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THE POISSON BOUNDARY OF TRIANGULAR MATRICES IN A

NUMBER FIELD

BRUNO SCHAPIRA

Abstract. The aim of this note is to describe the Poisson boundary of the
group of invertible triangular matrices with coefficients in a number field. It
generalizes to any dimension and to any number field a result of Brofferio [2]
concerning the Poisson boundary of random rational affinities.
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1. Introduction

The Poisson boundary is a measure space which describes the asymptotic be-
havior of random walks on groups. In the same time it gives information on the
geometry of the group and provides a representation of bounded harmonic func-
tions (we refer for instance to [6] [7] [8] or [10] for more details). Our aim in this
paper is to explore the case of a group of matrices with coefficients in a number
field. More precisely we study the group of upper diagonal matrices with non zero
diagonal coefficients.

This example was treated previously by Brofferio [2] for matrices of size 2 and
rational coefficients, which corresponds to the case of rational affinities. She proved
that the Poisson boundary is the product over all prime numbers p (including
p = ∞) of ”local” boundaries Cp, which are either a p-adic line, or a point. This
can be determined explicitly in function of the random walk. In each case one can
see Cp as a subspace of the p-adic projective line, which is the Poisson boundary of
the group of p-adic affinities (cf [5] [3]). The goal of this paper is to generalize this
result in higher dimension d ≥ 2. In other words we will prove that the Poisson
boundary is a product of local factors Cp, where for every p, Cp is a subspace
of the Furstenberg boundary, which is also the space of flags on Qd

p. It is known
that this space, or a quotient, is the Poisson boundary of a large class of random
walks on groups of real matrices (see e.g. [7] [13] or [15]). There is a well known
decomposition of the Furstenberg boundary called Bruhat decomposition, which
coincides for d = 2 with the decomposition of the projective line into a line and a
point. So we will prove that each Cp is a component, also called a Bruhat cell, of
this decomposition, that we determine in function of the random walk.

Our proof follows very closely the general strategy of Brofferio [2] in dimension
2. However, as the technical details are a bit different, we will repeat all arguments
here. So this paper can be read independently of [2]. The main tools are the
law of large numbers (for contraction) and Kaimanovich’s entropy criterion (for
maximality).
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Such factor decompositions of the Poisson boundary were already observed so
far. For instance Bader and Shalom [1] proved recently a general factor theorem
in an adelic setting. It is in fact rather likely that our result should extend to a
more general class of groups, such as SLd(Q). For this our proof ”with hands”
should probably be replaced by more powerful tools, such as the Oseledec’ theorem
(see for instance its use by Ledrappier [13] for the study of discrete subgroups of
semisimple groups), or a geometric argument (using for instance Kaimanovich’s
strip approximation criterion).

Acknowledgments: I would like to thank Philippe Bougerol, Sara Brofferio, Yves
Guivarc’h and Vadim Kaimanovich for enlightening discussions. I am particularly
indebted to Uri Bader for his comments on a previous version of this paper. In
particular he draw my attention to the fact that the local parts of the Poisson
boundary were certainly Bruhat cells. I wish also to thank the referee for his careful
reading and criticism, and for numerous advices concerning the organization of the
paper.

2. Statement of results

Let K be some number field. The reader non familiar with this may think to
the particular case of the rational field K = Q (see also section 7 for more details).
Let P be the set of prime ideals (the set of prime numbers in the case K = Q).
For p ∈ P , we denote by | · |p the associated norm on K and by Kp the associated
completion of K. Let µ be some measure on A(K), the space of upper triangular
matrices with coefficients in K and non zero diagonal coefficients. For p ∈ P and
i ∈ [1, . . . , d], we set

φp(i) :=

∫

A(K)

ln |ai,i|p dµ(a).(1)

We denote by Bp the space of flags in Kd
p. Let W be the group of permutations

of the set {1, . . . , d}. Let w be the unique element in W such that w(i) > w(j)
if i < j and φp(i) ≥ φp(j). Let Cp(µ) be the Bruhat cell associated to w in the
Bruhat decomposition of Bp (see next section for a definition). If V∞ is the set of
archimedean norms on K (reduced to the usual absolute value if K = Q), then for
every v ∈ V∞, | · |v, Kv,..., are defined analogously.
The main result of this paper is the

Theorem 2.1. Let

B :=
∏

p∈P

Bp ×
∏

v∈V∞

Bv,

be the product of all flag manifolds. For every µ on A(K) satisfying

∫

A(K)

∑

i≤j


∑

p∈P

|ln |ai,j |p| +
∑

v∈V∞

| ln |ai,j |v|


 dµ(a) < +∞,(2)

there exists a measure ν on B such that (B, ν) is the Poisson boundary of (A(K), µ).
Furthermore, ν is supported on the product of the Cp(µ)’s and the Cv(µ)’s.

We will prove this theorem in three steps, corresponding to the three following
propositions:
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Proposition 2.1. There exists a measure ν on B, such that the measure space

(B, ν) is a µ-boundary.

Proposition 2.2. If µ satisfies (2), then µ has finite entropy.

Proposition 2.3. For ν-almost all z ∈ B, the asymptotic entropy hz of the condi-

tional measure Pz vanishes.

We will recall all necessary definitions about entropy in the next section. Assuming
these propositions, Theorem 2.1 is then a consequence of Kaimanovich’s criterion:

Theorem 2.2 (Kaimanovich [10] Theorem 4.6). Let G be a countable group and

µ a probability measure on G with finite entropy. Then a µ-boundary (B, ν) is the

Poisson boundary if, and only if, for ν-almost all z ∈ B, the asymptotic entropy hz

of the conditional measure Pz vanishes.

Let us describe now the organization of the paper. In the next section we detail
our notations and recall some preliminary background on µ-boundaries, Poisson
boundary, entropy and Bruhat decomposition. Then we prove the three proposi-
tions above in the particular case of the rational field, which is easier in a first
reading. Section 4 is devoted to the proof of Proposition 2.1, section 5 to Proposi-
tion 2.2, and section 6 to Proposition 2.3. The last section is devoted to the case of
number fields. There are some adjustments to make in the proof that we explain.
Finally the appendix is devoted to the proof of a technical result.

3. Preliminaries

Let d ≥ 1 be an integer. Recall that A(K) is the set of upper triangular matrices
of size d with coefficients in K and non zero diagonal coefficients. So if a = (ai,j)i,j ∈
A(K), we have ai,j = 0, if i > j, and ai,i 6= 0 for 1 ≤ i ≤ d. For n ≥ 1 and
z = (z1, · · · , zn) ∈ Kn

p , we set |z|p = maxi=1,··· ,n |zi|p.

Random walk, µ-boundaries, and Poisson boundary: Let µ be a measure
on A(K). We consider a sequence (gn)n≥1 of i.i.d. random variables of law µ on
A(K). The random walk (xn)n≥0 of law µ on A(K) is defined by

xn := g1 · · · gn.

We denote by P the law of (xn)n≥1 on the path space A(K)N.
Assume that B is a locally compact space, endowed with a measure ν and an

action of A(Q). We say that ν is µ-invariant (also known as µ-stationary or µ-
harmonic), if ∫

A(K)

(gν)dµ(g) = ν,

where for all g ∈ A(K), gν is defined by

gν(f) =

∫

B

f(gz)dν(z),

for all continuous functions f . In this case, according to Furstenberg [7, 8], we
say that (B, ν) is a µ-boundary if, P-almost surely xnν converges vaguely to a
Dirac measure. Then the Poisson boundary (B, ν) is defined as the maximal µ-
boundary, i.e. it is a µ-boundary such that any other µ-boundary is one of its
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measurable G-equinvariant quotients. For any element x = (xn)n≥1 ∈ A(K)N, we
define bnd x ∈ B by

lim
n→+∞

xnν = δbnd x.

If z ∈ B, it is possible to define (in the sense of Doob, see [10] for details), the
law Pz of (xn)n≥1 conditioned by bnd x = z. Then for n ≥ 0, Pz

n denotes the
projection of Pz on the nth coordinate. In fact if (B, ν) is any µ-boundary and
z ∈ B, Pz and Pz

n are defined similarly.
Let sgr(µ) be the semi-group generated by the support of µ, i.e. sgr(µ) =

∪nsupp(µ∗n). We say that a function f on sgr(µ) is µ-harmonic if
∫

A(K)

f(gg′)dµ(g′) = f(g),

for all g ∈ sgr(µ). Furstenberg [7] proved that there is an isometry between the
space H∞(A(K), µ) of bounded µ-harmonic functions f on sgr(µ) and the space
L∞(B, ν) of bounded functions F on B. The isometry is given by the formula

F (bnd x) = lim
n→∞

f(xn), f(g) =

∫

B

F (gz) dν(z).

The second formula is the so called Poisson integral representation formula of
bounded harmonic functions.

Entropy and asymptotic entropy: The entropy of a measure µ on a countable
group G is given by the formula:

H(µ) = −
∑

g∈G

µ(g) lnµ(G).

If (B, ν) is a µ-boundary and z ∈ B the conditional asymptotic entropy hz is defined
by:

hz := − lim
n→+∞

log Pz
n(xn)

n
.

Some structure and the Bruhat decomposition: Let G = GLd. We denote
by ∆ the set of diagonal matrices with non zero diagonal coefficients. We denote
by δ = diag(δ1, . . . , δd) the diagonal matrix with entries δi,i = δi, i = 1, . . . , d. Let
U be the group of upper triangular matrices with one’s in the diagonal (unipotent
matrices). The notation U(R), where R is some ring, means that the coefficients
strictly upper the diagonal are in R. Let U be the group of lower triangular matrices
with one’s in the diagonal. We set A = ∆U and A = ∆U . We denote by W the
Weyl group, identified with the subgroup of permutation matrices. Its action by
conjugation on ∆ permutes the coordinates of the diagonal. In this way W can
also be identified with the group of permutations of the set {1, . . . , d}. For w ∈ W ,
we set Uw = wUw−1 ∩ U and Uw = wUw−1 ∩ U . We have U = UwUw and
Uw ∩ Uw = {Id}. An element u ∈ U lies in Uw if, and only if, ui,j = 0 whenever
i < j and w(i) > w(j).

The Bruhat decomposition (see e.g. [9] or [18]) says that G can be decomposed
in the following disjoint union:

G =
∐

w∈W

AwA =
∐

w∈W

UwwA.
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The components AwA are called the Bruhat cells. In the quotient space G/A they
are identified with the groups Uw by the map

Uw → G/A, u 7→ uwA.

For p ∈ P , resp. v ∈ V∞, we recall that Cp(µ), resp. Cv(µ), denotes the cell
Uw(Kp), resp. Uw(Kv), associated to the w ∈ W such that w(i) > w(j) if i < j
and φp(i) ≥ φp(j), resp. φv(i) ≥ φv(j). If u ∈ U(Kp), resp. u ∈ U(Kv), we
denote by u its component in this Uw(Kp), resp. Uw(Kv), according to the product
decomposition U = UwUw.

The action of a ∈ A(K) on b ∈ Cp(µ) is defined as follows. Assume that a = uδ
with u ∈ U and δ ∈ ∆. Then

a · b := abδ−1.

In other words a · b is the unique element of Uw representing ab in G/A.

4. Proof of Proposition 2.1

To simplify a little the notations and the arguments, we assume here and in the
next three sections, that K = Q. In this case we denote by P∗ the union of P , the
set of prime numbers, and {∞}, which corresponds to the usual absolute value. So
the notation Q∞ denotes the field of reals R, and | · |∞ the absolute value on R.
Let p ∈ P∗. Let (e1, . . . , ed) be the canonical basis of Qd

p. Let

Jd = {i ≤ d | φp(i) ≥ φp(d)},

and let r be the cardinality of Jd. Assume that j1 < · · · < jr = d are the elements
of Jd. We denote by Λr

subQd
p the subspace of ΛrQd

p generated by the elements
ei1 ∧ . . . ∧ eir

such that is ≤ js for all s ∈ [1, . . . , r]. We denote by Br the basis of
Λr

subQd
p made up of these elements ranged in lexicographical order. Let also m be

the dimension of this subspace. Each a ∈ A(Q) defines an endomorphism of ΛrQd
p,

by setting a(v1∧ . . .∧vr) := av1∧ . . .∧avr . We denote by a(r) the restriction of this
endomorphism to Λr

subQd
p. Observe that it has a triangular matrix representation in

the basis Br. This provides a representation of A(Q) on the subspace PQm
p of Qm

p

whose vectors have last coordinate equal to 1. Indeed for u ∈ PQm
p and a ∈ A(Q),

we define the (projective) action a · u of a on u by

a · u :=
1∏

j∈J aj,j
a(r)u.

Lemma 4.1. For any u ∈ PQm
p , the sequence (xn ·u)n≥1 converges P-a.s. Moreover

the limit, that we denote by (Zp
k (d))k≤m, does not depend on the choice of u.

Proof. We assume that m ≥ 2, otherwise there is nothing to prove. Let a ∈ A(Q).
We have observed that a(r) has a triangular matrix representation in the basis Br.
We put a′ = 1∏

j∈J
aj,j

a(r). Then a′
m,m = 1, and for k < m, there exists a subset

K ⊂ {1, . . . , d} of cardinality r, such that a′
k,k =

∏
j∈K

aj,j∏
j∈J

aj,j
. Therefore

φ′
p(k) := E[ln |a′

k,k|p] =
∑

j∈K

E[ln |aj,j |p] −
∑

j∈J

E[ln |aj,j |p](3)

=
∑

j∈K∩Jc

(φp(j) − φp(d))︸ ︷︷ ︸
<0

−
∑

j∈J∩Kc

(φp(j) − φp(d))︸ ︷︷ ︸
≥0

< 0.
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For n ≥ 1, let
x′

n = g′1 · · · g
′
n.

If k < m, by the law of large number, a.s.

ln |(x′
n)k,k|p
n

=
1

n

n∑

l=1

ln |(g′l)k,k|p → φ′
p(k), when n → ∞.(4)

first step: Let k be fixed. Let us prove by induction on k′ ∈ [k, . . . , m − 1], that
for all k ≤ k′ ≤ m− 1, there exists a.s. α > 0 such that 1

n ln |(x′
n)k,k′ |p ≤ −α for n

large enough. If k′ = k the result is immediate from (4). We assume now the result
for l ≤ k′ − 1 (with k′ > k), and we prove it for k′. By the induction hypothesis
there exists a.s. α > 0 and N1 ≥ 1 such that for all l ∈ [k, . . . , k′ − 1],

n ≥ N1 ⇒ |(x′
n)k,l|p ≤ e−nα.

Let ǫ > 0 be such that α − 4ǫ > 0, and φ′
p(k

′) + ǫ < 0. By (4) there exists a.s.
N2 ≥ N1 such that

n ≥ N2 ⇒ en(φ′

p(k)−ǫ) ≤ |(x′
n)k′,k′ |p ≤ en(φ′

p(k)+ǫ).(5)

We set cn = maxi,j |(g
′
n+1)i,j |p. We have a.s. ln cn

n → 0. Thus there is a.s. some

integer N3 ≥ N2 such that n ≥ N3 ⇒ cn ≤ enǫ. Finally we set un :=
(x′

n)k,k′

(x′
n)k′,k′

. We

have for all n ≥ 1,

un+1 = un +
1

(x′
n+1)k′,k′

k′−1∑

l=k

(x′
n)k,l(g

′
n+1)l,k′

︸ ︷︷ ︸
:=rn

.(6)

With the previous notations we have a.s. for n ≥ N3,

|rn|p ≤ de−nφ′

p(k′)−n(α−3ǫ).(7)

We set C = maxn≤N3 |rn|p. Hence by (5), (6) and (7), we have a.s. for any N ≥ N3,

|(x′
N )k,k′ |p ≤ |(x′

N )k′,k′ |p

N∑

n=1

|rn|p ≤ Nd(e−N(α−4ǫ) + CeN(φ′

p(k′)+ǫ)),

and the result for k′ follows.
second step: We have for n ≥ 1, and any k < m,

(x′
n+1)k,m = (x′

n)k,m +

m−1∑

l=k

(x′
n)k,l(g

′
n+1)l,m.

As a consequence (x′
n)k,m is the partial sum of a series whose general term converges

a.s. to 0 exponentially fast (by the first step). Thus it is almost surely convergent.
Now take u ∈ PQm

p . By definition xn · u = x′
nu for all n. So we see that xn · u

converges a.s. to some (Zp
k(d))k≤m ∈ PQm

p , where for every k < m, Zp
k(d) is

the limit of (x′
n)k,m, which is independent of u. This finishes the proof of the

lemma. �

This lemma says that PQm
p equipped with the law of (Zp

k(d))k≤m is a µ-boundary.
But it implies in fact the

Corollary 4.1. For every p ∈ P∗, there exists a measure νp on Cp(µ) such that

the measure space (Cp(µ), νp) is a µ-boundary.
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Proof. For all d′ ≤ d, we define the minor of size d′ of an element a ∈ A(Q)
as the matrix d′ × d′ in the upper left corner of a. These matrices act in the

same way on Λ
r(d′)
sub Qd′

p , where r(d′) is the cardinality of Jd′ . Hence Lemma 4.1
holds as well in this setting. This provides new µ-boundaries and new vectors

(Zp
k(d′))k≤m(d′), where m(d′) is the dimension of Λ

r(d′)
sub Qd′

p . We claim that the set

of vectors (Zp(2), · · · , Zp(d)) is associated to an element (Zp
i,j)1≤i,j≤d of Cp(µ).

More precisely we claim that we can define the columns Zp
j of Zp, for j = 1, · · · , d,

recursively by

Zp
i1
∧ · · · ∧ Zp

j = Zp(j),

where i1, · · · , j are the elements of Jj . Indeed the set, let say S, of vectors
(V (2), · · · , V (d)) which are associated to an element of Cp(µ) by this way is stable
under the action of A(Q). But since the limit (Zp(2), · · · , Zp(d)) is independent of
the starting point, which can be chosen in S, it must be also in S. Thus if νp is the
law of the associated Zp, we get that (Cp(µ), νp) is a µ-boundary. �

Proof of Proposition 2.1: It suffices to observe the elementary fact that a product
of µ-boundaries is a µ-boundary. So if we define ν on B to be the law of (Zp)p∈P∗ ,
we get from Corollary 4.1 that (B, ν) is a µ-boundary. �

5. Gauges on A(Q) and proof of Proposition 2.2

We denote by A the adele ring of Q, i.e. the restricted product Π′
p∈P∗Qp (see

e.g. [19]). The notation Π′ means that if (zp)p∈P ∈ A, then for all p but a finite
number, |zp|p ≤ 1. Let H be the group of upper triangular matrices with non zero
rational diagonal coefficients and strictly upper diagonal coefficients in A. In other
words

H := U(A) ∆(Q).

We have a natural injection iA from Q into A and therefore also an injection iH
from A(Q) into H . Via iH we will sometimes identify elements in A(Q) with their
image in H . For q ∈ Q∗, we set

〈q〉 :=
∑

p∈P

| ln |q|p|.

In particular for every irreducible fraction q = ±r/s of integers, one has 〈q〉 =
ln r + ln s. If δ = diag(δ1, . . . , δd) ∈ ∆(Q), we set

〈δ〉 :=

d∑

i=1

〈δi〉.

For b = (bp)p∈P∗ ∈ A and p ∈ P∗, we set

〈b〉+p := ln+ |bp|p,

where ln+ denotes the positive part of the function ln and

〈b〉+ :=
∑

p∈P∗

〈b〉+p

If u ∈ U(A) and p ∈ P∗, we set

〈u〉+p :=
∑

i<j

〈ui,j〉
+
p and 〈u〉+ :=

∑

i<j

〈ui,j〉
+.
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Let h ∈ H and let h = uδ be its decomposition in U(A)∆(Q). We define the adelic
length of h by

||h|| := 〈u〉+ + 〈δ〉.

The adelic length is not sub-additive but it is almost the case. Indeed for any
q, q′ ∈ Q∗,

〈qq′〉 ≤ 〈q〉 + 〈q′〉,

and for any b, b′, b′′ ∈ A, and q ∈ Q∗,

〈b + qb′b′′〉+ ≤ ln 2 + 〈b〉+ + 〈b′〉+ + 〈b′′〉+ + 〈q〉.

Using these relations we can find constants K > 0 and K ′ > 0 such that for all
h, h′ ∈ H ,

||hh′|| ≤ K + K ′(||h|| + ||h′||).

Now we consider the family of gauges (Gh
k )k∈N on A(Q) defined for k ≥ 0 and

h ∈ H , by

Gh
k := {a ∈ A(Q) | ||a−1h|| ≤ k}.(8)

We have

Lemma 5.1. The family of gauges {Gh}h∈H has uniform exponential growth, i.e.

there exists C′ > 0 such that Card{Gh
k } ≤ eC′k for all h ∈ H and all k ∈ N − {0}.

Proof. First, since the inverse map is a bijection of A(Q), we can always replace
a−1 by a in the definition of the gauges. Now let h0 be the unit element of H , and
let a ∈ A(Q) be such that ||ah0|| ≤ k. In this case 〈ai,i〉 ≤ k for any i ≤ d, and
〈ai,j/aj,j〉

+ ≤ k for any i < j. But the number of rational q 6= 0 such that 〈q〉 ≤ k
is lower than 2e2k. Moreover, for any rational q, 〈q〉+ ≥ 〈q〉/2. Thus

〈
ai,j

aj,j
〉+ ≥

1

2
〈
ai,j

aj,j
〉 ≥

1

2
(〈ai,j〉 − 〈aj,j〉),

which implies

Card(Gh0

k ) ≤ (2e6k)d2

.

Now let h ∈ H . Since the multiplication by any element is a bijection of A(Q), we
do not change the cardinality of the Gh

k if we multiply to the left h by an element in

A(Q). Hence, multiplying them if necessary by diag(h−1
1 , . . . , h−1

d ) we can always
suppose that h1 = · · · = hd = 1. Then it is elementary to find b ∈ A(Q) such that
||h−1b|| = 0. Hence for any a ∈ A(Q),

||ab|| = ||ahh−1b|| ≤ K + K ′(||ah|| + ||h−1b||).

Thus Gh
k ⊆ Gb

K+K′k, which has the same cardinality as Gh0

K+K′k, since b ∈ A(Q).
This concludes the proof of the lemma. �

If G = (Gn)n≥1 is a gauge on a countable group G, and if g ∈ G, we set

|g|G := inf{n | g ∈ Gn}.

Then if µ is a measure on G, the first moment |µ|G of µ with respect to G is defined
by:

|µ|G :=
∑

g∈G

|g|Gµ(g).

The proof of Proposition 2.2 follows now from Derriennic’s criterion:
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Theorem 5.1 (Derriennic [4]). Let µ be a probability measure on a countable group

G. If µ has finite first moment with respect to some exponentially growing gauge,

then µ has finite entropy.

Indeed Hypothesis (2) says exactly that µ has finite first moment with respect
to the gauge (Gh0

n )n≥1, where h0 is the identity matrix, and Lemma 5.1 assures in
particular that Gh0 has exponential growth.

6. Proof of Proposition 2.3

We start by some preliminary estimates. Remember that if q ∈ Q∗, then

〈q〉 =
∑

p∈P

| ln |q|p|.

Remember also the definition of φp from (1). We have

Lemma 6.1. For i ≤ d, and n ≥ 1, let qi
n =

∏
p∈P p

−
[
n

φp(i)

ln p

]
, where for x ∈ R, [x]

denotes the integer part of x if x ≥ 0, and the opposite of the integer part of −x
otherwise. Then

〈(xn)−1
i,i qi

n〉

n
→ 0, in L1.

Proof. For p ∈ P , the ergodic theorem implies that

ln |(xn)−1
i,i qi

n|p

n
=

−
∑n

k=1 ln |(gk)i,i|p + ln p
[
n

φp

ln p

]

n
→ 0

in L1. Thus by the dominated convergence theorem, the sequence

E

[
〈(xn)−1

i,i qi
n〉

n

]
=

∑

p∈P

E
[
| ln |(xn)−1

i,i qi
n|p|

]

n

converges to zero because each term of the infinite sum converges to zero and is
dominated by E [| ln |ai,i|p|] + |φp| whose series is convergent by (2). �

Let now P be some finite subset of P∗ and let qn = diag(q1
n, . . . , qd

n). We set

πP
n :

∏
p∈P∗ Bp −→ H

(zp)p∈P∗ 7→ z qn,

where for i < j, zi,j ∈ A is defined by

z
p
i,j =

{
zp

i,j if p ∈ P,

0 otherwise.

We set also ZP := (Zp)p∈P ∈
∏

p∈P Bp. The main result of this section is the
following proposition.

Lemma 6.2. Let P be some finite subset of P∗ containing ∞. For p ∈ P∗, let

Kp =
∑

r≤s

∫
A(Q)

| ln |ar,s|p| dµ(a). Let ǫ > 0 be some constant. Then there exists

a constant C > 0, such that

P


 ||x−1

n πP
n (ZP )||

n
≤ ǫ + C

∑

p/∈P

Kp


 → 1.
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Proof. Assume that

xn = unδn ∀n ≥ 1,

with un ∈ U and δn ∈ ∆. We have

||x−1
n πP

n (ZP )|| = 〈δ−1
n qn〉 + 〈x−1

n πP
n (ZP )q−1

n δn〉
+.

First we know by Lemma 6.1 that 〈δ−1
n qn〉/n converges to 0 in L1. So it converges

also to 0 in probability. Next

〈x−1
n πP

n (ZP )q−1
n δn〉

+ =
∑

p∈P

〈x−1
n Zpδn〉

+
p +

∑

p/∈P

〈x−1
n δn〉

+
p .

first step: the sum over p /∈ P .

For i ≤ j and N ≥ 1 we have

(x−1
N+1)i,j

(x−1
N+1)i,i

=
(x−1

N )i,j

(x−1
N )i,i

+

j∑

k=i+1

(x−1
N )k,j

(x−1
N+1)i,i

(g−1
N+1)i,k

︸ ︷︷ ︸
:=rN

.

By the ultra-metric property we get

ln+ |(x−1
N+1)i,j |p ≤ | ln |(x−1

N+1)i,i|p| + max
1≤n≤N

ln+ |rn|p.(9)

For n ≥ 1, we set cn = maxr,s |(g
−1
n+1)r,s|p. Observe that for some constant C1 > 0,

E[| ln cn|] ≤ C1Kp. By (9), we have

max
1≤n≤N+1

ln+ |(x−1
n )i,j |p ≤ 2

N∑

n=1

(| ln |(g−1
n+1)i,i|p| + | ln cn|)(10)

+ max
i+1≤k≤j

max
1≤n≤N

ln+ |(x−1
n )k,j |p.

Now by an elementary induction on (j − k) ∈ [0, . . . , j − i] (with j fixed), we get
from (10)

∀N ≥ 1
1

N
E
[

max
1≤n≤N+1

ln+ |(x−1
n )i,j |p

]
≤ CKp,(11)

for some constant C > 0. Let now

αp
n :=

1

n
ln+ |(x−1

n )i,j |p.

Again from (10) we get by induction on j − k that a.s. for all p /∈ P , (αp
n −CKp)

+

tends to 0, when n → +∞. By (11) and Lebesgue theorem, we have even that∑
p(α

p
n − CKp)

+ converges to 0 in L1. So for some constant C′ > 0,

P
[ 1

n

∑

p/∈P

〈x−1
n δn〉

+
p ≤ C′

∑

p/∈P

Kp

]
→ 1.(12)

Second step: the sum over p ∈ P .

We will show now that for all i ≤ j and all p ∈ P ,
∣∣∣∣
(x−1

n Zp)i,j

(x−1
n )j,j

∣∣∣∣
p

≤ enǫ
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for n large enough. Together with (12) this will conclude the proof of the proposi-
tion. Without loss of generality we can always suppose that i = 1 and j = d. For
n ≥ 1, and l ≥ 1, we have

(x−1
n Zp)l,d

(x−1
n )d,d

=

d∑

k=l

(x−1
n )l,k

(x−1
n )d,d

Zp
k,d := ul

n

Using that xnx−1
n = Id, we get by an elementary induction on l that, for l ≥ 1,

ul
n =

(xn)d,d

(xn)l,l
Zp

l,d −

d∑

k=l+1

(xn)l,k

(xn)l,l
uk

n.(13)

Now for l < k let A(l, k) := ((xn)i,j)l≤i<k,l<j≤k . Next we will need the elementary
formula

detA(l, k)
∏k

l′=l+1(xn)l′,l′
=

k∑

l′=l+1

(−1)l′−l+1 (xn)l,l′

(xn)l′,l′

detA(l′, k)
∏k

l′′=l′+1(xn)l′′,l′′
,(14)

where by convention A(k, k) = (1). We denote also for l < k1 < k, by A(l, k̂1, k)
the matrix A(l, k), where the kth

1 line and the (k1 − 1)th column are omitted. With

evident notation we define analogously A(l, k̂1, . . . , k̂r, k) for l < k1 < · · · kr < k.
For any l < d we set I l

d := {l} ∪ (J − {d}), J l
d := {j ∈ J/ j 6= l} and

Sl
n :=

ǫp
l∏

j∈J (xn)j,j
det

(
((xn)i,j)(i,j)∈Il

d
×Jl

d

)
,

where ǫp
l = (−1)Card{l<i<d|φp(i)≥φp(d)}. By convention we set also Sd

n = −1. We
will need the

Lemma 6.3. When l /∈ J ,

Zp
l,d = lim

n→∞
Sl

n.

We postpone the proof of this lemma to the appendix. Let {i1, . . . , is} = Jc and
for l ≥ 1, let kl = min{k ≤ s | ik ≥ l}. First we prove by induction on d − l ≥ 0,
that

ul
n = −1(l∈J)

(xn)d,d

(xn)l,l
Sl

n(15)

+

s∑

k=kl

(−1)ik−l
(xn)ik−l+1

d,d detA(l, ik)

(xn)l,l · · · (xn)ik,ik

(Zp
ik,d − Sik

n ),

where we recall our convention A(l, ikl
) = (1) if ikl

= l (i.e. if l /∈ J). In fact the
result is trivial for l = d. Now we suppose that it is true for l strictly greater than
some l0. Then Formula (15) for l0 is a direct consequence of (13) and (14), which
proves the induction step. Next we prove also by induction on d − l ≥ 0, that

ul
n =

(xn)d,d

(xn)l,l
(Zp

l,d − Sl
n)(16)

+

s∑

k=kl

(−1)ik−l detA(l, îkl
, . . . , îk−1, ik)

(xn)l,l · · · (x̂n)ikl
,ikl

· · · (x̂n)ik−1,ik−1
· · · (xn)ik−1,ik−1

uik
n ,
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where the notation x̂ means that x is omitted in the list. Formula (16) is true for
l = d. So we suppose that it is true for l strictly greater than some l0. Then observe
that for any l < k′ < k,

detA(l, k) = detA(l, k′) detA(k′, k) + (−1)k′−l(xn)k′,k′ detA(l, k̂′, k).

Injecting this in (15) and using the induction hypothesis we get (16) for l0, and we
can conclude by the induction principle. Eventually we prove again by induction
on d − l ≥ 0, that |ul

n|p ≤ enǫ for n large enough. We suppose that it is true for

l strictly greater than some l0. For any l and any k > kl, detA(l, . . . , îk−1, ik) is
equal to the component on el · · · ∧ êik−1

· · · ∧ eik−1 of (ae2 · · · ∧ âeik−1
· · · ∧ aeik

).
Therefore as in the proof of Lemma 4.1, we see that

∣∣∣ detA(l, îkl
, . . . , îk−1, ik)

(xn)l,l · · · (x̂n)ikl
,ikl

· · · (x̂n)ik−1,ik−1
· · · (xn)ik−1,ik−1

∣∣∣
p
≤ enǫ,

for n large enough. Moreover if l0 ∈ J , in which case Zp
l0,d = 0, we have also by

the same argument |
(xn)d,d

(xn)l0,l0
Sl0

n |p ≤ enǫ for n large enough. Then we immediately

prove the result for l0, by using the induction hypothesis and Formula (16). This
finishes the proof of the lemma. �

We are now ready for the

Proof of Proposition 2.3: Let P be some finite subset of P∗ containing ∞.
For z ∈

∏
p∈P∗ Bp, let zP be its natural projection on

∏
p∈P Bp. Let K =

ǫ + C
∑

p/∈P Kp, where ǫ, C and Kp are as in Lemma 6.2. Then by Lemma 6.2

(remember also (8))

P
[
xn ∈ G

πP
n (ZP

∞
)

nK

]
=

∫

B

Pz
n

[
G

πP
n (zP )

nK

]
dν(z) → 1.(17)

Remember that hz denotes the Pz-almost sure limit of − lnPz
n(xn)/n. Consider the

set
An = {g ∈ A(Q) | −hz − ǫ < ln Pz

n(g)/n < −hz + ǫ}.

Then

Pz
n(An ∩ G

πP
n (zP )

nK ) ≤ en(ǫ−h)Card
(
G

πn(zP )
nK

)
≤ en(ǫ−hz)eC′nK ,

where C′ is the parameter of the exponential growth of the gauges (Gg)g∈H . Thus
we must have C′K − hz + ǫ ≥ 0 for ν-almost all z ∈ B. Otherwise this would
contradict (17). Since ǫ was arbitrarily chosen, we get

hz ≤ C′C
∑

p/∈P

Kp.

Letting now P grow to P , we obtain hz = 0, which concludes the proof of the
proposition. �

7. The case of a number field

In this section K denotes a number field, i.e. a finite extension of Q. We refer
to [16] [17] [19] for the general theory. Let O be the ring of integers of K. The
main difference with the rational case is that except for Q or imaginary quadratic
extensions of Q, the set O∗ of units (the invertible elements of O) of K is infinite.
So we have to be careful when defining the gauges, to keep them with uniform
exponential growth. Namely we have to define 〈k〉 for k ∈ K, in a suitable way.
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More precisely, let P be the set of prime ideals of O, and for p ∈ P let vp be the
associated discrete valuation. Let Np = Card(O/p). Following a usual convention
(see e.g. [12]), we define the norm associated to p by

|k|p := N
−vp(k)
p ,

for all k ∈ K∗. Let N be the norm function on O. If k = x−1y with x, y ∈ O such
that (x) ∧ (y) = 1, then

∑

p∈P

| ln |k|p| = ln |N(x)| + ln |N(y)|.

Remember that the norm of any unit is equal to ±1. Thus with the previous
notation we can not define 〈k〉 as the sum ln |N(x)| + ln |N(y)| like in the rational
case. Otherwise the associated gauges would have an infinite cardinality. So we
have to add a term corresponding to archimedean norms. Remember that V∞

denotes the set of norms extending the usual absolute value | · | on Q. If v ∈ V∞

we will write (with a slight abuse of notation) v” = ”| · |v and we define the norm
| · |v := | · |ǫv

v on K, where ǫv = 1 if Kv = R whereas ǫv = 2 if Kv = C. Then we
have the product formula (see [12])

∏

p∈P

|k|p ×
∏

v∈V∞

|k|v = 1,

for all k ∈ K∗, which implies by the way the identity
∑

p∈P

φp +
∑

v∈V∞

φv = 0.(18)

Now we fix some archimedean norm | · |v0 and we define

〈k〉 :=
∑

p∈P

| ln |k|p| +
∑

v 6=v0

| ln |k|v|.

In this way the set of k ∈ K∗ such that 〈k〉 ≤ C has a cardinality bounded by
const · econst·C , where the constants are independent of C. Then we can define the
height function on the adele ring and the associated gauges, in the same way as in
the rational case. Now the only other change in the proof is the definition of the
qi
n (see section 6). Remember that the set of units is isomorphic to Zr1+r2−1 × G,

where G is cyclic, r1 is the number of embedding of K in R and 2r2 the number of
embedding in C. We set

qi
n =

∏

p∈P

p−[
nφp(i)

ln p
]

∏

v 6=v0

u−[nαv]
v ,

where in the first product, for each p the prime number p is such that vp extends
vp on Q∗, and in the second product the uv ∈ O∗ and the αv ∈ R are chosen as
follows. For (uv)v 6=v0 take any basis of Zr1+r2−1 (seen as a subset of O∗). Then
the matrix (ln ||uv||w)v,w 6=v0 is invertible (see the proof of Theorem 1 p.72 in [16]).
So one can choose (αv)v 6=v0 such that

∑

v 6=v0

αv ln ||uv||w =
∑

v 6=w

φv(i),

for all w 6= v0. Thus with (18) one can check that the analogue of Lemma 6.1 holds.
The other parts of the proof are unchanged. We leave the details to the reader.
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8. Appendix

Proof of Lemma 6.3: Let l /∈ J . Let i1 < · · · < ir be the elements of I l
d. Assume

that ei1 ∧ · · · eir
is the kth element of the basis Br (with the notation of section 4).

First by definition of Zp, we can see that Zp
l,d = ǫp

l Z
p
k(d). Next we have seen in the

proof of Lemma 4.1 that Zp
k(d) = limn→∞(x′

n)k,m. We will show in fact directly
that for any a ∈ A(Q),

a
(r)
k,m = det

(
(ai,j)(i,j)∈Il

d
×J︸ ︷︷ ︸

:=M(l)

)
.

Naturally it will imply the lemma. We prove the result by induction on h =

d − l. If h = 1, i.e. l = d − 1, then I l
d = {j1, . . . , jr−1, d − 1}, and a

(r)
k,m =

aj1,j1 . . . ajr−1,jr−1ad−1,d. Then the result is immediate. We prove now the induction
step from h to h + 1. We suppose that js−1 < l < js for some s (if s = 1 we have

just l < js). The coefficient a
(r)
k,m is equal to the component on ej1 · · · ∧el · · · ∧ejr−1

of (aej1 ∧ · · · ∧ aejr
). This component is equal to the sum over k ∈ [s, . . . , r],

of the components of (
∏

j<l aj,j)(ej1 · · · ∧ aejs
· · · ∧ al,jk

el · · · ∧ âejk
· · · ∧ aejr

) on

ej1 · · · ∧ ejk
· · · ∧ ejr−1 . But by the induction hypothesis, for each k ∈ [s, . . . , r], the

corresponding component is equal to al,jk
times the cofactor of al,jk

in the matrix
M(l). This gives exactly the formula of the determinant of M(l). Therefore the
proof of the lemma is finished. �
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