N
N

N

HAL

open science

On the difficulty of computing the winners of a
tournament
Olivier Hudry

» To cite this version:

‘ Olivier Hudry. On the difficulty of computing the winners of a tournament. 2006. hal-00119535

HAL Id: hal-00119535
https://hal.science/hal-00119535

Preprint submitted on 11 Dec 2006

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00119535
https://hal.archives-ouvertes.fr

On the difficulty of computing
the winners of a tournament

Olivier Hudry*

Abstract

In voting theory, the result of a paired comparison method as the one suggested
by Condorcet can be represented by a tournament, i.e., a complete asymmetric di-
rected graph. When there is no Condorcet winner, i.e., a candidate preferred to any
other candidate by a majority of voters, it is not always easy to decide who is the
winner of the election. Different methods, called tournament solutions, have been
proposed to define the winners. They differ by their properties and usually lead to
different winners. Among these properties, we consider in this survey the algorithmic
complexity of the most usual tournament solutions: for each one of these methods,
we give its complexity.

Keywords : voting theory, tournament solutions, majority tournament, Copeland
solution, maximum likelihood, self-consistent choice rule, Markovian solution, un-
covered set, Banks solution, Slater solution, complexity, polynomial probl&fs,
hardness

1 Introduction

Atournament” = (X, A) is a complete asymmetric directed graph: for any vertexd
any vertexy with = # y, there exists exactly one of the two arcs (i.e., oriented edges)
(z,y) or (y,x). This kind of graphs may represent for instance the result of a paired
comparison method, as the one suggested by Condorcet [4] at the end &f'thentury
as a voting procedure. In such a situatidnis the set of candidates; for each pfir, y }
of distinct candidates, we compute the numbsy, of voters who prefer to y; if we
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On the difficulty of computing the winners of a tournament

havem,, > m,,, = is preferred toy by a majority of voters. It is usual to represent

the result of this method by a gragh = (X, A) of which the vertex set is the set of
candidates and such that, for any verieand any vertex with x # y, there is an arc

(z,y) if = is preferred toy by a majority of voters (i.e. iin,, > m,,). If there is no

tie (or, equivalently, if we have a tie-breaking rule), tHEn= (X, A) is a tournament,
called themajority tournament. In the following, we keep this illustration arising from
the voting theory, though paired comparison methods may occur in other contexts (sports,
psychology, statistics, and so on).

If the tournamentl” is transitive, then it is a linear order which gives a collective
ranking of the candidates. Evenlfis not transitive, it may happen that a vertexs
collectively preferred to any other vertex; from a graph theoretic point of view, it means
that all the arcs adjacent togo fromz towards the other vertices or, equivalently, that
the out-degree of is equal ton — 1, wheren denotes the number of vertices©f When
such a vertex exists, there are good reasons to consider it as the winner. Such a winner is
called aCondorcet winner. If a Condorcet winner exists, it is unique. When there is no
Condorcet winner if’, deciding who is the winner of the election may be a difficult task.

Different methods, calletburnament solutionkave been proposed to compute such

a winner (see [16] for the definitions and the properties of the tournament solutions con-
sidered below). They differ by their axiomatic properties and usually lead to different
winners. In this paper, we study the complexities of the most usual tournament solutions.
From a practical point of view, the complexity of a method plays an essential role; for
instance for an election, it is quite important to be able to declare who is the winner in
a “reasonable” time. With this respect, polynomial methods (i.e., methods of which the
algorithmic complexity is upper bounded by a polynomial function in the size of the data)
appear usually as preferable to exponential methods (i.e., methods of which the algorith-
mic complexity is not upper bounded by a polynomial function in the size of the data),
though this complexity is expressed for the worst case. When a problem is NP-hard (or
NP-complete if we deal with a decision problem, i.e. a problem in which a question is set
with “yes” or “no” as its answer), the only methods known nowdays to solve the problem
exactly are exponential. Hence the interest in the complexity of the tournament solutions
(for the theory of NP-completeness, see for instance [10] or [3]).

2 Tournament solutions and their complexities

We give now the definitions of the considered tournament solutions and their complexi-
ties. In the sequell’ = (X, A) will denote a tournament; will denote the number of
vertices of7’; the out-degree of any vertexe X is called thg(Copeland) scoref » and

is noteds(z). WhenT is not connected, it is possible to decompose it into its strongly
connected components; because of the structure of tournament, there exists a strongly
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connected component, sometimes calledTop CycleTC(T) of T, such that all the

arcs with one extremity insid€C(T") and the other outside are oriented fr@i@'(T’) to-
wardsX \ TC(T). Itis easy to computé&C(T') polynomialy (more precisely it)(n?))

for instance thanks to the application of a depth-first search procedure (see for instance
[7]). Notice that, when a Condorcet winner existginT'C(T') contains only this vertex;

in this case, all the solutions below select the Condorcet winner as their unique winner.
More generally, all the tournament solutions considered below select the winriEiis of
TC(T); so we may restrict ourselves in searching the winners irBidél’), which in-

duces a strongly connected subtournamedt.dfor this reason, we assume from now on
thatT is strongly connected (as a consequefitdpes not admit any Condorcet winner).

Notice that, as the number of arcs Bfis equal ton(n — 1)/2, we need at least
n(n — 1)/2 bits to encodel’. On the other hand, encodirig by its adajency matrix
requires:? bits; thus, the (binary) size @fis ©(n?) and we may consider in the following
thatT is encoded by its adjacency matrix. So a method is polynomial with respect to the
size of the instance given Ky if and only if it is polynomial with respect to. It is with
respect to this parametarthat we are going to state the complexity of the tournament
solutions described below.

2.1 Maximum scores: Copeland solution

An easy method to find the winners is the solution proposed by Copeland ([6]), leading
to theCopeland winners.

Definition 1 A Copeland winner of the tournamefit = (X, A) is any vertex with a
maximum score.

Then Copeland solution is obviously polynomial:
Theorem 1 Copeland winners can be computedifn?).

Proof. To get the Copeland winnersfit is sufficient to compute the scores of the
vertices ofl’, what can be done i®(n?) by summing up the binary values of each row of
the adjacency matrix df, then to compute the maximum value of these scores, what can
be done inO(n), last to compare each score to this maximum value, what can be done
also inO(n). Hence the result. o

Notice that this method can give all the Copeland winners with the same complexity.
Notice also that, if we assume that the out-degrees, i.e. the scores, are known, then the
complexity is onlyO(n). Last, notice also that ranking the vertices according to the
decreasing values of the scores gives a preardefrwhich the maximal elements are the
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Copeland winners; if we want to rank the vertices according to a linear order, then we
may adopt any linear extension Bf in this case anyway, the number of rankings may be
very large (for instance,whenis odd, if all the scores are equal(te — 1)/2, then then!

linear orders are relevant rankings) and the method is no longer polynomial.

2.2 Maximum likelihood: Zermelo solution

Zermelo designed the following method in 1929 [22]. A positive “strengtf?’) is asso-

ciated with each vertex; for instanceg (x) may be interpreted as the popularity rating of

the candidate. Assume that these strengths are known. Then it would be natural to rank
the candidates according to the decreasing values of these strengths, and the candidates
with the greatest strength would be the Zermelo winners. So, the question is: how to
compute these strengths ?

To answer this question, Zermelo considers that the probapilityy) that a candidate
x is preferred to a candidageby a majority of voters is given by

o(x)
plz,y) = :
S TE T
If we assume moreover that these collective preferences are independent the ones from
the others when we consider all the possible pairs of candidates (what is not obviously
the case in practice), then the conditional probabjity’/c) to getT = (X, A) as the
majoritary tournament knowing is given by:

nT/o)= ]

(z,y)eA

So, the maximum likelihood method proposed by Zermelo consists in computing the
positive strengths(z) for z € X maximizingp(T'/o) with " o(z) = 1.

Though the strengths are not necessarily proportional to the Copeland scores, it is
possible to show that the Zermelo winners and the Copeland winners are the same (more
precisely, the ranking induced by the strenghts is the same as the ranking induced by the
scores). Consequently, because of the previous theorem, we get:

Theorem 2 Zermelo winners can be computeddrin?) but the enumeration of all the
rankings compatible with the maximum likelihood rule may require an exponential time.

2.3 Self-consistent choice rule, or Markovian solution

The self-consistent choice rule is due to Levchenkov [17], [11], but the following presen-
tation has been proposed by Laslier [15]. We start with a verggandomly chosen, and
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we generate a seri¢s; } of elements belonging t& as follows. At each step, a vertex

x is randomly chosen with a uniform distribution ou&r If (x, z;) is an arc ofT’, then

we setr,,; = x; otherwise, we keep,.: xx1 = x;. Then we repeat the same process.
This random walk leads to the different vertices with different probabilities, depending
on their “attractiveness”. These probabilities may be used to sort the vertices and thus to
define the winners.

More precisely, we way associate a Markov chain with this random walk. The graph
G = (X, B) describing this Markov chain has the same vertex séf',ase. X, but
the arcs ofGG, defining the possible transitions from the current state (i.e., the current
vertex) to another one, are exactly the arcs which do not belogitecluding the loops:
B = X x X\ A. The transition probabilities are defined as follows: for € X and
y € X withz # yand(z,y) € B (hence(y, z) € A), the transition probability(z, y) to
go fromz to y is equal to-15; for aloop(z, z), the transition probability(z, ) to stay

onx is equal to%, wheres(z) still denotes the score af in 7. Then, at each step

of this process, we may define a probability distribution veeiogiving the probability

to be on each vertex df: for any integerk > 0 and any vertex: € X, () gives the
probability to be on vertex at stepk. Let P = (p,,)(4)cx2 denote the matrix of the
transition probabilitiesyp,, = p(z,y) if (z,y) € B andp,, = 0 otherwise. Then the
expression ofr,; for k > 0is w1 = m, x P, or alsom,,.; = mp x P!, wheren,

is the vector with only 0’s as components, except for the component associated with the
starting vertext,, equal to 1.

The theory of Markov chains [8] shows that,/Ass assumed to be strongly connected,
the series of the probability distributiong’s tends towards a limit*, and this limit is
independent ofr,. This distribution allows to define the self-consistent choice rule:

Definition 2 The self-consistent choice winnersiofi.e., the winners according to the
self-consistent choice rule) are the vertiegsverifying:

* * _ E3
(") = maxn (z).

Lemma 1 The self-consistent choice winners can be computed within the same comple-
xity as the multiplication of twén x n)-matrices.

Proof. Still from the theory of Markov chains [8], it is easy to show thasatisfies the
equalityr* = 7* x P. This equality is obviously not sufficient to characterize the values
of 7*(z) for all the verticese. But, becausd” is strongly connected, the linear system
defined byr* = 7* x Pand)_ ., 7*(x) = 1 admits a unique solution. Moreover, still
becausdl’ is strongly connected, we may remove any row of the system =* x P
in such a way that the new system given by the remaining 1 rows, along with the
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equation)  _, 7*(z) = 1 still admits a unique solution. It yields that the computation

of the self-consistent choice winners may be done by the resolution of a linear system
with n variables andh equations admitting a unigue solution. Hence the complexity of
the self-consistent choice rule, since the resolution of such a linear system has the same
complexity as the multiplication of twn x n)-matrices (see [7] for instance). o

Theorem 3 The self-consistent choice winners can be computé{irt-*).

Proof. The complexity)(n*3) is a consequence of the previous lemma and of the
fact that it is possible to multiply twén x n)-matrices inO(n*3®) [7]. o

2.4 The uncovered set

Let x andy be two distinct vertices. We say thatoversy if any successor g is also a
successor af:

Vee X, (y,2) € A= (z,2) € A

Notice that, because of the asymmetry of a tournament (what involved tigirre-
flexive), if = coversy, then(z,y) is an arc off’. A vertex is said to baincoveredf
none vertex covers it; the uncovered seffaf notedUC(T'). Adopting the elements of
UC(T) as the winners of" has been independently suggested by Fishburn in 1977 [9]
and by Miller in 1980 [18]. This method is polynomial:

Lemma 2 Computing the uncovered elements can be done within the same complexity as
the multiplication of twdn x n)-matrices.

Proof. Itis well-known that a vertex is uncovered if and only if, for any other vertex
y, there exists a directed path with one or two arcs fromo y (it is the so-called “two
steps principle”, see [19]). M denotes the adjacency matrix @f the entrieSmi,y
of M? give the numbers of paths with two arcs franto y. Thus, to know whether.
is uncovered, it is sufficient to compute the row/d® + M + I (wherel denotes the
identity matrix) associated with: x is uncovered if and only of there is no entry of this
row equal to 0. As the complexity of this process is the same as the one of the computation
of M? (the other steps are negligible), we may compute simultaneously all the uncovered
vertices within the same complexity as the multiplicationofy itself. o

Theorem 4 Computing the uncovered elements can be dor@(ir?-%).
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Proof. The complexityD(n*3) is a consequence of the previous lemma and of the
fact that it is possible to multiply twén x n)-matrices inO(n*®) [7]. o

A variant of this solution consists in computing the sefigs" (T) defined as follows:
UCYT) is equal toUC(T); for k > 0, UC*Y(T) is the uncovered set of the subtour-
nament ofT" induced byUC*(T). The elements belonging 16C*(T) for2 < k < n
(notice that the set§ C*(T') cannot evolve any longer for exponents greater thiamay
be proposed as the winnersBf(though some basic properties are not satisfied by this
method; see [15] or [16]). Because of the polynomialityaf and as it is possible to
build a subtournament induced by a subset of vertices in polynomial time, we get the
following result about the generalization GL":

Theorem 5 For 1 < k < n, computing the winners according t6C* can be done in
polynomial time.

2.5 Maximal transitive subtournaments: Banks solution

As said above, wheffi is transitive, there exists a unique Condorcet winner, and it is quite
natural to select it as the winner &f(notice anyway that there exist many voting proce-
dures which do not necessarily select the Condorcet winner, when such a winner exists;
it is the case for instance for the procedure applied in France to elect the President of the
Republic, or usually applied for the election of the members of the French parliament).
WhenT is not transitive, we may anyway consider the transitive subtournamerits of
which are maximal with respect to inclusion, and then select their Condorcet winners as
the winners ofl". This defines the Banks solution [2]:

Definition 3 A Banks winner of" is the Condorcet winner of any maximal (with respect
to inclusion) transitive subtournament 6f

From the complexity point of view, this solution owns a maybe unexpected property.
Indeed, G. Vidginger recently shows the following theorem [21]:

Theorem 6 The following problem is NP-complete:
Instance: a tournamerit, a vertexs of T’
Question: isr a Banks winner of'?

Anyway the next theorem is proved in [12]:

Theorem 7 For any tournament’, computing a Banks winner is polynomial, and more
precisely, can be done if(n?).
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There is no paradox: when we compute a Banks winner, we do not (and cannot, in
the general case, i? and N P are not equal) choose the Banks winner that we would like
to get. Moreover, as there are at masBanks winners and because of G. Woeginger's
result, we get:

Theorem 8 Computing all the Banks winners ©fis an N P-hard problem.

Proof. Itis easy to design Turing transformations showing that, on one hand, checking
that a given vertex is a Banks winner, and, on the other hand, enumerating all the Banks
winners are polynomialy linked. Indeed, if we can enumerate all the Banks winners with
some complexity, then we may obviously check whether a given vertex is a Banks winner
within the same complexity. Conversely, if we can check whether a given vertex is a
Banks winner thanks to an algorithm with some complex{ty), then we may enumerate
all the Banks winners by applying this algorithm to th&ertices of the tournament: this
gives an algorithm to solve the problem of the enumeration with:) as its complexity.
Because of this link (in fact, because of the first part of this link) and because dffhe
completeness of the problem consisting in checking whether a given vertex is a Banks
winner, the problem of the enumeration of all the Banks winneféi5hard. o

2.6 Linear orders at minimum distance: Slater solution

The last solution described here consists in reversing a minimum number of dfts of
in order to get a transitive tournamef¥ i.e. a linear order, and then to consider the
Condorcet winner 00. This defines &later winne20]:

Definition 4 LetO be a linear order defined oX. We define the distanc&T, O) bet-
weenT and O as the number of arcs df which have a different orientation i@. A
Slater order of T is a linear orde®* minimizingd(T', O) over the set of the linear orders
O defined onX. A Slater winner of T is the Condorcet winner of any Slater ordér of
We note(7’) the minimum number of arcs that must be reversetlia get a Slater order
O*of T: d(T,0%) = i(T).

The complexity of Slater solution may be derived from a recent result dealing with a
problem calledhe Feedback Arc Set Problem. This problem consists, given a directed
graphG, in removing a minimum number of arcs froghin order to get a graph without
any circuit. From the work by Karp [14], this problem is known to/&-complete in the
general case. Recent results ([1] and [5]) show that this problem remVdiisomplete
even when restricted to tournaments. From this, we may prove the following theorem (see
[13] for details):
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Theorem 9 For any tournament’, we have the following results:
1. the computation of ') is N P-hard;
2. the computation of a Slater winner6fis N P-hard,;
3. checking that a given vertex is a Slater winnef'as N P-hard,;
4. the computation of a Slater order Bfis N P-hard;

5. the computation of all the Slater winners Bfor all the Slater orders ofl" is
N P-hard.

3 Conclusion

We may summarize the previous results as follows:

— some tournament solutions are polynomial with respect to the siZe dfis the
case for the Copeland solution (maximum scores), the Zermelo solution (maximum like-
lihood), the self-consistent choice rule or Markovian solution (Levchenkov, Laslier), and
the uncovered set (Fishburn, Miller);

— Banks solution (maximal transitive subtournaments) is polynomial if we consider
the computation of one (not specified) Banks winner, But-hard if we consider the
problem consisting in checking that a given vertex is a Banks winner or the problem
consisting in enumerating all the Banks winners;

— Slater solution (linear order at minimum distance)Nig-hard for its different vari-
ants.

From a practical point of view in the context of voting theory, these results give an
advantage to the first methods, if we want to get the issue of the election in a “reasonable
time.
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