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Backscattering enhancement of an electromagnetic wave scattered
by two-dimensional rough layers
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Y Thales Optronique, BP 55, 78233 Guyancourt Cedex, France.
2Centre de Physique Théorique, CNRS-Luminy Case 907, 18288 Marseille Cedex 9, France.

(Dated: December 2000)

The problem of an electromagnetic wave scattering by a slab with two rough bound-
aries is solved by a small-perturbation method under the Rayleigh hypothesis. In
order to obtain a perturbative development, we use a systematic procedure which
involves integral equations called the reduced Rayleigh equations. Then we will show
for a dielectric slab deposited on a silver film that the backscattering enhancement
can be produced by guided waves which interact with the two rough surfaces.

I. INTRODUCTION

Scattering of electromagnetic waves from multilayer structures is a phenomenon which is of interest in
many area of physics such as remote sensing or optical industry, where for example metallic surfaces have
a dielectric coaﬁng. An extended review of experimental and_theoretical Woﬁﬁ optical multilayers
can be found inH, and references on recent papers are given inE. Many worksk E(Endeal with the small
perturbation method to investigate the behaviour of multilayer structure. However, due to calculations
complexity, the analytical results are given only to first order in the rms-height of each rough boundary,
thus the interaction between the rough surfaces can only be taken into account if the rough surfaces are
correlatedd in the mean procedure. Our purpose is to show how light can interact with several rough
surfaces, to this end, we have choosen the most simple system depicted in Fig. , where we have three
regions with different permitivities separated by two rough surfaces. The calculations j ve been made
under the hypothesis of the small perturbation method, initially developped by Rice’fl. Due to the
great complexity to derive high orders of the perturbative development, Rice’s original method is rather
difficult to apply. One way to overcome these difficulties is Eo use integral equations called the reduce
Rayleigh equations, they were first obtained by Celli et aH, and later have been generalized in Ref.
to take into account upward fields in the slab medium. When combining these equations we obtain an
integral equation where only the scattering matrix of the whole structure has to be determined, next
we have developed a systematic method to calculate the perturbative development. We have shown by
means of numerical simulations, how different mechﬁﬁﬁﬁsponsible of the enhanced backscattering
occur. This phenomenon which has been predictedt=E3E3Ed and observedtd in the case of a random
metal surface, manifests itself as a well-defined peak in the retroreflection direction through the angular
dependence of the intensity related to the diffuse component of the scattered field. For a metallic surface,
the phenomenon is produced by the interference of waves which excite surface plasmon polariton along
a certain path and then follow the Sﬁie path but in the reverse direction. For a dielectric bounded by
metallic plate with one rough surfacet, the enhanced backscattering is produced by a similar mechanism
where the surface plasmon polariton is replaced by a slab guided wave. In this case the incident wave
excites in a first time a guided mode due to surface roughness, and then the roughness transforms
the surface Vﬁﬁ into a bulk wave. Furthermore, if the slab supports several guided modes, recent
investigationsthtd have shown the presence of additionnal peaks, called satellite peaks, in the angular
distribution of the incoherent intensity. When the slab has two rough boundaries, the enhancement of
backscattering can be produced by two kinds of interaction. The classic one, where the wave is scattered
two times by the same boundary, and a new one (see Fig. EI) where the wave is transmitted at a point A
of the surface without being diffused, then the wave is scattered by the second rough surface at a point
B and by the first one in C. If the wave follows the same path in the reverse direction and excites the
same guided mode, then phase difference between the two path is A¢p = rpc - (k + k;), where rpo is
the distance between B and C. Thus, in the anti-specular direction (k = —k;), this phase difference is
independent of the random position of B and C' which produce the backscattering peak.

The outline of the paper is as follows. In Section @ we present the system under study and a description
of the rough surfaces statistics. In Section we define the plane wave representation of the electric
field in the polarization basis and also the scattering matrix. Section @ is devoted to the calculation of
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the incoherent cross-section as a function of the perturbative development. In Section M we derive an
integral equation from the reduced Rayleigh equations, which provides a systematic way to obtain the
perturbative development. The resulting expressions are numerically computed in the case of a dielectric
slab deposited on a rough silver surface in Section E The calculated incoherent intensity will show
a narrow enhanced backscattering. Conclusions drawn from our results are presented and discussed in
Section . In an Appendix, we collect matrices used in the calculations.

II. THE RANDOM SURFACE

The system which is considered in this paper is depicted in Fig. E

The three regions are characterized by an isotropic, homogeous dielectric constant €y, €; and € respec-
tively. The two boundaries are located at z = hy(x) and z = —H + ha(x), = (x,y), and these three
media are separated by rough surfaces described statistically. In fact, we assume that hi(x) and ha(x)
are stationary, isotropic uncorrelated Gaussian random processes defined by their moments :

< hi(m) > =0, (1)
< hi(x) hi(z') > = W;(x — '), (2)
< hy (ilt) hg(wl) >=0 (3)

where ¢ = 1,2, and the angle brackets denote an average over the ensemble of realizations of the function
hi(x) and ha(x). In this work we will use a Gaussian form for the surface-height correlation function
Wi (x) and Wa(x):

Wi(x) = 02 exp(—x?/1?), (4)

where o, is the rms height of the surface h;(x), and I; is the transverse correlation length. In momentum
space we have:

< hi(p) >=0, (5)
< hi(p) hi(p") > = (2m)*d(p + ') Wi(p) , (6)
< hi(p) ha(p’) > = 0. (7)
with
Wi(p) = / d?z Wi(x) exp(—ip - x) (8)
=mal I exp(—p° I /4). 9)

IIT. THE SCATTERING MATRIX

We suppose that the slab is illuminated from the media 0 by an electromagnetic wave of pulsation w.
In the following we will omit the time dependence exp(—iwt). The field E? in the media 0 can be written
as a superposition of an incident and scattered fields :

d?p

E°(z, 2) = E'(p,) exp(ip, - © — iao(py) 2) + / WES(JD) exp(ip -  +iag(p) 2) - (10)

where
ao(p) = (e0 K2 — p?)* (11)
Ei(po) = E%/ (Po) é?/_ (Po) + E;I(Po) én(py) (12)

E*(p) = Ey,(p) &V (p) + Ej(p) én(p). (13)



The subscript H refers to the horizontal polarization (T'E) and V to the vertical polarization (T M), and
are defined by the two vectors:

en(p) =€. xp, (14)

- VeKeT ek

where the minus sign refers to incident wave and the plus sign to the scattered wave. It has to be noticed
that the vector E*(p) and E'(p,) are expressed in different basis due the fact that &% (p) and &3 (p)
depend on p. In medium 1, we have a similar expression namely:

') = [ B et — o))+ [ GEE @)enp o io@):). (9
where
a1(p) =(e1 K3 - p*)% . (17)

The field E'~ is decomposed in the basis (&}, (p), éx(p)), and E'" in the basis (&} (p), éx(p)) with

éH(p):ézxf)v (18)
A1+ a(p) . lpll .
e =+ — e, . 19
v (p) Jake? Ve (19)
We now introduce the definition the scattering matrix :
E*(p) = R(plpy) - E'(py) , (20)

where R(p|p,) is a two dimensional matrix which can be written in the following form:

B _ (Rvv(plpy) Rvu(plpo)
Rplpo) = (Rg(plpg) Rg(?lﬁﬂ)) '

IV. DIFFUSE CROSS-SECTION

In a previous workH we have defined a new product ® between two dimensional matrices in the form :

F o= fvv fve gvv 9gvH
= 21
Fog (fHV Jau © 9gHV YHH (21)
fvvayy vHIVH Re(fvvayy) —Im(fvvgyy)
v iy THE Re(favaiim) —Im(favgyy)

2Re(fvvagy) 2Re(fvugiym) Re(fvvgyy + faveyvn) —Im(fvvaym — fvadiy)
2Im(fvvaiy) 2Im(fvagig) Im(fvveyy + favevw) Re(fvvdim — fvaghy)

which allows to write the incoherent Muller matrix@ in a condensed expression:

——incoh KZcos?6 . — — — —

M plpo) = =5 55— [< R(pIPo) © R(plpo) > — < R(plpo) > © < Riplpo) >] . (22)
Furtherm@e, we define the generalization of the classical bistatic coeﬁicientﬂ also called mean differential
coefficienttd by

—inco _ ———incoh
7 (plpo) = (plPo) (23)

A cos

where A is the area of the illuminated surface and 6y the incident angle (see Fig. E) In this paper we are
interested by the perturbative development of the scattered fields as a function of the surface elevations



hy and ho. In a perturbative expansion of the scattering matrix, the terms which contain an expression
like A h5* will be denoted R(nm), so that the perturbative development of R becomes:

(00) (10) (20) (21) (30) (03)

BE=R"“”+R"V+R"V+ RV +R* 4R+ R+ R R+ R + ... ()
With this decomposition and using Egs. (,E) with the fact that h; and hy are Gaussian random processes

i.e.

< h%pﬂ(w) > =0, pa positive integer (25)
< 2P (z) > =0 (26)

the incoherent bistatic matrix will be given by the contribution of three terms:

M (plpo) = Fu " (plpPo) + 73" (PIPo) + Vit " (PID0) » (27)
where
, K2 cos?6 —(10) _ —(10) —(20) _ ==(20) —(30) _ =(10)
—incoh 0
__focos¥ To/U9 R R oRr R oRr ] (28
7 (plpo) A (2m)? cos by [< © > < © >+< © = (28)

corresponds to the incoherent bistatic matrix for the slab where only the upper surface has a roughness
(ha2(x) = 0), and its expansion is made up to order four in the rms-height elevation oy. Similarly,

01) 03)

—incoh

K2 cos?0
Fi " (plpo) = 45

502) _ 55(02) -
_—— R R R
212 cosfo >+ < ® >+ <

[< R o R >R >} . (29)

is associated to a system where only the bottom surface is rough (hi(x) = 0), where also the perturbative

development is made up to order four in oy. The last term 7" contains terms which describe the

scattering process between the two rough surfaces where only the leading terms are retained:

. KZcos? 6 —(10) _ —(12) —(12) _ =5(10)
—incoh 0
= J R R R R
i " P1Po) = T ot < © >+ < © ~
+<BYoR™ > 4 <BR® R >
+<R(11)®R(11)>+...} , (30)

More precisely all terms up of order 0% 03 are included. If the value of o1 and o3 are of the same order
of magnitude, these terms will be comparable to the order four in the expressions @,@) Thus we can
suppose that the following terms in the expansion (), which are of order of 03, 0% 03, o7 o5 will be
negligible compared to those retained in Eq. (B0)). However, due to the complexity of the perturbative
development, these terms of the sixth order have not been calculated. In the following section, we will

show how the perturbative development can be put in the following form:

—(10)

X

(plpo) = a0 (py) X

—(01 (01
R )(P|p0):040(P0)X( )

—(11) d%p; [==(11)12
R (plpy) = ao(py) / ! [X (p|P11Po) hi(p — 1) ha(p — Py)

2n)?
+ X" (plpy[po) ha(p — p1) ha(p — )] (33)
2 P12
R™ (plpy) = ao(py) / (de)lQ X (plpy|po) hi(p — py) M (Py — o). (34)
2
R (pIpo) = ao(py) / é:) X (plpy[po) ha(p — 1) ha(py — o). (35)



d?p; d?py [==(21)112
L [X (pIP1|P2lPo) P (p — P1) ha(py — Pa) ha(Py — Do)

—(21
R )(plpo) = ap(py)

—
—
o

3
e
o
3

—(21)121
+ X (pIp1|P2|Po) hi(p — P1) ha(Py — Pa) hi(P2 — o)

—(21)211
+X (p|P1|P2|Po) P2(P — P1) h1(Py — P2) hai(P2 — Po)} ;

(36)

d?p, d%py [—(12)221
T — [X (pIP1|P2|Po) ha(p — P1) ha(Py — Pa) h1(Py — Do)

—(12)212

—(12
R )(plpo) = ap(py)

—
—
o

3
e
o
3

+ X (PIP1|P2|Po) h2(p — P1) ha(Py — Pa) ha2(P2 — Do)

—(12)122
+X (p|P1|P2|Po) 1 (P — P1) h2(Py — P2) ha(p2 — Po)} ;

(37)

30 d2 d 30
R )(plpo ) = ao(pg) // pl p2 x' )(plpllpzlpo)hl(p—pl)hl(pl—pz)hl(pQ—po), (38)

03 d2 d 03
R )(plpo ) = ao(py) // pl p2 x' )(plpllpzlpo)hz(p—pl)hz(pl—pz)hz(pz—po)- (39)

In these expressions we have added superscripts in some terms to indicate the order of apparition of

the functions hy and hy. For example, in 7(21)121 the superscript 121 indicates that it is the coefficient
associated with the product hy(p—p;) ha(p; —p3) h1(py—py). When we combine Eq. (), §(0) = A/(27)?
and the previous development, we obtain the following expression for the quantities ( :

incoh (plp,) — W T(loflo)(plpo)+T(20720)(p|p0)+T(30710)(p|p0): , (40)

T ) = S L [FO ) T i)+ TV plpg] )

6 (plpy) = W _7(12_10)( Ip 0)+I(11 11)( Ip 0)+I(21 01)(p|p0): , (42)

where

7 (plpy) = Wi(p — po) X" (plpe) © X" (pIpy) (43)
720720 (p|py) = /(d;Tp)é Wi(p — p)Wi(py —Po)f(m) (plpy|Po)

o [X* i lpo) + X wlp + po — palp0)| (44)

777 (plpg) = Wi (p — py) [X( " lpo) © X (plpo) + X (plpy) © X (p|p0)} ()

1 (plpy) = Walp — po) X" (plpe) © X" (plpy) (46)
7(02-02) (plpy) = / (d;f)l? Wa(p — py)Wa(p, —PO)Y(OQ) (plpy|Po)

® [7(02)(1)@1 o) + X (plp +py — 1y |p0)} 7

7" (plpg) = Wa(p — py) [X( Y plpo) © X (plpg) + X (plp) © X (p|p0)} )



—(12—10 —(12 —(10 —(10 —(12
s '(plpo) = Wi (p — po) [X( '(plpy) © X (plpy) + X (plpy) © X' )(P|Po)} : (49)

17" (plpy) = Wa(p — py) [X " plpe) © X (plpo) + X (plpo) GY(m(plpo)} , (50)

—(11—11) d%p —(11)12
I (PIpo) :/ﬁ [Wl(p —p1) Wa(p; —po) X (plp1|Po)

(11 (11

0] (7 “(plp1lpo) + X (plp + Py — P) |P0))
—(11)21
+ Wa(p — py) Wi(p; — po) X (plP1lP0)
—(11)21 —(11)12
© (X (plp1lpy) + X (Plp + Do — Py |P0))} (51)

with

——(30) d2p —(30)
X" (plpy) = / (%)12 [Wl (P —po) X (PlPo|P11P0)
f(w) f(:)’o)
+Wi(p —py) ( (Plp1lPy — P + P1|Po) + (plpi1lPIPO))| (52)

——(03) d2p —(03)
X" (plpy) = / (%)12 [Wz(pl—po)X (p[Po|p:|Po)

—(03 —(03
+Wa(p — py) (X (plp, |po — P + P1lPo) + X" (plp, Iplpo))} ; (53)

—(12) d?p (12)221 —(12)212
X (P|P0):/(27T)12 [Wz P —pp) ( (plp1lpIPy) + X (plpllpo—erpllpo))

(12)122

+Wa(py — p0) X (pIpolpylpo)] (54)

—(21) d%p —(21)112 —(21)121
X (P|P0):/(27T)12 [Wl P —pp) (X (plp1lpIPy) + X (plpllpo—erpllpo))

—(21)211
+Wi(py — po) X (plPolP1 |Po)} ; (55)

V. PERTURBATIVE DEVELOPMENT AND REDUCED RAYLEIGH EQUATIONS

In order to obtain the development @) for the scattering matrix, a Hractical method is provided by
the use of the reduced Rayleigh equations first obtained by Brown et alH for a single rough surface, and
then extended inH for a more general system. These equations are exact, under the Rayleigh hypothesis,
and their main advantages are that one of the electric fields E*, E*, E'~, E'" (see Fig. E) of the problem
has been eliminated. These equations are derived by taking linear combinations of the electromagnetic
boundaries conditions at the first surface hq, where the Fourier transform of the fields has been introduced.
In particular, we obtain the two following equations (see Eqs.(99-100) inH):

2 (60 61)% (651 (’LL)

/(d M, (ulp) - R(plpo) - B'(po) + My, (ulpy) - E'(py) = E (), (56)

271') (51 - 60)
2 , — 1_o0— . coer)? o (u
/ (;75 M), (ulp) - Riplpo) - B'(py) + M), <u|po>-E1<po>=—wE“<u% (57)
where
T ) = e ety ) ™
with

Mlb’oa(u|p) _ <||u||||p|1| +abag(u) ap(p) - p — beé Koaq(u) (4 x ﬁ)z) : (59)

aei Koao(p) (@ x ). (c0€r)2 Kga-p



and
I{alp) = /d2cc exp(—ip - © — ia hi(x)), (60)

the symbols a = + and b = + in Eqgs. ( E—@ ) represent a given choice linked to the ﬁeld propagation.
In order to obtain a single equation for R(p|p,), we have to find a relation between E'~ and E'*. To
this end we already know an expression of the scattering matrix for a single rough surface separating two

homogenous media of permittivity €; and €5, which is translated along the z- ax1s to the height z = —H,
and illuminated by a plane wave E*~(p). This scattering matrix denoted R561 ., 18 given by:

—H . —

R, ,(PIPo) = exp(i(c1(p) + a1(py)) H) Rs 1 > (PIPo) (61)
where Ry, «,(P|py) can be found in Refs.HE’ . The phase term in Eq. (EI) comes from the translation
z = —H of the rough surface ho(x) (see Refs.ltl). Thus we have the following relation:

1+ d U1 —=H 1—
E7(u) = [ o5 R, o (uur) - BT (w1). (62)
(2m)? 1ez

Now combining Eq. (fJ) with Egs. (F6-F7), we obtain an integral equation where R(p|p,) is the only
unknown:

d2p _1+ 0+ u1 Oél —H —1—,0+ _
/(27r)2 [ (ulp) / R“hfz(uml)'Mh (u1lp) | - R(p|po) =

[MllerO (ulpy) + / 1 041( )Rihéz(uml).ﬁiﬂo(u|p0):|. (63)

Expanding I(a|p) in Eq. (Bd) in power of h;:

2 )
« 9 Q0
5 ) - 57

I(alp) = (2m)* 8(p) — iahi” (p) — i

W)= [ expl(-ip ) (@), (65)

W)+, (64)

and using the perturbative developmentﬂ of R in power of hs:

S €1,€2

—H —H(0) H(1)
Rsel 52(p|p0) (27T) 6(p _pO) Xsel,EQ(pO) +Oéo(p0) Xsel €2(p|p0) h2(p pO)

d’py )
+oolpo) [ G2 XL Wl lp) ha(p = p)a(s o)

d%p d Py < H ()
+ao(po) // L 2 X e o, (PIP11P2|Po) h2(p — P1)h2(Py — Po)h2(Py — Do) ,

(66)

we finally obtain the expansions @,@— ). The expression for the scattering matrix when only one
rough surface is involved was given in RefH, here a small change have been made in the notations:

—(n0) —(n)

R (plpy) = R, (plpo), (67)
(On) —(n)

R (plpy) = Ry (pIpo) (68)



n being an integer ranging from 0 to 3. For the others coefficients we have :

——(11)21 —10 —(0) —H(1) J—— —(10) =+
X (p|p1|p0) =T (p)-U (P)'Xsel 52(p|P1) _€'D10(P1)'X (P1|P0)+ZS (P1|P0)} )
(69)
—(11)12 .=+ —(01)
X (plp1lPo) =1 P (plp1) - X " (P1lP0) (70)
—(21)112 J— —(11)12
X (p|p1|p2lPy) =1 P (plpy) - X (P1|P2|Po)
1 — —~(01)
+5 [oq(p) (plpy) — ao(py) P (P|P2)] - X" (palpo) (71)
—(21)121 JE— —(11)21
X (p|p1|p2lPy) =1 P (plpy) - X (P1P2lPo) 5 (72)
—(21)211 —10 —(0) —H(1) J—— —(20)
X (p|p1|P2lPo) =T (p) - U ' (p) - X, ., (PIP1) [—e-Dw(pl)-X (P11P2|Po)
(e —e€o) Y —(10)
2 (€0 61)1/2 (P1lp2) - X (P2|pPo)
1
5 (005 Gilp) + o) 3 ()| (73)
—(12)122 .5+ +-(02)
X (PIP1lP2|Py) =1 P (plpy) - X (P1lP2lP0) 5 (74)
—(12)212 =10 —(0) —H(1) - —(11)12
X (p|p1|P2lPo) =T (p) - U ' (p) - Xc, e, (PIP1) - [—e-Dlo(pl)-X (P11P2lPo)
i(e1 — €0) =—=1—,0+ —(01)
— 10/2 (P1lp2) - X (Palpo) | (75)
2 (eo€1)
—=(12)221 —10 — —H(1) —_— —(11)21
X (pIp1lP2|Po) =T (P) - T ( ) - [ X e .e(PIP1) € Dyp(py) - X (p1|P2|Po)
—(10) gt
+X551 52 P|P1|P2 ( €- D10 P2 - X (P2|P0)+1S (P2|P0))]a (76)
(77)
where the matrices T(lo) ﬁ(o) ?i ﬁfo, f(lo), f(%) f(m) f(m), Xiflé)y Yig 22 are respec-

tively defined by Eqs.(71),(87),(114,115),(57),(104,105),(96,97),(60,61) in RefE and €, S* are given in
Appendix @

VI. NUMERICAL RESULTS

As an application of the previous formalism we consider a system made of a air-dielectric film whose
dielectric constant is €3 = 2.6896 + 7 0.0075(ep = 1), deposited on silver surface with ez = —18.3 4 ¢ 0.55.
The vacuum-dielectric interface is a two-dimensionnal rough surface, whose parameters are o1 = 15nm
and l; = 100 nm. The dielectric-silver boundary is also rough and defined by oo = 5nm and lo = 100 nm.
The incident wave has an arbitrary polarization and his wavelength is A = 632. 8@1 With this set of

parameters, the conditions of validity of the small-perturbation theory are satisfieded namely:
e 1/2 o1 e 1/2 -
27 ™ 7 <1, 2 . 7 <1 (78)
f <1, E < 1. (79)

The thickness of the film is H = 500 nm and support two-guided wave polaritons for the (T'E) polariza-
tions at phy = 1. 5534 Ko, and p2, = 1. 2727 Ky, and three guided-modes for the (T'M) polarizations at
pras = 1.7752 Ko, p2.,; = 1.4577 K and p3.,; = 1.034 Ky. We have computed the incoherent bistatic co-
efficient 4" (p|p,), where the integrals involved in Eqs. (447,51, F35]) are evaluated using Legendre
quadrature. The results are shown in Figs. (E»ﬂ) where the incoherent bistatic coeflicient is drawn as of
function of the scattering angle 6 for two different angles of incidence and the incident wave is linearly
polarized. In Fig. E, the wave is normally incident and the scattered field is observed in the incident plane
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(¢ = 0°). The single scattering contribution on each surface, associated with the terms T(loilo) +T(01701),
—20) n —(02-02) n —(11-11)

is plotted as a dotted line, the double-scattering contribution 7(20 as a dashed

I I
line, the other terms 7(30_10) +T(03_01) + 7(12_10) + 7(21_01) as a dash-dotted line, and the total contri-

bution ™" by the solid curve. We observed an enhancement of the backscattering which corresponds
to the physical process in which the incident light excites a guided-mode through the roughness of the
slab and then is scattered into a volume wave which is also due to the roughness effect. During the same
process,the light can follow this path in the opposite direction where one possible configuration is shown
in Fig. . These two paths can interfere constructively near the backscattering direction to produce a

peak. As these paths are identical for the two waves under consideration, they should have the same
degree of interaction with the rough surface, thus a term like T(30710) cannot produce the peak because
the first wave interact three times with the upper rough surface while the second wave only one time.
The effect comes only from the terms 7(20_20) + 7(02_02) + T(ll_ll), which contain the paths indicated

in Fig. . However, it has to be noticed that these terms contain also paths that do not produce en-
. . =(20—20 . .
hanced backscattering, for example in I ( ) we have the scattering process where the incident wave

is only scattered one time by the upper rough surface but the scattering process is of order two in h;.

This is the reason why the terms T(20720) + T(02702) + T(11711) are not zero away from the anti-specular

direction. In order to separate the different contributions to the backscattering peak, we have drawn the
contributions of 7(20_20), 7(02_02), 7(11_11) separately in Fig. E as a dashed-line, dotted-line and solid
curve respectively, we see that each term produces an enhancement near the anti-specular direction. The
F(20-20) §(02-02)

terms I are the classic one(see RefsHl4) where the fields do not interact with both rough

surfaces but produce the peak due to the scattering on the same rough surface: the upper one for 7(20_20)
and the bottom one for T(ozfoz)' The contribution T(Hill) is the new result of this work, because we
see that the mechanism of Fig. [If exists and has the same magnitude as the other terms for the choosen
parameters. In order to clearly show the displacement of the backscattering enhancement as the angle
of incidence is varied, we show in Figs. ﬂ and E the numerical results of the perturbation method WE

0o = 20°. As expected, we clearly see the peak which is now located at 8 = —20°. Recent papers @
have also explored the satellite peaks phenomenon which occurs when the wave follows two reverse paths

but with different guided-mode excitations. In Fig. ], this phenomenon appears for the (TM) to (T'M)
—(02-02)
I

polarization due to the term . Although a similar phenomenon occurs for the other terms it is

too weak to contribute significantly..

VII. CONCLUSION

In conclusion, the results in this paper clearly show that the backscattering enhancement produced by
a rough slab due to the guided-wave polaritons has several origin. At small order in the perturbative
development, the peak is produced by a double scattering mechanism. The new results we would like
to emphasize, is that not only processes where the two scattering events take place on the same rough
surface are capable to produce the backscattering peak, but it is also due to the fact that the wave can
be scattered first by one of the rough surface and second by the other surface. To carry the proof, we
have performed a perturbative development up to order four in the rms-height of the surfaces which has
been possible using an integral equation called reduced Rayleigh equation, in which only the scattering
matrix of the whole structure is unknown.
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APPENDIX A: SCATTERING MATRIX COEFFICIENTS

Here we collect the expression of the matrices not given inﬂz

S % <(eo 610)*1/2 (1)> (A1)
5" (plpo) = 2a0(;;)_(62061)1/2 [Ml_’0+(plpo)- ~7(00)(plpo)iﬁl_’o_(plpo)} : (A2)

After some calculations we obtain :

5" (plpy) = 7((2 ;)i%
y < 1211 1Pl 5 (o) + €0 1 (p) a1 (po) By (o) B+ By €/ Ko s (p) Fi (py) (b x m»)
—coe1”* Ko ai(pg) Fyy (Po) (b x o) (e €1)'/2 K3 Fyj (py) b+ Py
Do) (A3)
(€1 —€o)

g_(p|p0) :ao(po) (EO 61)1/2

1

10

11

12

13

14

—coon(py) |[pll llpoll Fyr (po)  —€5'* Ko a1 () 01(po) Fig (Po) (b % )=
—€1 al(P) O‘(2J(p0) F{J/r (Po) P-Dg

X
€1/* Ko a2(py) Fyf (po) (B % Bo):  —(eoe1)/? K3 ai(py) Fi7 (po) D - o
Do) " (A4)
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€2

FIG. 1: New mechanisms responsible of enhanced backscattering. The incident wave is transmitted in A
as perfect interface between the media 0 and 1, then the wave is scattered by the second rough surface
in B and by the first one in C'. But the wave can now follow this path the other way round. The phase
difference between these two waves is zero in the anti-specular direction which produces the peak.
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z=—H + hy(x) €9

FIG. 2: A rough surface with an incident wave coming from the medium 0 and scattered by a slab with
two rough surfaces.
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FIG. 3: Definition of the scattering vector.
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FIG. 4: The bistatic coefficients for an horizontal (T'E) and a vertical (T M) polarized normally incident
light of wavelength A = 632.8 nm, on a slab with an upper two-dimensional randomly rough surface,
characterized by the parameters o1 = 15nm, I; = 100nm, and a bottom rough surface characterized by
o9 = bnm, ly = 100nm. The dielectric constants are ¢; = 2.6896 + ¢0.0075 and e; = —18.3 + ¢ 0.55.
The thickness of the film is H = 500mm. The scattered field is observed in the incident plane. For

each figure are plotted : the total incoherent scattering 7" (solid curve), the first order given by

AR Sy (dotted curve), the second order AR Sy

the third order T 0 ' 4 7®700 L 712710 L 71700 (dash-dotted curve).
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FIG. 6: Same parameters as in Fig. E, but with g = —20°
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FIG. 7: Second order contributions to Fig. E



