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The Geometry Behind Paradoxes of Voting
Power

Michael A. Jones∗

Abstract

Despite the many useful applications of power indices, the literature on power in-
dices is raft with counterintuitive results or paradoxes, as well as real-life institutions
that exhibit these behaviors. This has led to a cataloging of sorts where new and
different paradoxes are calculated and then shown to exist in nature. Even though
the paradoxes sound different from one another with names like theparadox of re-
distribution, thedonor and transfer paradoxes, theparadox of quarreling members,
theparadox of a new member, and theparadox of large size, they can be classified
by the underlying geometric properties that induce the counterintuitive results. Per-
haps surprisingly, analyzing the geometry behind the paradoxes for three voters is
sufficient to understand the geometry behind the paradoxes. Voting power induces
a partition on games where two games are in the same part if each playeri has the
same power in each game. The paradoxes are a result of three geometric ideas and
how they interact with the partition: a point passing a hyperplane thereby changing
parts, moving hyperplanes that change the size or number of parts in a partition, and
changing the dimension of the space by adding or subtracting a voter.

Key words : Voting Power, Paradoxes, Geometry

Power indices are used to measure thea priori distribution of power among voters
under a given voting rule. Many of these power indices uniquely satisfy different sets of
axioms, including the most commonly used indices by Penrose (1946), Shapley and Shu-
bik (1954) and Banzhaf (1965), as well as others. Such axiomatic approaches have been
used to create new indices, as well as to champion one power index over others. Gener-
alized power indices, such as semivalues (Carreras, Freixas, and Puente, 2003, Laruelle
and Valenciano, 2003a, and Saari and Sieberg, 2001), measure power in broader classes
of cooperative games, often following the same axiomatic development.
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As a tool, power indices have been used to examine weighted voting in institutions in-
cluding the International Monetary Fund (Dreyer and Schotter, 1980 and Leech, 2002c),
the Electoral College (Mann and Shapley, 1964), the European Union Council of Min-
isters (Johnston, 1995 and Leech, 2002b), and the Israeli Knesset (Laruelle, 2001). Not
only have power indices been used to analyze existing institutions, but they have been
part of the debate about the design of new institutions. For example, Turnovec (1996) and
Widgren (1994) use power indices to model the effects of institutional reforms on, and
the introduction of new members into, the European Union. Because power indices rarely
agree on the measure of power for a voter, let alone on the ranking of the power of voters
(cf. Saari and Sieberg, 2001), the selection of a power index is paramount. Although a
productive way to generate power indices, the axiomatic approach has not been successful
in comparing how the power indices differ and when one power index is more applicable
than another.

Despite the many useful applications of power indices, the literature on power in-
dices is raft with counterintuitive results or paradoxes, as well as real-life institutions that
exhibit these behaviors. This has led to a cataloging of sorts where new and different para-
doxes are calculated and then shown to exist in nature. Felsenthal and Machover (1995,
1998) divide power indices according to their ability to measure ‘P-power’ (the power
to share a purse) and ‘I-power’ (the power to influence) and use the paradoxes (often de-
scribed as postulates, when an index is not susceptible to the paradox) as a way to compare
power indices. They cast doubt on the importance of some paradoxes, offer new perspec-
tives on other paradoxes, and generate new paradoxes. Laruelle and Valenciano (2003b)
also distinguish between power indices by introducing two measures (factual success and
decisiveness) that utilize the voting rule, as well as voters’ behavior.

Even though the paradoxes sound different from one another with names like the
paradox of redistribution(Dreyer and Schotter, 1980 and Schotter, 1981), thedonor and
transfer paradoxes(Felsenthal and Machover, 1998), theparadox of quarreling members
(Kilgour, 1974), theparadox of a new member(Brams, 1975 and Brams and Affuso,
1976), theparadox of large size(Brams, 1975 and Shapley, 1973), thefattening paradox
(Felsenthal and Machover, 1998),etc., they can be classified by the underlying geometric
properties that induce the counterintuitive result.

To provide a geometric setting, the discrete space of simple weighted-voting games
are viewed as points on a simplex. The voting rule partitions the simplex into different
regions or parts where the power of all games in a part yield the same power index. The
counterintuitive results described as paradoxes can be classified according to three geo-
metric properties: a change in the simple weighted-voting game causes the game to switch
to another part of the partition (geometrically, a point passes a hyperplane that partitions
the space), the voting rule changes or restrictions are placed on what coalitions can form
(geometrically, the size and/or shape of the parts of the partition change), and voters are
introduced, consolidated, or deleted from the game (geometrically, the dimension changes
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by adding or subtracting a voter). Combining these geometric ideas in succession results
in other paradoxes, e.g.,fattening paradox(Felsenthal and Machover, 1998).

Perhaps surprisingly, analyzing the geometry behind the paradoxes for three voters is
sufficient to understand the geometry behind the paradoxes for any number of voters. We
review simple weighted-voting games, view power as a discrete map, and introduce the
geometry for three voters in Section 2. In Section 3, we explain the relationship between
geometry and classes of paradoxes. Because of the low dimension and the inherent sym-
metry, the examples often are proof that all power indices suffer from a particular paradox
(e.g., the paradox of redistribution).

1 Simple Weighted-Voting Games, Power, and Geometry

Cooperative game theory models how groups or coalitions form to achieve a particular
goal (e.g., passing legislation) and the value received if their objective is met. Notation-
ally, a coalitionS is a subset of a finite set of votersN = {1, 2, . . . n} and the utility
derived byS is denoted asv(S) where the real-valued functionv has as its domain the
power set ofN and satisfiesv(∅) = 0 and super-additivity [v(S ∪ T ) ≥ v(S) + v(T )].
Intuitively, these two conditions are that a coalition of no size has no value and that the
sum of the whole is at least as great as the sum of its parts or that two coalitions can get
at least as much done together as they could apart.

A cooperative game issimpleif, for eachS ⊆ N , eitherv(S) = 0 or v(S) = 1, where
a coalitionS is viewed either as a losing coalition,i.e.,v(S) = 0, or a winning coalition,
i.e.,v(S) = 1. For a simple voting game, winning coalitions can pass measures and enact
legislation. These games offer a minimal number of restrictions of what subsets can be
winning coalitions. Let the collection of all winning subsets of a finite setN of voters be
denoted byW where

1. N ∈ W

2. ∅ /∈ W

3. Monotonicity: IfX ∈ W andX ⊆ Y ⊆ N , thenY ∈ W.

A priori power is determined by the structure of the institution and which subsets of voters
can coalesce to form winning or losing coalitions. This is markedly different than looking
at the voting behavior for a particular issue.

Although power can be defined for any simple voting game where the outcome only
depends on which subsets ofN are winning coalitions, we will assume that each voters’
vote has a weight associated to it. Many of the paradoxes relate changes in weights to
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the corresponding change in power. Asimple weighted-voting gameis a set ofn voters,
where voteri’s vote carries the weightwi, and a quota, a value that if the sum of the
voters’ weights in a coalition is greater than or equal to the quota,q, then the coalition is a
winning coalition. Denote a simple weighted-voting game by[q; w1, w2, . . . , wn]. Hence,

v(S) =

{
0 if

∑
i∈S wi < q,

1 if
∑

i∈S wi ≥ q.
(1)

The wi’s are restricted usually to be nonnegative integers and the sum of the weights
w = w1 + w2 + · · ·+ wn is fixed,e.g.,representing a fixed number of shares of stock or a
fixed number of seats in a senate. The weight of a voter is a crude form of measuring how
important, or how much power, an individual brings to a coalition, whereas power indices
calculate a voter’s contribution to a political process.

For simple weighted-voting games to be well-defined,q must satisfyw
2

< q ≤ w. In
words, for a coalition to pass a measure, the weights of the voters in the coalition must
be more than a majority of the total weight of all voters. Otherwise, two coalitions with
less than a majority of the total weight of voters could pass conflicting legislation. The
weights in the simple weighted-voting game[q; w1, w2, . . . , wn] can be normalized and
viewed as a point on the(n − 1)-dimensional simplex

Sn−1 =
{

(x1, x2, . . . , xn) | w1 + w2 + · · ·wn = w andxi =
wi

w
≥ 0 for all i

}
.

The quota induces the hyperplane
∑

i∈S xi =
q

w
to divide the simplex of all simple

weighted-voting games into those that haveS as a winning and losing coalition (Eq. 1).
The collection of all hyperplanes forms a partition of the simplex, where the number and
size of the parts of the partition depend on the quota.

Because most of the paradoxes can be understood by an analysis of simple weighted-
voting games with only three voters, we consider these games in detail. For a game with
3 voters, the normalized weights of the three voters can be viewed as a point on the 2-
simplex. The 2-simplex is the intersection of the planex1 + x2 + x3 = 1 and the positive
octant wherexi ≥ 0 for all i; this can be viewed as an equilateral triangle in the plane as
shown in Figure 1.

For 3-voter simple weighted-voting games, the hyperplanes associated with a fixed
normalized quotaq where 1

2
< q < 1 partition the simplexS2 = {(x1, x2, x3) : x1 +

x2 + x3 = 1 andxi ≥ 0} into ten regionsR1 − R10 (Table 1 and Figure 2). The games
in each region form an equivalence class because each game has the same sets of winning
and losing coalitions. For example, in Figure 2, the only winning coalitions in games in
regionR7 are{1, 2, 3}, {1, 2}, and{1, 3}; this follows because

x1 + x2 + x3 ≥ q x1 + x2 ≥ q x1 + x3 ≥ q

x2 + x3 < q xi < q for all i.
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Notice that the inequalitiesx1 + x2 ≥ q, x2 + x3 < q andx1 + x3 ≥ q can be rewritten as
x3 ≤ 1 − q, x1 > 1 − q, andx2 ≤ 1 − q. Hence, the linesx1 = 1 − q, x2 = 1 − q, and
x3 = 1 − q are parallel to the sides of the equilateral triangle (wherex1 = 0, x2 = 0, and
x3 = 0). This holds in general: for 3-voter simple weighted-voting games withq < 1,
the hyperplanes that partition the simplex are lines parallel to the sides of the equilateral
triangle. Whenq = 1, there are four regions:Ri where playeri is the dictator (fori = 1
to 3) andR10 where all voters must be part of a coalition for it to be winning.

A power index is a discrete map from the space of normalizedn-voter, simple weighted-
voting games to vectors inRn where theith entry of the vector represents the power of
theith voter. For a fixed quota, let

Pq : Sn−1 → Rn (2)
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Region Ri; i = 1 − 3 Ri+3; i = 1 − 3 Ri+6; i = 1 − 3 R10

MWCs {i} N/{i} {i, j}, {i, k} {1, 2}, {1, 3}, {2, 3}∗

wherei 6= j 6= k or {1, 2, 3}∗∗

Table 1: Regions and their corresponding minimal winning coalitions (MWCs). The
coalition structure forR10 depends on whetherq ≤ 2

3

∗
or q > 2

3

∗∗
.

represent a power index. Because there are many specialized power indices (e.g.,Banzhaf,
1965, Coleman, 1971, Deegan and Packel, 1982, Penrose, 1946, and Shapley and Shubik,
1954) that measure different aspects of power, I refrain from giving too many details for
specific power indices or measures. Regardless of the method of measuring power, the
geometry of the domain and the partition that slices the simplex into parts (that indicate
the winning and losing coalitions) are the same. Also, note that we are measuringa priori
power that is independent of the position of the voters on a particular issue. It considers all
possible coalitions that can form and may weigh the outcome according to size (as semi-
values do) or other characteristics. The partitioned regions of the simplex are equivalence
classes where the voters’ powers are preserved for games in the region.

To be well defined, power indices must also satisfy certain regularity conditions. For
example, a power index should not be biased toward a voter: a permutation of the weights
of the voters should result in the same permutation of the resulting powers.Pq must satisfy
the following conditions:

1. (Invariance) Ifσ is a permutation of the set of votersN , then voteri’s power
in [q; x1, . . . , xn] should be the same as voterσ(i) = j in the permuted game
[q; y1, . . . , yn] whereyj = xi. Equivalently,

Pq(x1, x2, . . . , xn)i = Pq(y1, y2, . . . , yn)j whereσ(i) = j andyj = xσ(i) for all i.

2. (Symmetry) If two voters are members of the identical winning coalitions, then they
have the same power.

3. (Dummy voter) If a votera is never part of a minimal winning coalition, then voter
a’s power is 0.

Felsenthal and Machover (1998) distinguish between measures that satisfy the above con-
ditions and power indices that are normalized so that the elements of the resulting power
vector sum to 1.

To demonstrate possible paradoxes, it is helpful to have specific examples. I review
two of the most commonly used power indices: the Banzhaf and Shapley-Shubik power
indices. In 1965, Banzhaf introduced his power index in a lawsuit while examining the
fairness of voting involving the Nassau County (NY) Board of Supervisors (Banzhaf,
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1965). The Banzhaf index counts the number of times that a voter is necessary to be
part of a coalition for a measure to pass. This is referred to as a critical voter. Theith

component of the Banzhaf power index is given by

Bq(x)i =
∑

S⊆N

[v(S) − v(S/{i})] . (3)

The Shapley-Shubik power index (Shapley and Shubik, 1954) extends the Shapley
value (Shapley, 1953) to simple weighted-voting games. Theith component of the Shapley-
Shubik power index is given by

Sq(x)i =
∑

S⊆N

[v(S) − v(S/{i})] (|S| − 1)! (4)

Intuitively, Shapley-Shubik power index measures the power of a voter given every se-
quence of ‘yes’ votes. The notion is that the voters could join the coalition in any order
and in (|S| − 1)! of these orders, voteri joined last and made the coalition a winning
coalition. Voteri is often referred to as thepivotal voter. Under the Shapley-Shubik
power index, a voteri has to be critical in the Banzhaf sense above, but the value of being
critical depends on the number of elements inS. For both indices, the power of voter
i depends on the number and/or size of the winning coalitions for whichi is critical or
pivotal (whenv(S) − v(S/{i}) = 1). For three voters with fixed weights, the Shapley-
Shubik and Banzhaf power indices agree on the relative ranking of the voters’ power
(Saari and Sieberg, 2001). To get a sense of the calculation for a 3-voter game, consider
the following example.

Example 1. The simple weighted-voting game[3; 2, 1, 1] normalizes to[3
4
; 1

2
, 1

4
, 1

4
] and has

winning coalitions{1, 2, 3}, {1, 2}, and{1, 3}. Hence, voter 1’s power is determined by
potentially nonzero termsv(S)− v(S/{i}) in Eq. 3 (so,v(S) must be 1 for the difference
to be nonzero) and

B 3

4

(
1

2
,
1

4
,
1

4

)

1

= [v({1, 2, 3}) − v({2, 3})] + [v({1, 2}) − v({2})]

+ [v({1, 3}) − v({3})] = 1 + 1 + 1 = 3.

Similarly, voter 2 has Banzhaf power

B 3

4

(
1

2
,
1

4
,
1

4

)

2

= [v({1, 2, 3}) − v({1, 3})] + [v({1, 2}) − v({1})] = 0 + 1 = 1.

And, by symmetry, voter3’s power is also 1. And,B 3

4

(1
2
, 1

4
, 1

4
) = (3, 1, 1). The normal-

ized Banzhaf power index is3
5
:1
5
:1
5
. It follows from Eq. 4 thatS 3

4

(1
2
, 1

4
, 1

4
) = (4, 1, 1). The

normalized Shapley-Shubik power index is then4
6
:1
6
:1
6
.
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Due to the superadditivity assumption, only the minimal winning coalitions are neces-
sary to generate all winning coalitions. From Example 1, the coalition of voters 1 and 2 is
a minimal winning coalition because both are necessary (to vote “yes”) to pass a measure.
However, the grand coalition of all voters is not minimal because either voter 2 or voter
3 could exit the coalition (thereby voting “no”) and the remaining voters could still pass
the measure.

2 Geometry of Paradoxes of Voting Power

For games with more voters, higher dimensional simplices represent the domain of power
indices. Similarly, the quota partitions the simplex into regions where the voters’ powers
are constant. When a simple weighted-voting game is in the interior of the partition,
then a small perturbation may not cause the power to change. Only by changing parts in
the partitions can the power change. Changing parts requires passing a hyperplane, the
boundary of the part.

2.1 Domain Effects

Theparadox of redistributioncompares the change in a voter’s weight to the correspond-
ing change in the voter’s power. The counterintuitive outcome is that a voter’s weight
may increase, yet its power decreases, or a voter’s weight may decrease, yet its power
increases, or both of these situations may occur. For three voters, only the one-sided para-
dox can occur, not both. The geometry of the simplex readily explains why even the more
general paradox is true. Because simple weighted-voting games are domain points on the
simplex, a change in one voter’s weight (or coordinate) must be met with changes in at
least another voter’s weight, too. As described, there is a lot of freedom in how the other
voters’ weights can be adjusted. So, the paradox may not seem too remarkable.

The paradox of redistribution was first noted by Fischer and Schotter (1978). Schotter
(1981) uses simplices to determine the likelihood of the paradox for the Banzhaf and
Shapley-Shubik power indices. However, the paradox is not an artifact of the particular
power index used, as described in the following example.

Example 2. (The ubiquity of the paradox of redistribution) Consider the effect of voter
1’s weight increasing from1

3
to 5

16
in the gamesGa = [7

8
; 1

3
, 1

3
, 1

3
] andGb = [14

16
; 5

16
, 1

16
, 10

16
].

Figure 3 shows how with the quota fixed at7
8
, changing the weights of the voters results

in passing a hyperplane into another part of the partition. Specifically, the game moves
from regionR10 (using the notation from Figure 2) intoR5. Notice that because all three
voters are necessary to form a winning coalition inGa, the normalized power index for
Ga is 1

3
:1
3
:1
3
, regardless of the specific power index. This is due to the invariance under
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2

Figure 3: The paradox of redistribution as an effect of passing a hyperplane. WhenGa →
Gb, voter 1’s weight decreases but its power increases. WhenGb → Ga, voter 1’s weight
increases but its power decreases.

of permutations of the voters. Similarly, because voters 1 and 3 are part of all the same
winning coalitions inGb and voter 2 is a dummy voter (her vote never changes a losing
coalition to a winning coalition), the power index is1

2
:0:1

2
. Due to symmetry, every power

index will exhibit this paradox under these changes (cf. Felsenthal and Machover, 1998).

Felsenthal and Machover (1998) consider a more surprising version of the paradox
of redistribution called thedonation paradox.They show that if the power index doesn’t
satisfy a monotonicity condition, then it is possible for a voter to donate some of its weight
to another voter and the donor’s power increases while the recipient’s power decreases.
Although this requires a nonmonotone power index, the geometry behind the paradox
remains the same: a perturbation in the weights of the voters causes the game to pass a
hyperplane.

2.2 Partition Effects

So far we have considered the effect of changing the voters’ weights in the simple weighted-
voting game. However, it is possible to achieve paradoxical outcomes by leaving the
weights fixed and changing the shape and number of partitions. Figure 2 and Table 1
indicate a geometric consequence to changing the value of the quota: the size, shape, and
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Figure 4: As the quota decreases fromq1 = 8
11

(left), q2 = 7
11

(middle), andq3 = 6
11

(right) point on the simplex representing the weights
(

5
11

, 4
11

, 2
11

)
is in regionR6, R7, and

R10, respectively.

characteristics of partitions of the simplex may change. Institutions that have changed
or considered changing their requirements for a measure to pass (by changingq) have
been analyzed. For example, Dreyer and Schotter (1980) consider quota effects on the
distribution of power in the International Monetary Fund.

In general, the quota affects the size and number of parts in the partition of the simplex.
It seems as if lowering the quota benefits the voter whose vote has the largest weight.
Winning coalitions from before the changed quota will be retained. However, the critical
voters may change. And, new winning coalitions may form. We see from Figure 2 that
a point may fall into different regions as the quota changes. The voter with the largest
weight may benefit from such a change or not. The following example demonstrates two
scenarios where the same weights are used to show how the quota affects the voter with
the largest weight.

Example 3. (The Shapley-Shubik power index and the quota paradox) Consider the effect
of the quota decreasing from8

11
to 7

11
to 6

11
for the game with voters 1-3 with weights

5
11

, 4
11

, 2
11

, respectively. Under the Shapley-Shubik power index, these three games (with
quota decreasing) have resulting power indices of1

2
:1
2
:0, 4

6
:1
6
:1
6

and 1
3
:1
3
:1
3
. The voter with

the largest weight initially benefits from a decrease in the quota, but a further decrease in
the quota lowers voter 1’s power. The quota effect appears in Figure 4. The fixed game is
in regionsR6, R7, andR10 as the quota decreases.

Realize that the Shapley-Shubik power index is not the only paradox susceptible to this
quota effect. Due to symmetry, the normalized power index for the games

[
8
11

; 5
11

, 4
11

, 2
11

]

and
[

6
11

; 5
11

, 4
11

, 2
11

]
always is 1

2
:1
2
:0 and 1

3
:1
3
:1
3
. A decrease in the quota has adversely

affected the voter with the largest weight. However, a decrease in the quota can also
have a positive effect on the voter with the largest weight. For a general power index,
this occurs when the quota decreases from8

11
to 7

11
resulting in the game

[
7
11

; 5
11

, 4
11

, 2
11

]
,
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Figure 5: The paradox of quarreling members: Voters 2 and 3 quarrel resulting in the
removal of a hyperplane that decreases the number of parts in the partition.

as long as the index gives more power to voter1 which is reasonable as voter 1 is in
two minimal winning coalitions while voters 2 and 3 are each in one minimal winning
coalition.

There are other ways to adjust the size and number of parts of the partition of the
simplex. Kilgour introduced theparadox of quarreling memberswhere restricting which
coalitions can form increases the power of the quarreling members. Specifically, if two
voters quarrel, they will never both vote “yes” on a measure. Even though they cannot
be part of the same winning coalition, it is possible that one of these voters power in-
creases. Quarreling restricts the freedom of the quarreling members, thereby decreasing
their options. It seems paradoxical that the additional restriction can help the quarreling
members. But, quarreling also restricts the non-quarreling voters’ options, too.

Measuring the power of the voters when certain coalitions cannot form requires mod-
ifications of the power indices. Modifying power indices can be viewed as restricting the
power index to the coalitions that can form. For quarreling members, realize that we do
not assume that the two quarreling members are always on opposite sides of a vote, but
that they would not be both part of a winning coalition. The following example demon-
strates how quarreling members reduce the number of regions in the partition.

Example 4. (The paradox of quarreling members) The simple weighted-voting game
[3
4
; 2

3
, 1

6
, 1

6
] is in regionR7 in Figure 2 and has minimal winning coalitions are{1, 2, 3}, {1, 2},

and{1, 3}. Consequently, as in Example 1, the normalized Banzhaf power index for this
game is3

5
:1
5
:1
5
. If voters 2 and 3 quarrel, then the winning coalition{1, 2, 3} is restricted

from forming. Figure 5 indicates the coarser partition that results from quarreling. Voter
1 is critical twice while voters 2 and 3 are each critical once. Modifying the normalized
Banzhaf power index for the restricted set of coalitions, the game with quarreling has
a power index of1

2
:1
4
:1
4
. In this case, the counterintuitive result is that voter 3’s power

increased because of its quarreling with voter 2.
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2.3 Dimensional Effects

So far, we have only considered the geometry for simple weighted-voting games with 3
voters. To consider the effect of introducing or removing a voter from a game, we also
consider the simplex generated by 2 voters. When normalized, these games are on the
unit interval [0, 1] wherex1 is represented by the distance from 0 andx2 is represented
by the distance from 1. Naturally,x1 + x2 = 1 as required. Adding a voter to a simple
weighted-voting game increases the dimension of the space. Brams (1975) and Brams and
Affuso (1976, 1985a, 1985b) consider theparadox of a new memberwhere a new voter
is introduced into the game while the relative weights of the other voters is constant (that
is, the weights of the “old” voters are proportional), yet an old voter’s weight increases.
Felsenthal and Machover (1998) mathematically represent this paradox in the following
way: when the game[q; u1, u2, . . . , un] changes to[q; v1, v2, . . . , vn, vn+1] wherevn+1 ∈
[0, 1] andvi = (1 − vn+1)ui for i = 1 to n and one of voters1 throughn has its power
increase. This seems paradoxical because the introduction of the new voter would seem
to take power away from the other voters. Introducing a new member to an organization
can have unanticipated consequences. Researchers have applied power indices to see the
effect of proposed expansion of the European Union (e.g., Turnover, 1996 and Widgrén,
1994). The following example demonstrates the paradox.

Example 5. (Paradox of a new member) Consider the 2-voter game[0.75; 0.7, 0.3].
Clearly, the power under any index is1

2
:1
2

as both voters are necessary for a coalition
to be winning. The line in Figure 6 shows the possible games for which a third voter can
be added and the ratio of voter 1’s and voter 2’s weights held constant. Notice that this line
intersects regionR7, in which case voter 1’s power increases. As a representative game in
this region, the game[0.75; 7

13
, 3

13
, 3

13
] satisfies the conditions. Under the Shapley-Shubik

power index, voter 1’s power is4
6

in the new 3-voter game while under the Banzhaf power
index voter 1’s power is3

5
; both are greater than1

2
.

Brams (1975) coined the termparadox of large size: if voters decide to form a bloc,
then the power of the bloc cannot be smaller than the sum of the power of its members.
We consider this paradox when one voter annexes another voter (absorbsing its weight).
Yet, by increasing its weight, the voter’s power decreases. Again, 3 voters is sufficient to
demonstrate that this paradox is independent of the measurement of power. The following
example considers this paradox.

Example 6. (Paradox of large size) Consider the simple weighted-voting gameGa =
[3
4
; 1

3
, 1

3
, 1

3
]. By symmetry, each voter’s power is1

3
. If voter 1 receives the entirety of

voter 3’s weight, the resulting game isGb = [3
4
; 2

3
, 1

3
]; as both voters are necessary to

form a winning coalition, the resulting power is1
2

for each voter. The paradox is that the
aggregate power of voter 1 and voter 2 before becoming a single player was2

3
while the

power of the combined voter decreases to1
2
. Figure 7 shows that combining voters 1 and 3

can be viewed as projecting the game in the interior to one on the boundary (representing
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Figure 6: The paradox of a new member: Voter 1’s power increases despite the introduc-
tion of a new voter.
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Figure 7: The Paradox of large size: Voter 3 coalesces with voter 1 and their cumulative
power decreases.

games where voter 2 has weight 0). Notice that every projection that re-allocates voter 3’s
weight to voters 1 and 2 results in the same power index1

2
:1
2
, as both voters are necessary

in the only winning coalition.

Saari and Sieberg (2001) show that complete reversals of rankings of voters under
power indices can occur when adding or subtracting a voter. When viewed as a projection,
there are many seemingly natural ways to project from the(n+1)-voter simplex to then-
voter simplex. These different methods result in different powers in the projected games.

2.4 Combining Geometric Elements

Felsenthal and Machover (1998) introduce thefattening paradoxwhere increasing a voter’s
weight while keeping the other voters’ weights fixed results in a decrease in power for the
(un)lucky recipient of the extra weight. This can be viewed as changing the position in the
simplex of the weights. Consider the example where voter 1’s weight increases from 4 in
the gameGa = [8; 4, 4, 1, 1, 1] to 5, resulting in[8; 5, 4, 1, 1, 1] (Felsenthal and Machover,
1998). Under the normalized Banzhaf power index, voter 1’s power is1

2
in Ga (due to

symmetry, as voters 1 and 2 are the only two critical voters). InGb, voter 1’s power
decreases to approximately 0.474 under the normalized Banzhaf power index. (Leech
(2002a) provides algorithms for computing various power indices.)

This paradox combines two geometric properties. Not only have the weights been
changed, but the normalized quota has changed too, from8

11
to 8

12
. Decreasing the nor-
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malized quota results in a change in the number and/or size of parts in the partition. This
can be viewed as moving the hyperplane at the same time as the increase in one voter’s
weight redistributes the normalized weights. These two actions cause the game to pass a
hyperplane. For the above example,

[8; 4, 4, 1, 1, 1] → [8; 5, 4, 1, 1, 1]

↓ ↓
[

8

11
;

4

11
,

4

11
,

1

11
,

1

11
,

1

11

]
→

[
8

12
;

5

12
,

4

12
,

1

12
,

1

12
,

1

12

]

In general, if voter 1’s weight increases byk from x1 to x1 + k, the above diagram
becomes

[q; x1, x2, . . . , xn] → [q; x1 + k, x2, . . . , xn]

↓ ↓
[ q

X
;
x1

X
,
x2

X
, . . . ,

xn

X

]
→

[
q

X + k
;
x1 + k

X + k
,

x2

X + k
, . . . ,

xn

X + k

]

whereX =
∑n

i=1 xi. The normalized quota has decreased fromq
X

to q
X+k

at the same
time as the game moves proportionally in the direction of the(1, 0, . . . , 0)-vertex of the
simplex. This is comparable to adding or subtracting a player. Hence, the fattening para-
dox has elements of each of the geometric properties.

3 Conclusion

The geometry that arises from the partition on the simplex of simple weighted-voting
games is a natural way to classify paradoxical outcomes in voting power. Although the
paradoxes’ names do not indicate the geometry behind the paradox, three geometric prop-
erties: changing regions in a partition by passing a hyperplane, altering the number and/or
size of the parts of a partition, and adding or subtracting a voter leads to the paradoxes
are the basis for the paradoxes. Not only does the geometry provide a tool to analyze
paradoxes, but also to construct new ones.
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