof rankings. This has also been
the case in Young’s [17] axiomatization of the set of Kemeny orders. A major difference
however with the Kemeny model is that the prudent order model is ”ordinal”. In the lit-
erature, we can find characterizations of ordinal ranking models by Barbera [2], Pirlot
[11] and Fortemps and Pirlot [5], although these authors were working in very different
contexts.

The size of the set of prudent orders can be rather large in comparison to other com-
mon social ordering rules. This has been pointed out by Debord [3], who performed
simulations to estimate the number of prudent orders for small profiles.

However, from a progressive decision aid perspective, the use of prudent orders as
possible compromise rankings does make sense. Sometimes, we do not necessarily aim
at finding directly one compromise ranking, but we can also be interested in depicting a
whole range of possible compromise rankings. That is why, on the one hand, we want to
keep the set of possible compromise rankings as large as possible in order to leave enough
room for a progressive refinement. On the other hand, we want to restrict the whole set of
linear orders to those which can be reasonably considered as potential compromise solu-
tions.

This paper is organized as follows. First, we are going to recall the concept of a pru-
dent order. We will introduce the relevant axioms in section 3. In section 4, we will
present results related to the set of prudent orders, whereas in section 5 we will refine the
set of prudent orders by taking into account an additional Condorcet criterion. Finally, we
will end the paper with a conclusion.

2 Prudent orders

We denote byO the set of all the linear orders (transitive, complete and asymmetric binary
relations) on a finite set ofn alternativesA = {a1, a2, . . . , an}. Letu = (O1, O2, . . . , Oq) ∈
Oq be a profile ofq linear orders.
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Annales du LAMSADE n◦6

Given a profileu, we define majority marginsBij = |{k : (ai, aj) ∈ Ok}| − |{k :
(aj, ai) ∈ Ok}| ∀i, j. It is easy to see that∀i, j, Bij + Bji = 0. Furthermore, the majority
margins of a profile of linear orders are either all even or all odd (see Debord [4]). If they
are all even, then the number of linear orders belonging to the profile must also be even. If
they are all odd, then the number of linear orders belonging to the profile must also be odd.

A linear extensionO of a relationR is a linear order that containsR: R ⊆ O. We will
denote byE(R) the set of all the linear extensions of relationR.

If u = (O1, O2, . . . , Oq) is a first profile andu′ = (O′
1, O

′
2, . . . , O

′
q′) is a second profile,

then we will denote byu + u′ the profile(O1, O2, . . . , Oq, O
′
1, O

′
2, . . . , O

′
q′). We denote

by (aiajx) a linear order whereai is followed byaj and then by the alternativesx with
x being an arbitrary permutation of the alternativesA \ {ai, aj}. Furthermore, we denote
by −x the reverse permutation ofx. Finally, the strict majority relationM is defined as
follows:

∀i, j (ai, aj) ∈ M ⇐⇒ Bij > 0.

Let λ ∈ {−q, . . . 0, . . . , q} and let us define the cut-relationsR>λ andR≥λ as follows:
∀i 6= j, Bij ≥ λ ⇐⇒ (ai, aj) ∈ R≥λ andBij > λ ⇐⇒ (ai, aj) ∈ R>λ.

We say that a relationR contains a cycle if there exists a subset of alternativesai1 ,
ai2 , . . . , aip such that(ai1 , ai2) ∈ R, (ai2 , ai3) ∈ R, . . . , (aip , ai1) ∈ R. Whenλ is large,
thenR>λ is empty and consequently does not contain any cycle. By gradually decreasing
the cut value, some ordered pairs will be added to the corresponding strict cut-relation.
Let β be the smallest value such that the corresponding strict cut relation is acyclic:

β = min{λ ∈ {−q, . . . , O, . . . , q} : R>λ is acyclic}.

Let us note that, consequently, the relationR≥β must contain at least one cycle. A
prudent orderOP ∈ O is defined as a linear order that extends the relationR>β:

R>β ⊆ OP . (1)

We will characterize a functionPO, called prudent order preference function, that
associates to every profileu the set of all the linear extensions ofR>β :

PO(u) = {OP ∈ O : R>β ⊆ OP}

= E(R>β).

231



An axiomatic characterization of the prudent order preference function

Since it is always possible to extend an acyclic relation into a linear order (see Szpilrajn[13]),
the set of prudent orders will never be empty. Arrow and Raynaud justified such a com-
promise rankingOP to be prudent by the fact that ordered pairs that belong to the relation
R>β are pairs with no contradiction and a high majority. If these ordered pairs would not
belong to the final compromise ranking, there would be a large and non-divided majority
against such a ranking.

It can be shown that equation 1 is equivalent to stating thatOP is a linear order that, in
a way, minimizes the strongest opposition against this ranking, the value of this strongest
opposition being exactly equal toβ.

max
(ai,aj)6∈OP ,i6=j

Bij = β ≤ max
(ai,aj)6∈O,i6=j

Bij ∀O ∈ O. (2)

Equivalently, a prudent orderOP is a linear order that maximizes the weakest link. In
fact, sinceBij + Bji = 0, equation 2 can be rewritten as follows:

min
(ai,aj)∈OP

Bij ≥ min
(ai,aj)∈O

Bij ∀O ∈ O. (3)

Another interpretation of prudent orders worth mentioning here has been highlighted
by Debord [3]. Let us suppose that the profileu is such that the strict majority relation is
not a linear order. Let us now consider any linear orderO ∈ O and letµO be the minimal
number of times that one has to addO to u such that the majority relation of the profile
u + µOO corresponds exactly to the linear orderO. In fact,µO corresponds to the nec-
essary strength of the linear orderO to impose itself as the majority relation. We define
µmin = minO∈O µO.

Theorem 1 Debord (1987) [3]
Letu be a profile such that the strict majority relation is not a linear order.O is a prudent
order if and only if the majority relation of the profileu + µminO is equal toO.

Hence, a prudent order can be interpreted as a linear order that one has to add the
smallest number of times to the profile so that the majority relation of the new profile
corresponds exactly to this linear order.

Several algorithms can be imagined that construct prudent orders. Let us mention
three of them: Kohler’s rule [8], Arrow and Raynaud’s rule [1] and the Ranked Pairs rule
proposed by Tideman[15, 18]. Furthermore, the first two of these three algorithms verify
a form of sequential prudence (see Arrow and Raynaud [1], Lansdowne [9]). However,
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unlike conjectured by Arrow and Raynaud, Lansdowne [10] highlighted that Kohler’s rule
and Arrow and Raynaud’s rule may not be sufficient to find the whole set of prudent or-
ders.

There is a straightforward approach to enumerate all the prudent orders (see also De-
bord [4]). First, use Kohler’s algorithm to find one prudent orderOP . Find the strongest
opposition against this ranking, which means the largestBij such that(aj, ai) ∈ OP . This
value corresponds toβ. ComputeR>β. Enumerating all the prudent orders then comes
down to enumerating all the linear extensions ofR>β. A constant amortized time algo-
rithm for enumerating linear extensions, that is an algorithm that runs inO(|PO(u)|), is
presented in Pruesse and Ruskey [12].

The reader may wonder ifR>β can be any possible acyclic relation on the set of alter-
nativesA. The answer will be given by the following proposition, which states that the
set of linear extensions of any acyclic relation on the set of alternativesA can be seen as
the set of prudent orders corresponding to a certain profile.

Proposition 1 For every acyclic relationR on the set of alternativesA, there exists a
profileu of linear orders such thatPO(u) = E(R).

Proof: If R is a linear order, thenu trivially consists of this linear order, i.e.
PO(R) = R = E(R). If R is not a linear order, then we construct the profileu as
follows. For every ordered pair(ai, aj) such that(ai, aj) ∈ R, we consider the two linear
ordersV 1

ij andV 2
ij :

V 1
ij = (aiajx) V 2

ij = (−xaiaj).

The profileu then consists of all the linear ordersV 1
ij andV 2

ij such that(ai, aj) ∈ R:

u =
∑

(ai,aj)∈R

V 1
ij + V 2

ij .

This will lead to the following preference margins matrix:

Bij =





2 if (ai, aj) ∈ R
−2 if (aj, ai) ∈ R
0 otherwise

One may show that in this case,β = 0, and, consequently,PO(u) = E(R>β) = E(R). ¤
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An axiomatic characterization of the prudent order preference function

Let us illustrate the prudent order preference function on the following example that
can be found in Taylor [14]. There are five alternativesa, b, c, d ande and the profile
consists of 7 linear orders:

O1 abcde
O2 adbec
O3 adbec
O4 cdbea
O5 cdbae
O6 bcdae
O7 ecdba

We thus have the following majority margins:

a b c d e
a . -1 -1 -1 3
b 1 . 1 -1 5
c 1 -1 . 3 1
d 1 1 -3 . 5
e -3 -5 -1 -5 .

In this case,β = 1, sinceR>1 is acyclic, whereasR≥1 contains a cycle sinceB(c, d) ≥
1, B(d, b) ≥ 1 andB(b, c) ≥ 1. Consequently, the relation

R>β = R>1 = {(a, e), (b, e), (c, d), (d, e)}.

The set of prudent orders thus corresponds to all the linear extensions of this relation.
These 12 prudent orders are listed below:

1 acbde 7 cadbe
2 abcde 8 bcade
3 cabde 9 cdabe
4 acdbe 10 cbdae
5 cbade 11 cdbae
6 bacde 12 bcdae

3 The axioms

In this section, we are going to introduce the axioms that we will need to characterize the
prudent order preference function. More generally, a preference functionf is a procedure
that combines a profileu into a non-empty set of linear ordersf(u).
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f : Oq 7→ P (O) \ ∅
u → f(u).

In general, the strict majority relationM contains cycles, which is commonly referred
to as Condorcet’s paradox. However, in caseM is acyclic, then the first axiom says that
this information must be contained in the set of solutions.

Axiom 1 Condorcet Consistency (CC):
If M is acyclic, then:

f(u) ⊆ E(M).

In other words, this means that, ifM is acyclic and if(ai, aj) ∈ M , thenai must be
preferred toaj in all the linear orders off(u). This axiom implies that, ifM is a linear
order, then this linear order is the unique solution of the preference function.

Lemma 1 If f verifies Condorcet Consistency and ifM is a linear order, thenf(u) =
{M}.

A stronger version of axiom CC says that, ifM is acyclic, thenf(u) corresponds
exactly to all the linear extensions of this relationM .

Axiom 2 Strong Condorcet Consistency (SCC):
If M is acyclic, then:

f(u) = E(M).

It is easy to see that Strong Condorcet Consistency implies Condorcet Consistency.

Let uE be a profile such thatBij = 0∀i, j. Adding such a profile touE to a given
profile will not alter the result.

Axiom 3 E-invariance (EI):

f(u + uE) = f(u).

The next axioms says that if the size of the profile is odd and we create a new profile
by taking twice the initial profile, then the set of compromise solutions may only increase.
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An axiomatic characterization of the prudent order preference function

Axiom 4 Weak homogeneity (WH):
If q is odd, then:

f(u) ⊆ f(u + u).

A stronger version of this axiom simply says that if we double an odd profile, then the
result does not change at all.

Axiom 5 Homogeneity (H):
If q is odd, then:

f(u) = f(u + u)

Homogeneity implies weak homogeneity.

Before presenting our main axiom, let us introduce the concept of updating a linear
orderO by switching tow adjacent alternativesai andaj:

Definition 1 Let us consider a linear orderO and an ordered pair(ai, aj). We say that
the linear orderO′ is an update ofO in favor of pair (ai, aj) if O = (...ajai...) is such
thataj directly precedesai andO′ = (...aiaj...) is obtained by reversingaj andai in O.

The majority oriented profile update procedure then consists in applying an update for
each pair by taking into account the majority situation for this pair. More formally, let us
consider a profileu = (O1, . . . , Oq) with a majority margin matrixB. Let us furthermore
suppose thatq ≥ |M |, i.e. q is at least as large as the number of ordered pairs belonging
to the majority relation of that profile. We will construct a new profile by doing the fol-
lowing for every pair{ai, aj} (i 6= j):

• If Bij > 0, then letO′
k be an update in favor of pair(ai, aj) of a linear orderOk of

profileu that has not been updated yet. ReplaceOk with O′
k.

• If Bij = 0, then

– Do nothing.
OR

– Let O′
k be an update in favor of pair(ai, aj) of a linear orderOk of profile u

that has not been updated yet. ReplaceOk with O′
k.

OR
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– Let O′
k be an update in favor of pair(aj, ai) of a linear orderOk of profile u

that has not been updated yet. ReplaceOk with O′
k.

Let us denote byuupdate the profile obtained at the end of this procedure. We call this a
majority oriented profile update procedure because:

• If Bij > 0, then there is a strict majority of rankings in the initial profileu that
preferai over aj. Updating a linear order in favor of(ai, aj) only confirms this
idea.

• If Bij = 0, then there are as many rankings in the profileu that preferai overaj

than there are rankings that preferaj overai. For such a pair, three possibilities can
naturally be considered:

– We will do nothing since we do not want to discriminate betweenai andaj.

– We will update a linear order in favor of(ai, aj), which will break the indif-
ference by improving the situation ofai with respect toaj.

– We will update a linear order in favor of(aj, ai), which will break the indif-
ference by improving the situation ofaj with respect toai.

The next axioms says that if we update the profileu into a new profileuupdate by ap-
plying the above mentioned procedure, then the set of compromise solutions either stays
the same or shrinks.

Axiom 6 Majority Oriented Profile Convergence (MOPC):
Letu be a profile and letuupdate be the profile obtained using the majority oriented profile
update procedure. Then:

f(uupdate) ⊆ f(u).

The axiom means that if we update the profile in the direction of the majority relation,
then the set of compromise rankings can possibly converge. Let us note that for pairs
{ai, aj} such thatBij = 0, by breaking the indifference betweenai andaj in a certain
direction, or by leaving the indifference untouched, different profilesuupdate can be con-
structed. This will eventually pull the set of compromise solutionsf(uupdate) in possibly
different directions. Whatever choice will be made, the profileuupdate will always be con-
sidered as ”compatible” with the majority relation and the new setf(uupdate) will always
be contained in the setf(u).
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An axiomatic characterization of the prudent order preference function

We will show that CC, MOPC and EI imply SCC.

Proposition 2 If f verifies Condorcet Consistency, Majority Oriented Profile Conver-
gence and E-invariance thenf verifies Strong Condorcet Consistency.

Proof: Let u be a profile such that the strict majority relationM is acyclic. CC tells
us that, sinceM is acyclic,f(u) ⊆ E(M). We are now going to show thatE(M) ⊆ f(u),
which will complete the proof.

Let O ∈ E(M) ⇒ M ⊆ O. We are going to show thatO ∈ f(u).

Let us denote byD = O \ M the ordered pairs that belong to the linear orderO but
not to the strict majority relationM .

Let B be the majority margins of profileu. It is easy to see thatBij = 0 ⇐⇒
(ai, aj) ∈ D or (aj, ai) ∈ D. In fact, if Bij = 0, then(ai, aj) 6∈ M and(aj, ai) 6∈ M .
SinceO is complete, either(ai, aj) ∈ D or (aj, ai) ∈ D. Reciprocally,(ai, aj) ∈ D ⇒
(ai, aj) 6∈ M ⇒ Bij ≤ 0. Furthermore, it is impossible thatBij < 0, since this would
mean thatBji > 0 ⇒ (aj, ai) ∈ M ⇒ (aj, ai) ∈ O. This is a contradiction since we
supposed(ai, aj) ∈ D ⇒ (ai, aj) ∈ O. The asymetry property of linear orders does not
allow that both(ai, aj) ∈ O and(aj, ai) ∈ O.

For every(ai, aj) ∈ O, let us consider the following two linear orders:

V 1
ij = (aiajx).

V 2
ij = (−xajai).

Let us add these linear orders to profileu:

u′ = u +
∑

(ai,aj)∈O

V 1
ij + V 2

ij .

Since for every pair(ai, aj) ∈ O, V 1
ij andV 2

ij are two opposite orders and sincef
verifies E-invariance, we must have:

f(u′) = f(u). (4)

Let us note that the majority marginsB′ of profile u′ are exactly the same as the
majority marginsB of profile u. We are going to apply the majority oriented update
procedure tou′ as follows:

For every pair{ai, aj}, do the following:
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+2+2+2

+2

+2 +2 +2

+2

M

D

Figure 1: The transformation of the majority margins of a profileu′ into the majority
margins of profileu′′ .

• If B′
ij > 0, then we are going to updateV 2

ij in favor of(ai, aj). Note thatV 2
ij actually

belongs to profileu′ sinceB′
ij > 0 ⇒ Bij > 0 ⇒ (ai, aj) ∈ O.

• If B′
ij = 0 and(ai, aj) ∈ D, then we are going to updateV 2

ij in favor of (ai, aj).
Note thatV 2

ij actually belongs to profileu′ since(ai, aj) ∈ D ⇒ (ai, aj) ∈ O.

Let us denote byB′′ the majority margins of the profileu′′ obtained at the end of the
procedure. In fact,B′′ can be obtained from the majority marginsB′ by shifting two units
to the right the positive pairs (B′ij > 0), and consequently shift two units to the left the
negative pairs(B′

ij < 0). Furthermore, the pairs such thatB′
ij = 0 and(ai, aj) ∈ D are

shifted to the right whereas the pairs such thatB′
ij = 0 and(ai, aj) 6∈ D are shifted to

the left. This is schematically represented in figure 1, where a square represents a major-
ity margin evaluationB′

ij of a pair(ai, aj) and the vertical axis represents the mid-value 0.

Since we suppose thatf verifies Majority Oriented Profile Convergence, we must
have:

f(u′′) ⊆ f(u′). (5)

Let us denote byM ′′ the strict majority relation of the profileu′′:

• (ai, aj) ∈ M ⇒ B′
ij = Bij > 0 ⇒ B′′

ij = B′
ij + 2 > 0 ⇒ (ai, aj) ∈ M ′′.

• (ai, aj) ∈ D ⇒ B′
ij = Bij = 0 ⇒ B′′

ij = B′
ij + 2 > 0 ⇒ (ai, aj) ∈ M ′′.

Consequently,M ∪ D = O ⊆ M ′′ ⇒ O = M ′′ (M ′′ is an asymmetric relation), and
henceM ′′ is a linear order. By applying lemma 1, we thus have thatf(u′′) = {O}. Given
equation 4 and 5, we can finally conclude thatO ∈ f(u). ¤
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We will also use a slightly different version of the MOPC axiom, namely Majority
Oriented Profile Invariance, which says that changing the profile in the sense of the ma-
jority does not alter the result at all.

Axiom 7 Majority Oriented Profile Invariance (MOPI):
Let u be a profile and letuupdate be a profile obtained using the majority oriented profile
update procedure. If the strict majority relation ofuupdate contains at least one cycle,
then:

f(uupdate) = f(u).

Axiom MOPI is the same as axiom MOPC, except that the inclusion is replaced by an
equality, under the condition that the strict majority relation of profileuupdate contains cy-
cles. It means that if we obtainuupdate by applying a majority oriented update procedure
to profileu, and the new profileuupdate contains cycles (either existing cycles of profileu
or new cycles created through the update procedure), then the set of compromise rankings
must stay the same.

Let us note that removing the cyclicity condition of profileuupdate from this axiom
will lead to a contradiction with axiom SCC. In fact, if the strict majority relation of pro-
file uupdate, denoted byMupdate, is acyclic, then the strict majority relation of profileu,
denoted byM , must also be acyclic, since one can show thatM ⊆ Mupdate. According
to SCC,f(u) = E(M) andf(uupdate) = E(Mupdate). If we suppose thatM ⊂ Mupdate,
then it can happen thatf(uupdate) ⊂ f(u).

4 Characterization

First, we are going to show that the prudent order preference function verifies the axioms
introduced so far.

Proposition 3 The prudent order preference function verifies Condorcet Consistency,
Strong Condorcet Consistency,E-Invariance, Weak Homogeneity, Homogeneity, Majority
Oriented Profile Convergence and Majority Oriented Profile Invariance.

Proof: It is easy to see that prudent orders verify EI, WH and H. Let us first prove
that that they also verify SCC, i.e. ifM is acyclic, thenPO(u) = E(M). EitherM is
complete or not.
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• M is complete.
Let γ = max{Bij : (ai, aj) 6∈ M} : M = R>γ and soR>γ is cycle-free. There
exists(ai, aj) 6∈ M such thatBij = γ. SinceM is complete and(ai, aj) 6∈ M ,
(aj, ai) ∈ M . Consequently,R≥γ contains a cycle. Hence,β = γ andPO(u) =
E(R>γ) = E(R>β) = E(M).

• M is not complete.
By definition,M = R>0 and soR>0 is cycle-free. SinceM is not complete, there
must exist two alternativesai andaj such that(ai, aj) 6∈ R>0 and(aj, ai) 6∈ R>0.
SinceBij ≤ 0, Bji ≤ 0 andBij + Bji = 0, we must have thatBij = Bji = 0.
ConsequentlyR≥0 contains a cycle. Henceβ = 0, and soR>β = R>0 = M .
Consequently,PO(u) = E(M).

SCC implies CC.

Let us now prove that prudent orders also verify MOPC. LetB be the majority mar-
gins of profileu and letBupdate be the majority margins of profileuupdate. Furthermore,
let β be the optimal cut-value for profileu and letβupdate be the optimal cut-value for
profileuupdate.

If β < 0, then the strict majority relation of profileu is a linear order. The strict
majority relation of the profileuupdate must then be exactly the same linear order. In that
case we have thatPO(u) = PO(uupdate) and so MOPC is verified. Let us from now on
suppose thatβ ≥ 0.

Let us cut relationB at levelβ (= R>β) and let us cut relationBupdate at levelβ + 2

(= Rupdate
>β+2 ). One may check that ifβ ≥ 0, then:

Rupdate
>β+2 = R>β. (6)

SinceR>β is acyclic, so isRupdate
>β+2 . Consequently,βupdate ≤ β, and so:

R>β = Rupdate
>β+2 ⊆ Rupdate

>βupdate .

This means thatPO(uupdate) = E(Rupdate
>βupdate) ⊆ E(R>β) = PO(u), which proves MOPC.

Let us finally show that prudent orders also verify MOPI. Let us suppose that the strict
majority relation of profileuupdate contains at least one cycle.
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• β < 0.
This means that the strict majority relation of profileu is a linear order. Conse-
quently, the strict majority relation of profileuupdate is also a linear order. We are
not interested in this case in the MOPI axiom, since we suppose that the strict ma-
jority relation of profileuupdate contains at least one cycle.

• β = 0
We know already thatβupdate ≤ β + 2 = 2 (see equation 6). We furthermore know
thatβupdate > 0, since we suppose that the strict majority relation of profileuupdate

contains at least one cycle. Sinceβ = 0, the profilesu anduupdate must be even
and consequently the majority margins and the optimal cut values take only even
values. Hence,βupdate = 2. Following equation 6, we have thatRupdate

>βupdate = R>β,
which means thatPO(u) = PO(uupdate).

• β ≥ 1
In that case, we can show thatRupdate

≥β+2 = R≥β. SinceR≥β contains at least one

cycle, then this means thatRupdate
≥β+2 also contains at least one cycle and consequently

βupdate = β+2. Following equation 6, we have thatRupdate
>βupdate = R>β, which means

thatPO(u) = PO(uupdate).

We thus showed that, if the the strict majority relation of profileuupdate contains at least
one cycle, thenPO(u) = PO(uupdate). This proves MOPI.

¤

Let us now present our first result. In fact, we will show that if i) we want to use the
axioms Condorcet Consistency, Majority Profile Convergence, E-Invariance and Weak
Homogeneity and ii) we want to have a set of possible compromise solutions as large as
possible, then we must use the prudent order preference function.

Let us insist on the interpretation of keeping the set of compromise rankings as large
as possible. In a progressive decision aid approach, it can be interesting to keep the set
of compromise solutions as large as possible. Since it is useless to consider all the linear
orders, the above mentioned axioms will restrict the set of possible compromise solutions
to all the prudent orders.
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Theorem 2 The prudent order preference function is the largest preference function (in
the sense of the inclusion) that verifies Condorcet Consistency, E-Invariance, Weak Ho-
mogeneity and Majority Oriented Profile Convergence.

Proof: We are going to show that any preference functionf that verifies the above
mentioned axioms is such such that

f(u) ⊆ PO(u)

Since, by proposition 3, prudent orders verify these axioms, the proof will be complete.

Let us suppose that the size of profileu is even. LetB be the majority margins of
this profile and letβ be the optimal cut-value of this profile. Hence,PO(u) = E(R>β).
If β < 0, then this means that the strict majority relation is a linear order. In that case,
lemma 1 tells us thatf(u) = {M} = PO(u). Let us from now on suppose thatβ ≥ 0.

Let us consider the following relations:

Λ1 = {(ai, aj) : Bij = 2}.

Λ2 = {(ai, aj) : Bij = 4}.

Λ3 = {(ai, aj) : Bij = 6}.

...

Λp = {(ai, aj) : Bij = β}.

For every(ai, aj) ∈ Λs, s = 1, . . . , p, we are going to consider the following linear
orders:

∀k = 1, . . . , s : V 1k
ij = (ajaix).

∀k = 1, . . . , s : V 2k
ij = (−xajai).

For every(ai, aj) ∈ R>β, we are going to consider the following linear orders:

∀k = 1, . . . , p : V 1k
ij = (ajaix)

∀k = 1, . . . , p : V 2k
ij = (−xajai)

We are going to define a new profileu0 as follows:

u0 = u +
∑

(ai,aj)∈Λ1

(V 11
ij + V 21

ij ) +
2∑

k=1

∑

(ai,aj)∈Λ2

(V 1k
ij + V 2k

ij ) + . . .
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+

p∑

k=1

∑

(ai,aj)∈Λp

(V 1k
ij + V 2k

ij ) +

p∑

k=1

∑

(ai,aj)∈R>β

(V 1k
ij + V 2k

ij ).

Let us denote byB0 the majority margins of profileu0. In fact,B0 is linked toB in the
following way:

∀i, j = 1, . . . , n





B0
ij = Bij − β if Bij > β

B0
ij = Bij + β if Bij < −β

B0
ij = 0 otherwise

Hence, the strict majority relationM0 of profile u0 is in fact equal toR>β, and soM0 is
acyclic. By applying axiom CC, we can tell that:

f(u0) ⊆ E(M0) = E(R>β) = PO(u).

Let us apply the majority oriented update procedure tou1 in the following way: For every
pair{ai, aj}, do the following:

• If B0
ij > 0, then(ai, aj) ∈ R>β. Let us updateV 11

ij in favor of (ai, aj) by reversing
the preference betweenaj andai.

• If B0
ij = 0 and(ai, aj) ∈ Λp, then let us updateV 11

ij in favor of (ai, aj) by reversing
the preference betweenaj andai.

Let us denote byu1 the profile obtained at the end of this procedure. Let us denote by
B1 the corresponding preference margins.B1 can be obtained from the majority margins
B0 of the profileu0 by shifting to the right the positive pairs(B0

ij > 0), and, consequently,
to the left the negative pairs (B0ij < 0). Furthermore, the pairs such thatB0

ij = 0 and
(ai, aj) ∈ Λp are shifted to the right whereas the pairs such thatB0

ij = 0 and(aj, ai) ∈ Λp

are shifted to the left. The remaining pairs such thatB0
ij = 0 and (ai, aj) 6∈ Λp and

(aj, ai) 6∈ Λp simply do not move. The transformation fromB0 into B1 is schematically
illustrated in figure 2.

By applying axiom MOPC, we know that:

f(u1) ⊆ f(u0) ⊆ PO(u).

Let us apply the majority oriented update procedure tou1. For every pair{ai, aj}, do
the following:

• If B1
ij > 0, then(ai, aj) ∈ R>β ∪ Λ1. Let us updateV 12

ij in favor of (ai, aj) by
reversing the preference betweenaj andai.
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Figure 2: The transformation fromB0 into B1.

Figure 3: The transformation fromB1 into B2.

• If B1
ij = 0 and (ai, aj) ∈ Λp−1, then let us updateV 11

ij in favor of (ai, aj) by
reversing the preference betweenaj andai.

Let us denote byu2 the profile obtained at the end of this procedure. Let us denote
by B2 the corresponding preference margins. The transformation fromB1 into B2 is
schematically represented in figure 3.

By reapplying axiom MOPC, we can tell that:

f(u2) ⊆ f(u1) ⊆ f(u0) ⊆ PO(u).

By reapplying these argumentsp times, we finally get:

f(up) ⊆ f(up−1) ⊆ . . . ⊆ f(u2) ⊆ f(u1) ⊆ f(u0) ⊆ PO(u).

In fact, the profileup can be written as follows, where we denote byV̄ 2k
ij = (aiajx)

the linear order that has been obtained by reversingaj andai in V 1k
ij (k = 1, . . . , p).

up = u +
∑

(ai,aj)∈Λ1

(V̄ 21
ij + V 21

ij ) +
2∑

k=1

∑

(ai,aj)∈Λ2

(V̄ 2k
ij + V 2k

ij ) + . . .
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+

p∑

k=1

∑

(ai,aj)∈Λp

(V̄ 2k
ij + V 2k

ij ) +

p∑

k=1

∑

(ai,aj)∈R>β

(V̄ 2k
ij + V 2k

ij ).

In fact,up can be written asu + uE, whereuE is a profile where all the majority margins
are zero. Using axioms EI, we thus have thatf(up) = f(u). Consequently:

f(u) ⊆ PO(u).

This completes the proof for even profiles. Let us now suppose thatu has an odd size. We
then create an even profile by taking the profileu twice. Applying the previous result to
the even profileu + u and using axiom WH, we get:

f(u) ⊆ f(u + u) ⊆ PO(u + u) = PO(u).

¤

Using similar axioms, the following theorem fully characterizes the prudent order
preference function.

Theorem 3 The prudent order preference function is the only preference function that
verifies Strong Condorcet Consistency, E-Invariance, Homogeneity and Majority Ori-
ented Profile Invariance.

Proof: We know from proposition 3 that the prudent order preference function veri-
fies SCC, MOPI, EI and H.

Let us suppose that the size of profileu is even. LetB be the majority margins of this
profile and letβ be the optimal cut-value of this profile. Hence,PO(u) = E(R>β). If
β ≤ 0, then this means that the strict majority relation is acyclic and consequently axiom
SCC tells us thatf(u) = E(M) = E(R>β) = PO(u). Let us from now on suppose that
the majority relation contains at least one cycle and consequentlyβ > 0.

As in the proof of theorem 2, let us define a profileu0 with majority marginsB0 and
an acyclic strict majority relationM0. Applying axiom SCC, we have:

f(u0) = E(M0) = E(R>β) = PO(u).

As in the proof of theorem 2, let us define a profileu1 by applying the majority oriented
profile update procedure tou0. Let us denote byM1 the strict majority relation of profile
u1. In fact,M1 = R>β ∪ Λp = R≥β, which must contain at least one cycle. HenceM1 is
not acyclic and we can apply axiom MOPI:

f(u1) = f(u0) = PO(u).
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As in the proof of theorem 2, let us define a profileu2 by applying the majority oriented
profile update procedure tou1. Let us denote byM2 the strict majority relation of profile
u2. In fact,M1 ⊆ M2 and sinceM1 is not acyclic,M2 is not acyclic. Consequently, we
can reapply axiom MOPI:

f(u2) = f(u1) = PO(u).

By reapplying the same argumentp times (as in the proof of theorem 2), and by using the
axiom EI, we finally get:

f(u) = f(up) = f(up−1) = . . . = f(u2) = f(u1) = f(u0) = PO(u).

This completes the proof for even profiles. In case, the profileu is odd, we apply the
previous result to the even profileu + u and using axiom H we have:

f(u) = f(u + u) = PO(u + u) = PO(u)

¤

In comparison to theorem 2, we strengthened Condorcet Consistency by Strong Con-
dorcet Consistency, and Weak Homogeneity by Homogeneity. Furthermore, Majority
Profile Convergence was replaced by Majority Profile Invariance, although the latter does
not imply the first.

Let us emphasize the independence between the five axioms used in the characteriza-
tion of theorem 3.

1. Strong Condorcet Consistency
The preference function that associates to every profile the whole set of linear or-
dersg1(u) = O ∀u trivially verifies MOPI, EI and H, but is clearly not SCC.

2. E-Invariance

Let us consider the following four linear orders:

O1 abcde O3 deabc
O2 eabcd O4 cdeab

Let us denote byu∗ = (O1, O2, O3, O4) the profile that consist of these 4 linear
orders. The following majority marginsB∗ are associated with this profileu∗:

B∗ a b c d e
a . 4 2 0 -2
b -4 . 2 0 -2
c -2 -2 . 2 0
d 0 0 -2 . 2
e 2 2 0 -2 .
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We are going to define a new preference functiong2 as follows:

g2(u) =

{
O if u = u∗

PO(u) otherwise

Henceg2 corresponds to the prudent order preference function except for the profile
u∗. It is easy to see thatg2 verifies SCC. It also verifies H. Letu be an odd profile.
Hence we know thatu 6= u∗ sinceu∗ is even. We thus have thatg2(u) = PO(u).
Furthermore,u + u 6= u∗ since, for instance, the linear orderabcde only appears
once in the profileu∗. We thus have thatg2(u + u) = PO(u + u).

g2 also verifies MOPI. Letu be a profile and letuupdate be the profile obtained
after applying the majority oriented profile update procedure tou. On the one
hand, we have thatu 6= u∗ because we would need a profile of at least 7 linear
orders are needed to apply the majority oriented profile update procedure, given
the majority marginsB∗. A similar argument shows thatuupdate 6= u∗. Hence
g2(u) = PO(u) = PO(uupdate) = g2(u

update).

However,g2 odes not verify EI: add the two linear ordersabcd anddcba to profile
u∗. We then have thatg2(u

∗) = O andg2(u
∗ + abcd + dcba) = PO(u∗ + abcd +

dcba) 6= O.

3. Homogeneity

Let us consider the preference margin matrixB∗ and the preference margin ma-
trix B′ compatible in the sense of the majority with a profile yielding a preference
margin matrixB∗.

B∗ a b c
a . 3 -1
b -3 . 3
c 1 -3 .

B′ a b c
a . 2 -2
b -2 . 2
c 2 -2 .

We are going to define a new preference functiong3 as follows, whereB denotes
the majority margin matrix of the profileu.

g3(u) =

{
O if ∃λ ∈ N : B = B∗ + λB′

PO(u) otherwise

Henceg3 corresponds to the prudent order preference function except for profiles
with majority marginsB∗ + λB′.

Such a procedureg3 verifies SCC and EI. It also verifies MOPI.
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u update in favor of uupdate

O1 dcba (a, b) dcab
O2 cabd (a, c) acbd
O3 cbda (b, c) bcda
O4 dbac (b, d) bdac
O5 dcab (c, d) cdab
O6 adbc (d, a) dabc
O7 abcd n.a. abcd
O8 abcd n.a abcd
O9 abcd n.a abcd
O10 bcda n.a bcda
O11 cbda n.a cbda
O12 dabc n.a dabc
O13 dabc n.a dabc
O14 cbda n.a cbda
O15 bacd n.a. bacd

Table 1: The profileu before and after the update procedure.

However,g3 does not verify H. Letu be a profile with majority margins equal to
B∗. Consequently,g3(u) = O. However,g3(u + u) = {abc}. Although the size of
profileu is odd,g3(u) 6= g3(u + u).

4. Majority Profile Invariance

Kemeny orders [6] can be defined as follows:

g4(u) = {OK ∈ O :
∑

(ai,aj)∈OK

Bij ≥
∑

(ai,aj)∈O

Bij ∀O ∈ O}.

Kemeny orders verify SCC, EI, H but not MOPI, as will be shown by the example
depicted in table 1. The majority margins of this profile will be:

B a b c d
a . 1 1 -3
b -1 . 3 3
c -1 -3 . 3
d 3 -3 -3 .

→ g4(u) = {bcda}

Let us apply the majority oriented profile update procedure tou as shown in table
1. Let us then compute the Kemeny orders of the profileuupdate with preference
marginsBupdate:
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Bupdate a b c d
a . 3 3 -5
b -3 . 5 5
c -3 -5 . 5
d 5 -5 -5 .

→ g4(u) = {abcd}

Henceg4(u
update) 6= g4(u).

Let us note that the same counter examples can be used to check the independence of the
axioms of theorem 2:

1. g1 verifies EI,WH and MOPC but not CC.

2. g2 verifies CC,WH and MOPC, but not EI.

3. g3 verifies CC,EI and MOPC, but not WH.

4. g4 verifies CC,EI and WH, but not MOPC.

5 Extended prudent orders

Let us come back to Taylor’s example introduced in section 2. The strict majority relation
of this profile can be graphically represented as follows:

e

a

c

db

This strict majority graph seems to indicate thatb, c andd could be put beforea in a
compromise ranking. However, the prudent orders 1-9 do not follow this argument. One
reason for this is that prudent order preference function does not verify what Truchon [16]
calls the extended Condorcet Criterion. Let us introduce this additional condition.
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Given a strict majority relationM , we say thatTC(M) is the top cycle ofM if it is the
smallest possible subset ofA such that for allai ∈ TC(M) and for allaj ∈ A \ TC(M)
we have(ai, aj) ∈ M . We partitionA into ordered subsetsA1,A2, . . . ,Ap with Ai =
TC(M |A\∪j<iAj). We call this ordered partition the top-cycle partition (see for instance
Truchon[16] or Klamler[7] for further comments on this partition). In Taylors example,
the top-cycle partition consists of three blocs:A1 = {b, c, d},A2 = {a} andA3 = {e}.

If the strict majority relation is acyclic, then we know already from axiom CC that

∀ai ∈ Ak, aj ∈ Al, k < l : (ai, aj) ∈ O ∀O ∈ f(u).

The following axiom then says that, also for profiles with a non-acyclic strict majority
relation, the top-cycle partition should not be contradicted by any solution belonging to
the set of compromise rankings.

Axiom 8 Extended Condorcet Criterion (XCC):
Let us suppose that the strict majority relation contains at least one cycle and letA1,
A2, . . . ,Ap be the top-cycle-partition. We say that a preference functionf verifies the
Extended Condorcet criterion if:

∀ai ∈ Ak, aj ∈ Al, k < l : (ai, aj) ∈ O ∀O ∈ f(u).

Given a top-cycle partition, we can very naturally define the following partial order
T :

(ai, aj) ∈ T ⇐⇒ ai ∈ Ak andaj ∈ Al andk < l

Axiom XCC simply says thatf(u) ⊆ E(T ). In order to incorporate this axiom into the
prudent order model, we define the following new preference functionXPO, called the
extended prudent order preference function :

∀u XPO(u) = E(R>β ∪ T )

The set of compromise rankings thus corresponds to all the linear extensions of the re-
lation R>β ∪ T . We will show thatR>β ∪ T is acyclic. Since we can always extend an
acyclic relation into a linear order (see Szpilrajn[13]), the setE(R>β ∪ T ) is never empty
and consequentlyXPO is a true preference function.

Proposition 4 The relationR>β ∪ T is acyclic.
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Proof: If β < 0, thenM is a linear order andM = R>β = T . Consequently,
R>β ∪ T = R>β is acyclic. Let us supposeβ ≥ 0. Let us suppose by contradiction that
R>β ∪ T contains a cycle. Since this cycle cannot appear inside a bloc of the top-cycle-
partition (by definitionT is empty inside a bloc andR>β is acyclic), there must existai

andaj such thatai ∈ Ak, aj ∈ Al, k < l and(aj, ai) ∈ R>β. Hence,Bji > β ≥ 0 ⇒
(aj, ai) ∈ M ⇒ (ai, aj) 6∈ M . This is impossible since we supposed thatai belongs to a
higher bloc in the top-cycle partition thanaj.

¤

It is clear that∀u,XPO(u) ⊆ PO(u). In Taylor’s example, the setXPO will consist
of the prudent orders 10-12.

Interestingly, the extended prudent order preference function verifies all the axioms
used in theorem 2.

Proposition 5 The extended prudent order preference function verifies Condorcet Con-
sistency, Majority Oriented Profile Convergence, E-Invariance, Weak Homogeneity and
Condorcet Criterion.

Proof: EI and WH are easy to check. Furthermore, XCC is verified by construction.

Let us show that CC is verified. IfM is acyclic, thenR>β = M (see proposition
3). Furthermore,T ⊆ M ⇒ T ⊆ R>β ⇒ R>β ∪ T = R>β = M . Consequently,
XPO(u) = E(R>β ∪ T ) = E(M).

Let us show that MOPC is verified. We denote byM the strict majority relation and
T the top-cycle relation of profileu. We denote byMupdate the strict majority relation
andT update the top-cycle relation of profileuupdate. Furthermore, letβ be the optimal cut-
value for profileu and letβupdate be the optimal cut-value for profileuupdate. We know
from proposition 3 thatPO(update) = E(Rupdate

>βupdate) ⊆ PO(u) = E(R>β). Hence:

R>β ⊆ Rupdate
>βupdate .

We are now going to show thatT ⊆ T update, which will prove MOPC sincePO(uupdate) =
E(T update ∪ Rupdate

>βupdate) ⊆ E(T ∪ R>β) = XPO(u).

Let us show that if(ai, aj) ∈ T , then(ai, aj) ∈ T update. Since(ai, aj) ∈ T , there
exists two blocks in the top-cycle partitionAk,Al such thatai ∈ Ak, aj ∈ Al and such
thatk < l. LetA′

k′ be the block of the top-cycle partition ofMupdate to whichai belongs
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and letA′
l′ be the block of the top-cycle partition ofMupdate to which aj belongs. We

want to show thatk′ < l′, which will prove that(ai, aj) ∈ T update. Let us suppose
by contradiction thatk′ ≥ l′. If k′ > l′, then this means that(aj, ai) ∈ Mupdate, since
ai ∈ A′

k′ andaj ∈ A′
l′. This is impossible since we know that(ai, aj) ∈ M,M ⊆ Mupdate

andMupdate is asymmetric. Ifk = l, then this means thatai andaj belong to the same
block in the top-cycle partition ofMupdate. Let us denote this block byA′ = A′

k′ = A′
l′.

Let us consider the following subsets of alternatives:D′
1 = A′ ∩ A1, D′

2 = A′ ∩ A2,
. . . , D′

p = A′ ∩ Ap. Let D+ = ∪k
r=1D

′
rand letD− = A \ D+. We know that bothD+

andD− are non-empty since{ai} ⊆ D′
k ⊆ D+ and{aj} ⊆ D′

l ⊆ D−. We know that
∀x ∈ D+ and∀y ∈ D−, (x, y) ∈ M ⇒ (x, y) ∈ Mupdate. HenceA′ cannot be a block of
the top-cycle partition ofMupdate sinceD+ is dominatingD−. This proves thatT ⊆ T ′.

¤

It will now be easy to show that if i) we want to use the axioms Condorcet Con-
sistency, E-Invariance, Weak Homogeneity, Majority Profile Convergence and Extended
Condorcet Criterion and ii) we want to have a set of compromise solutions as large as
possible, then we must use the extended prudent order preference function.

Theorem 4 The extended prudent order preference function is the largest preference
function (in the sense of the inclusion) that verifies the Condorcet Consistency, E-Invariance,
Weak Homogeneity, Majority Profile Convergence and Extended Condorcet Criterion.

Proof: We know from theorem 2 that axioms CC, MOPC, EI and WH imply:

f(u) ⊆ E(R>β)

Axiom XCC implies that
f(u) ⊆ E(T )

Combining these two inclusions, we get:

f(u) ⊆ E(T ∪ R>β) = XPO(u)

Since the extended prudent order preference function verifies the 5 axioms (see proposi-
tion 5), it is consequently the largest preference function that verifies the 5 axioms. This
completes the proof. ¤

Let us finally check the independence between the axioms CC, EI, WH, MOPC and XCC.

1. The preference functionf1(u) = E(T ) verifies EI, WH, MOPC, XCC but not CC.
Consider for instance a profile with three alternatives{a, b, c, d} and with the fol-
lowing acyclic strict majority relationM = {(a, b), (a, c), (c, d)}. Thenf1(u) = O,
and consequentlyf1(u) 6⊆ E(M).
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2. The preference functionf2 will be defined as follows (see preference functiong2):

f2(u) =

{
O if u = u∗

XPO(u) otherwise

f2 verifies CC, WH, MOPC, XCC but not EI.

3. The preference functionf3 will be defined as follows (see preference functiong3):

f3(u) =

{
O if ∃λ ∈ N : B = B∗ + λB′

XPO(u) otherwise

f3 verifies CC, EI, MOPC, XCC, but not WH.

4. The preference functionf4(u) = g4(u) (Kemeny orders) verifies CC, EI, WH, XCC
but not MOPC.

5. The prudent order preference functionf5(u) = PO(u) verifies CC, EI, WH, MOPC
but not XCC. Consider for instance Taylor’s example.

6 Conclusion

In this work we presented a first axiomatic characterization of a preference function that
associates to a profile of linear orders the whole set of prudent orders. Among the axioms
that we introduced, the axioms of Majority Oriented Profile Convergence and Invariance
are the most specific of the prudent approach.

The main issue of future work will be to analyze and characterize other prudent rank-
ing rules in the same axiomtatic framework. As a first illustration, we introduced the
extended prudent order preference function, which could be characterized by simply con-
sidering an additional axiom.
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