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Abstract This article proposes and studies a link between statistics and the theory of Dirichlet
forms used to compute errors. The error calculus based on Dirichlet forms is an extension
of classical Gauss’ approach to error propagation. The aim of this paper is to derive error
structures from measurements. The links with Fisher’s information lay the foundations of a
strong connection with experiment. Here we show that this connection behaves well towards
changes of variables and is related to the theory of asymptotic statistics. Finally the study of
products permits to lay the premise of an infinite dimensional empirical error calculus.

Mathematical subject classification (2000): 31C25, 47B25, 49Q12, 62F99, 62B10,
65G99.

Keywords: Error, sensitivity, Dirichlet forms, squared field operator, Cramer-Rao inequal-
ity, Fisher information.

1 Introduction

1.1 Intuitive notion of error structures

Let us consider a random quantity C (for example the concentration of some pollutant in a
river) that can be measured by an experimental device which result exhibits an error denoted
by △C. These quantities may be represented as random variables generally correlated (for
higher pollution levels, the device becomes fuzzier). In this classical probabilistic approach we
have to know the law of the pair (C,△C) or equivalently the law of C and the conditional law
of △C given C. Thus, the study of error transmission is associated to the calculus of images
of probability measures. Unfortunately, the knowledge of the law of △C given C by means of
experiment is practically impossible. Now, let us look at the propagation of errors when the
errors are small. For the sake of simplicity we adopt temporarily the following assumptions:
• Only the conditional variance var[△C | C] is known.
• The errors are small enough to allow the simplification usually performed by physicists:
△C = εY where Y is a bounded random variable and ε a size parameter.

If f is C3(R,R) with bounded derivatives, supposing at first that the error is conditionally
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centered E[△C | C] = 0, Taylor’s formula gives

△(f(C)) = f ′(C) △ C +
1

2
f

′′
(C)(△C)2 + ε3 0(1)

hence

var[△f(C) | C] = f ′2(C)var[△C | C] + ε3 0(1)

E[△f(C) | C] = 1
2
f ′′(C)var[△f(C) | C] + ε3 0(1).

In the same way, for another regular function h we have :

var[△(h ◦ f(C)) | C] = h′2(f(C))var[△f(C) | C] + ε3 0(1) (1)

E[△(h ◦ f(C)) | C] = h′(f(C))E[△f(C) | C] +
1

2
h′′(f(C))var[△f(C) | C] + ε3 0(1). (2)

These formulae of the propagation of variances and biases show that once a nonlinear func-
tion has been applied, the error is no longer centered and the bias has the same order of
magnitude as the variance. Through other applications this phenomenon persists. Moreover
we can see that the calculus on the variances is a first order calculus and does not involve the
biases whereas the calculus on the biases is of second order and involves the variances. This
remark is fundamental: the error calculus on variances is necessarily the first step of an analysis
of errors based on differential methods. It will be the main focus of our study.

On the probability space associated to the observation of C, (R, Bor(R), law of C) ( where
Bor(R) is the borelian σ-field of R), we introduce the operator ΓC called the quadratic error
operator which provides for each function f the asymptotical conditional variance of the error
on f(C):

ΓC [f ](x) = lim
ε→0

var[△f(C) | C = x]

ε2
.

As the covariance operator in probability theory, ΓC polarizes into a bilinear operator:

ΓC [f, g](x) = lim
ε→0

covar[△f(C),△g(C) | C = x]

ε2
.

Moreover if F is in C2(R2,R) with bounded derivatives, we obtain a transport formula known
as the Gauss’ law of errors propagation ([6], Chap.1, Appendix):

ΓC [F (f, g)] = F ′2
1 (f, g)ΓC[f ] + F ′2

2 (f, g)ΓC [g] + 2F ′
1(f, g)F

′
2(f, g)Γ

C [f, g]. (3)

Now we can adopt an intuitive definition of an error structure:
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An error structure is a probability space (W,W, m) equipped with a positive, symmetric,
bilinear operator Γ acting on random variables and fulfilling a first order functional calculus on
regular functions:

Γ[F (f1, . . . , fn)] =
∑

i,j

F ′
i (f1, . . . , fn)F

′
j(f1, . . . , fn)Γ[fi, fj].

If φ : R → R is a regular mapping, this definition is preserved by image: we can equip the
image space (R, Bor(R), law of φ(C)) with the quadratic error operator Γφ(C) associated to the
observation of φ(C). We have the following fundamental relation

Γφ(C)[f ](x) = E[ΓC [f(φ)](C) | φ(C) = x]. (4)

When we observe a two-dimensional quantity C = (C1, C2) with erroneous components
modelled with two error structures (R, Bor(R), law of C1,Γ

C1) and (R, Bor(R), law of C2,Γ
C2),

if (C1,△C1) is independent of (C2,△C2) we need to define an error structure (R2,B(R2), law
of C1 ⊗ law of C2, ΓC1⊗C2) such that ΓC1⊗C2 expresses a summation of errors component per
component. Indeed, if F : R

2 → R is regular, from the independence hypothesis it follows

var[△(F (C1, C2)) | (C1, C2)] = F ′2
1 (C1, C2)var[△C1 | C1] + F ′2

2 (C1, C2)var[△C2 | C2] + ε30(1)

thus
ΓC1⊗C2 [F ](x, y) = ΓC1 [F (., y)] + ΓC2 [F (x, .)]. (5)

The preceding intuitive considerations lead to the following rigorous mathematical frame-
work.

1.2 An extension tool

Now we present an axiomatic extension of the preceding notion of error structures using the
language of Dirichlet forms. It gives a powerful tool easy to handle in error calculations and
sensitivity analysis. As noticed above, we limit ourselves to a first order calculus which is al-
ready significant in most of applications. We refer to [6] for a calculus on biases involving the
infinitesimal generator associated to the underlying Dirichlet form. This error calculus based
on Dirichlet forms lies between the probabilistic approach (errors are supposed to be random
variables) and the deterministic one (dealing with infinitely small deterministic errors to use
differential calculus).

From now on, an error structure is a term (W,W, m,D,Γ) where (W,W, m) is a probability
space, D is a dense vector subspace of L2(m) and Γ is a positive symmetric bilinear map from
D × D into L1(m) fulfilling:

1) the functional calculus of class C1 ∩Lip i.e. if U = (U1, . . . , Un) ∈ D
n, V = (V1, . . . , Vp) ∈

D
p, F ∈ C1(Rn,R) ∩ Lip = {C1 and Lipschitz} and G ∈ C1(Rp,R) ∩ Lip then,

(F (U1, . . . , Un), G(V1, . . . , Vp)) ∈ D
2
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and
Γ[F (U1, . . . , Un), G(V1, . . . , Vp)] =

∑

i,j

F ′
i (U)G′

j(V )Γ[Ui, Vj],

2) 1 ∈ D (this implies Γ[1] = 0),

3) the bilinear form E [F,G] = 1
2

∫
Γ[F,G]dm defined on D × D is closed i.e. D is complete

under the norm of the graph

‖ . ‖E= (‖ . ‖2
L2(m) +E [.])

1
2 .

We always write Γ[F ] for Γ[F, F ] and E [F ] for E [F, F ].

This notion is derived from the theory of Dirichlet forms ([3] Ch.1,[9],[14]). It is a natural
extension of the classical Gauss approach ([4]) and it seems to be a good way to study the
propagation of errors and the sensitivity to changes of parameters in physical and financial
models ([4],[5],[6]).

The condition 1) is similar to the Gauss’ law of small errors propagation (3). For U =
(U1, . . . , Un) ∈ D

n, the intuitive meaning of the matrix Γ
=
[U ] = [Γ[Ui, Uj]]1≤i,j≤n is the variance-

covariance of the error on U ([6] Ch.1). Implicitly, we still suppose that the error is infinitely
small although it is not mentioned in the notation. It is as if we had an infinitely small unit to
measure errors that was fixed in the whole problem. Then, the hypothesis 3) is added to the
heuristic definition and can be seen as a coherence principle. In fact, if the random variables
(Xn)n∈N and X are in D, if Xn → X in L2(m) and (Xn, error on Xn) converges in a suitable
sense, it converges necessarily to the pair (X, error on X).

From the hypotheses mentioned above, E is a local Dirichlet form and Γ its associated
squared field operator. The domain D is preserved by Lipschitz functions: if F : R

n → R is a
contraction in the following sense

|F (x) − F (y)| ≤
n∑

i=1

|xi − yi|

then for U = (U1, . . . , Un) ∈ D
n one has F (U) ∈ D and

Γ[F (U1, . . . , Un)]
1
2 ≤

n∑

i=1

Γ[Ui]
1
2 .

We would like to emphasize that the closedness property is the key stone of our approach. It
plays the same role as the σ-additivity in probability theory and permits to compute the errors
on functions known as limits of simpler objects.

The operations of taking images by mapping (definition 3.1.2) and making countable prod-
ucts (definition 5.0.8) naturally provide error structures on spaces of stochastic processes ([3]
Ch.2,[5],[6] Ch.6).
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Since a probability space (W,W, m) can be known thanks to statistical experiments, we
raise the problem of the empirical identification of an error structure. In the same way as the
σ-additivity of m on W could not result from experiments but is a fundamental mathematical
hypothesis, our error structure will have to verify the closedness property 3) (This cannot be
deduced from observation). Thus let θ be a parameter taking its values in an open set Θ ⊂ R

d.
It is frequently useful to treat θ as the realization of a random variable V : (Ω,A,P) → Θ with
a known distribution ρ chosen by combining experience with convenience ([13] p.225). Let X be
a random variable defined on the probability space (Ω,A,P) with values in a measurable space
(E,F). Let us denote by Pθ the conditional law of X given V = θ. Classically, to estimate θ
we may use the statistical model (Pθ)θ∈Θ generated by the observations of X. Here we want to
equip Θ with an error structure

SV = (Θ,B(Θ), ρ,DV ,ΓV ) (6)

where ΓV will express the precision of our knowledge on θ. Our approach is to consider ΓV

as the inverse of the Fisher matrix which is an accuracy measure for regular statistical models
(see [8]). We will study the behavior of this identification through changes of variables and
products to show its remarkable stability.

2 The Cramer-Rao Inequality (C.R.I.) and the Funda-

mental Identification (F.I.)

2.1 Regular models.

From now on (., .) will denote the usual scalar product on R
d and ‖ . ‖ its associated norm. We

suppose that (Pθ)θ∈Θ satisfies the conditions of regular models ([11] p.65):

(a) The measures Pθ are absolutely continuous with respect to a σ-finite measure µ and
dPθ
dµ

= f(., θ) > 0.

(b) θ → f(x, θ) is continuous for µ-almost all x.

(c) We set g(x, θ) =
√
f(x, θ). There exists φ : E × Θ → R

d such that ∀ θ ∈ Θ,

∫
‖ φ(x, θ) ‖2 dµ(x) <∞

and ∫
|g(x, θ + h) − g(x, θ) − (φ(x, θ), h)|2dµ(x) = o(‖ h ‖2).

thus the positive semi-definite matrix J(θ) = 4
∫
φ(x, θ)φ(x, θ)tdµ(x) is defined as the

Fisher information matrix of our model.

(d) θ → φ(., θ) is continuous in L2(µ).
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(e) The model is identifiable: θ → Pθ is injective.

Remarks A: i) There exists several definitions of regular models. Here we use a notion
taken from [11] where the conditions are quite general. These hypotheses are made to allow a
differentiation under integrals which is needed for the proof of the Cramer-Rao inequality. We
can found in [1] another definition using the classical differential calculus and supposing that
J is continuous when it is a simple consequence of d).

ii) The assumption c) is a condition of differentiability in quadratic mean in L2(µ). More-

over, if we assume that θ → f(., θ) is differentiable in the classical sense then φ(x, θ) = ∇f(x,θ)

2
√
f(x,θ)

and we obtain the following expression of the so-called Fisher information matrix

J(θ) =

[∫ ∂f(x,θ)
∂θi

∂f(x,θ)
∂θj

f(x, θ)
dµ(x)

]

0≤i,j≤d

.

To establish the differentiability in quadratic mean, one often proceeds by showing classical
differentiability and equi-integrability (see [7],[15]).

iii) Identifiability is a purely statistical hypothesis. Intuitively, it means that the model can
distinguish two different values of the parameter θ′ 6= θ′′ if and only if Pθ′ 6= Pθ′′. In this case,
if independent experiments are available, we have an infinite family of independent variables
with the same law Pθ denoted by Zθ = (Xθ

i )i∈N and for θ′ 6= θ′′, the laws of the processes Zθ′

and Zθ′′ are mutually singular. Thus, θ′ and θ′′ are perfectly identified thanks to experiment.�

2.2 Cramer-Rao Inequality

Theorem 2.2.1 ([11] p.73) Let ψ : R
d → R

m be differentiable and (Pθ)θ∈Θ be a regular model
with ∀θ ∈ Θ det(J(θ)) 6= 0. If T (X) is an unbiased estimator of ψ(θ) such that E[T (X)2 | V =
θ] is locally bounded in θ then

E[(T (X) − ψ(θ))(T (X) − ψ(θ))t | V = θ] ≥ ψ′(θ)J−1(θ)ψ′(θ)t.

where ≥ is the order relation between symmetric matrices defined by the cone of positive sym-
metric ones.

Remark B: An estimator T (X) fulfilling the hypotheses of the preceding theorem is said
to be a regular unbiased estimator of ψ(θ). �

Now, up to the end, we suppose that the Fisher information matrix is regular. Thus, the
Cramer-Rao inequality gives a bound of estimation for the quadratic risk. Let us have a look on
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the error structure (6) we want to determine. If the components of identity are in D
V , according

to the functional calculus, we have for F ∈ Lip1(Θ) = {F ∈ C1(Θ,R) and Lipschitz},

ΓV [F ] = (∇F )tΓ
=

V [Id](∇F )

where the matrix Γ
=

V [Id](θ) represents the error of estimation on V given V = θ. Since Γ
=

V

takes its significance from a calculus on variances, the Cramer-Rao inequality leads us to state
the fundamental identification

Γ
=

V [Id] = J−1. (F.I)

As well as the statistical identification of a probability space presupposes the σ-additivity of
the measure, we want to determine an error structure deriving from experiment in which EV
is a closed form. According to the fundamental identification we make the following assumption:

Hypothesis (E): From now on, we suppose the existence of a dense vector subspace of
L2(ρ) denoted by D

V and the existence of an operator ΓV fulfilling conditions 1), 2) and 3)
such that Lip1(Θ) ⊂ D

V and, for all F in Lip1(Θ), ΓV [F ] = F ′J−1(F ′)t. Moreover, as D
V may

not be uniquely defined, we take it minimal for inclusion, which implies the density of Lip1(Θ)
in D

V for the norm ‖ . ‖EV .

This hypothesis dictates conditions on ρ and J−1 which are often fulfilled as seen in the
following proposition (see also [9]):

Proposition 2.2.2 a) Let Θ be a bounded open set of R
d of the form Θ =

d∏
i=1

]θi0, θ
i
1[ where the

θij are real numbers such that θi1 ≥ θi0. We shall assume that ρ is a probability measure which
is absolutely continuous with respect to the Lebesgue measure on Θ with a positive density q in
Lip1(Θ). Suppose that the model (Pθ)θ∈Θ can be extended to a regular model on an open set Θ′

such that Θ ⊂ Θ′. Then, hypothesis E is fulfilled.

b) When Θ = R, if we assume that
∫
Θ
θ2dρ(θ) < ∞ and that 1

J
belongs to L1(ρ), the

hypothesis E is equivalent to the conditions of Hamza theorem ([9] p.105).

Proof: a) Let (Fn)N be a sequence in Lip1(Θ) such that Fn → 0 in L2(ρ) and ΓV [Fn−Fm] →
0 in L1(ρ) where ΓV : Lip1(Θ) → L1(ρ) is well-defined by ΓV [F ] = F ′J−1(F ′)t. If we show that
ΓV [Fn] → 0 in L1(ρ), the conclusion follows according to [9] p.4.

One defines the mapping Φ:

Φ :




Θ × Sd 7−→ R
∗
+

(θ, ξ) −→
d∑

i,j=1

ai,j(θ)ξiξj
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where Sd is the unit sphere of R
d and where the coefficients of J−1 are denoted by ai,j .

The function Φ is continuous on a compact set, thus there exists δ, δ′ > 0 such that δ ≤
Φ ≤ δ′. It implies

δ|∇Fn −∇Fm|2 ≤ ΓV [Fn − Fm] ≤ δ′|∇Fn −∇Fm|2. (∗)

Hence, ∇Fn is a cauchy sequence in L2(ρ; Rd) and there is a function G = (G1, . . . , Gd) in
L2(ρ; Rd) satisfying for all i ∈ {1, . . . , n} ∂iFn → Gi in L2(ρ).
Let φ be a function in C∞

K (Θ) = {F ∈ C∞(Θ,R) with compact support}. One notices that
φ, q, Fn are Lipschitz and can be extended to Θ. Thus, by integration by parts formula we
obtain

−
∫

Θ

Fn(∂iφ)qdθ =

∫

Θ

(∂iFn)φqdθ +

∫

Θ

Fnφ(∂iq)dθ

and by passing to the limit, it follows that ∀φ ∈ C∞
K (Θ),

∫

Θ

Giφqdθ = 0

thus Gi = 0. We can conclude using the inequality (∗).

b) Hamza theorem gives necessary and sufficient conditions for the existence of an error
structure S = (R,B(R), ρ,D,Γ) such that C∞

K (R) ⊂ D and Γ[F ] = F ′2

J
on C∞

K (R).
Let (Fn)n∈N be a sequence in C∞

K (R) with the same Lipschitz constant 1 such that Fn → Id

everywhere with ∀n |Fn| ≤ |Id| and F ′
n → 1 everywhere. Using the dominated convergence

theorem and the closedness of Γ we obtain that Id ∈ D, hence Lip1(R) ⊂ D and Γ[F ] = F ′2

J
for

F ∈ Lip1(R). The result follows naturally. �

Remarks C: i) The statistical situation with a constant information matrix is often en-
countered in classical parametric models (see [13]): Location family, Normal models with fixed
coefficient of variation, Logistic model, Scale parameter. In this case the condition of extension
of the model (Pθ)θ∈Θ can be removed in a).

ii) The operator ΓV is bilinear. It is possible to introduce a new operator, the gradient,
denoted by ∇V , which can be seen as a signed and linear version of the standard deviation of
the error and satisfies ∀F ∈ D

V

ΓV [F ] = (∇V [F ],∇V [F ]).

Since the error structure SV is defined on a finite dimensional space it is easy to construct
∇V putting

∇V :

(
D
V 7−→ L2(ρ; Rd)

F −→ R(F ′)t

)

where R is the square root of J−1. The gradient fulfills the classical differentiation chain rule.
iii) We can notice that the fundamental identification gives, without other hypotheses, a

second order calculus with variances and biases as mentioned in the introduction. In fact, we
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can associate to the Dirichlet form EV a unique self adjoint operator AV (see [3],[9]), called the
infinitesimal generator. It has a domain D(AV ) included in D

V and it takes its values in L1(ρ).
Moreover we have

AV [F (U)] = F ′(U)AV [U ] +
1

2
F ′′(U)ΓV [U ]

when U ∈ D(AV ), ΓV [U ] ∈ L2(ρ) and F : Θ → R is a function of class C2 with bounded deriva-
tives. Thus, the preceding formula expresses the propagation of the conditional expectation of
the error in the same way as (2). �

Now, we want to test the robustness of the fundamental identification by comparing its
properties with the well-known behavior of the Fisher information in the classical framework
of parametric estimation.

3 Change of variables: the injective case.

We are going to show the stability of the fundamental identification for regular changes of
variables.

3.1 The regular injective case.

Definition 3.1.1 We suppose that ψ : Θ → R
d is injective of class C1 ∩ Lip. This change of

variables is said to be regular if det(ψ′(x)) 6= 0 for all x.

From the local inversion theorem, it follows that ψ is a C1-diffeomorphism on its image and
ψ(Θ) is an open set of R

d.
Now, we want to equip ψ(Θ) with an error structure that expresses the intrinsic accuracy of
our knowledge on ψ(θ). There are two natural ways to proceed.

3.1.1 From the estimation point of view.

In the injective case, the change of variables is just a reparameterisation of the model. To
estimate ψ(θ) we use the model (Pψ−1(a), a ∈ ψ(Θ)). Since dPψ−1(a)(x) = f(x, ψ−1(a))dµ(x),
we can see easily that this model is regular. Let us have a look on the error structure we obtain
using the fundamental identification. The operator Γψ(V ) is defined on Lip1(ψ(Θ)) by

Γψ(V )[F ](a) = (∇aF )t(Jψ(V )(a))−1(∇aF ) ∀a ∈ ψ(Θ)

where Jψ(V ) is the Fisher information matrix of the regular model (Pψ−1(a), a∈ψ(Θ)). Moreover,
as ∀a ∈ ψ(Θ),

Jψ(V )(a) = [ψ′(ψ−1(a))−1]t [J(ψ−1(a))] [ψ′(ψ−1(a))−1]

9



one has for F ∈ Lip1(ψ(Θ))

Γψ(V )[F ](a) = (∇aF )t[ψ′(ψ−1(a))] [J(ψ−1(a))]−1 [ψ′(ψ−1(a))]t(∇aF ).

Using that ψ is injective of class C1 ∩ Lip, from hypothesis E it follows that the form Eψ(V )

defined on Lip1(ψ(Θ)) by

Eψ(V )[F ] =
1

2

∫
Γψ(V )[F ]dψ∗ρ

is closable and we denote by D
ψ(V ) the domain of its smallest closed extension. Thus, the error

structure associated to the fundamental identification for the estimation of ψ(θ) is

Sψ(V ) = (ψ(Θ),B(ψ(Θ)), ψ∗ρ,D
ψ(V ),Γψ(V )).

Remark D: When d = 1 one obtains

Jψ(V )(ψ) =
J

ψ′2 .

Hence, if ψ is flat enough in θ, ψ(θ) can be estimated more accurately than θ. This property
is intuitively coherent since a value θ′ at a given small distance from θ will lead to a smaller
deviation of ψ(θ′) from ψ(θ) the smaller the value of |ψ′(θ)| is. �

3.1.2 From the error calculus point of view

Among the advantages of the error calculus based on Dirichlet forms, let us emphasize here its
practical flexibility. It is easy to define both the product of error structures and the image of
an error structure by a mapping. The following definition is the rigorous formulation of the
intuitive expression (4) which corresponded to a change of observation in our preliminary study
of error calculus.

Definition 3.1.2 Let S = (W,W, m,D,Γ) be an error structure and Y : W → R
d ∈ D

d such

that Y (W) is an open set of R
d. Let us define D̃Y = {f ∈ L2(Y∗m) | f(Y ) ∈ D} and for

f ∈ D̃Y , Γ̃Y [f ](x) = Em[Γ[f(Y )] | Y = x].

If we denote by DY the closure of Lip1(Y (W)) in (D̃Y , ‖ . ‖ẼY ) and by ΓY the restriction of

Γ̃Y to DY then
ψ∗S = (Y (W),B(Y (W)), Y∗m,DY ,ΓY )

is an error structure called the image structure of S by Y .

Let us study the image of SV by ψ which is another natural way to endow ψ(Θ) with an
error structure. For F ∈ Lip1(ψ(Θ)) one has, ∀a ∈ Im(ψ),

Eρ[Γ
V [F (ψ)] | ψ = a] = Eρ[∇(F (ψ))t J−1 ∇(F (ψ)) | ψ = a]

10



and

Γψ(V )[F ] = ΓVψ [F ] ψ∗ρ a.e.

Thus, Γψ(V ) and ΓVψ are equal on Lip1(ψ(Θ)).
Using the density of Lip1(ψ(Θ)) in (DV

ψ , ‖ . ‖EVψ ), we have the following expected property:

Proposition 3.1.3 The fundamental identification is preserved by the transformation ψ. In
other terms:

ψ∗S
V = Sψ(V ).

Remark E: Suppose we are studying the sensitivity of a physical or financial model de-
pending on the parameter θ to small random perturbation by using an error structure on Θ and
the functional calculus for Γ to compute the propagation of errors on the outputs of the model.
If the error structure is obtained by the Fisher information matrix of a statistical model as
above, the preceding invariance result means that the accuracy on θ has a physical significance,
independently of mathematical repameterization. �

3.2 The non-regular injective case

After the regular case studied in the preceding section, let us see what happens at a point θ
such that ψ′(θ) is singular. First, we supposes that d = 1.

Let a0 be equal to ψ(θ0) with θ0 ∈ Θ and ψ′(θ0) = 0. We can see easily that the model
(Pψ−1(a), a ∈ ψ(Θ)) possesses an irregularity at a0. Intuitively, as far as estimation is concerned,
this situation is not harmful because it induces a good approximation of a0 (see Remark D). If
we put Jψ(V )(a0) = +∞ it follows

Γψ(V )(Id)(a0) =
1

Jψ(V )(a0)
= 0 = ΓψV (Id)(a0).

In the general case, since J(θ0) is supposed to be definite positive, we can reduce simultane-
ously ψ′(θ0) and J(θ0) and work component per component. If ψ′(θ0) is singular, there exists
eigenvectors for to the eigenvalue 0 which correspond to directions of infinite information for
Jψ(V )(a0). The other eigendirections are dealt as in the regular case.

We can see that the fundamental identification is still stable in this case.

Remarks F: i) The concept of infinite information appears in asymptotic statistics where
it expresses a faster convergence of the maximum likelihood estimator toward the parameter.

ii) We have seen that, for injective changes of variables, the error structure obtained estimat-
ing directly ψ(θ) coincides with the image by ψ of the structure associated to the estimation
of θ. This phenomenon can be viewed as a sufficiency principle (well known for the Fisher
information [11], p.70) because when ψ is injective, Pθ depends on θ only through ψ.

iii) The proposition 3.1.3 is based on the simple relation between Jψ(V ) and J . This property
of the Fisher information is not fulfilled for other types of information bound. For example,
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for the bounds of Bhattacharaya type (see [11]) (which involve higher derivatives and are more
precise) it is impossible to obtain such a coherence property. The hypotheses of regular models
are the good level of axiomatization for our study. �

4 The non injective case.

We are now in a special situation: we have put in correspondence an error structure and a
parametric model thanks to the Fisher information. But on one side (error structures) non-
injective changes of variables are allowed (def 3.1.2) and on the other side (statistical models)
they meet difficulties. We derive benefit of this remark to propose a new framework for the
estimation of a parameter in this case which is directly linked with the notion of error structure.

Here we suppose that ψ is a function in Lip1(Θ) not necessarily injective but such that
ψ(Θ) is an open set of R

d (in order to apply definition 3.1.2 with Y = ψ ).
To estimate ψ(θ) the reparameterisation introduced in the previous section is meaningless.

To avoid this problem, we give a new protocol.

4.1 Estimation protocol of ψ(θ) when ψ is not injective.

To estimate θ we use a regular model (Pθ)θ∈Θ such that hypothesis E is fulfilled. In this section
the random variables X1 . . .Xn defined on (Ω,A,P) with values in (E,F) will be, given V = θ,
a n-sample of Pθ.

To estimate ψ(θ), it is natural to use the model (Qa)a∈ψ(Θ) generated by the observation of
X1 . . .Xn given ψ(V ) = a. From the definition of the conditional expectation it follows that

dQa(x) = Eρ[f(x, .) | ψ = a]dµ(x).

In particular, we need a global knowledge of f(x, .) to perform Qa.

Remarks G: i) When ψ is injective, the preceding protocol coincides with the reparame-
terisation. In this case a pointwise knowledge is sufficient.

ii) The case of non-injective changes of parameters is often tackled in the literature on the
following restrictive form. When d=1, we consider a point θ0 such that ψ′(θ0) 6= 0. Since
ψ is in C1(Θ,R), according to the local inversion theorem there exists θmin0 , θmax0 such that
ψ : ]θmin0 , θmax0 [→ ψ(]θmin0 , θmax0 [) is a C1-diffeomorphism with an inverse denoted by iθ0 (which
depends on θ0 contrary to the injective case).

If we suppose that previous observation leads us to believe that θ is in ]θmin0 , θmax0 [, locally
we are going back to the case processed in section 3. Thus, we set ∀a ∈ ψ(]θmin0 , θmax0 [),

J
ψ(V )
θ0

(a) =
J(iθ0(a))

ψ′2(iθ0(a))
.

The quantity J
ψ(V )
θ0

(a) is called the local Fisher information because it takes into account
only one antecedent of a.

12



When we do not have any a priori information on θ, one has to use a concept which ex-
presses the entire behavior of ψ. �

Since ψ is non-injective, the model (Qa)a∈ψ(Θ) may present irregularities. Thus, the Fisher
information may be undefined. Moreover, even if it exists, the information matrix is not easy
to perform. So we are going to show the relevance of error calculus in this case, showing that
the operator ΓVψ is a substitute of the inverse of the Fisher information in the sense that it gives
a simple bound of estimation and is linked to asymptotic statistics.

4.2 ΓVψ as an estimation bound.

To simplify, let us suppose that d = 1.
Using a regular parametric model to estimate θ, we have seen that for a regular unbiased

estimator T (X) of ψ(θ), the Cramer-Rao inequality

E[(T (X) − ψ(θ))2 | V = θ] ≥ ψ′2(θ)

J(θ)
(7)

gave a bound of the quadratic risk and lead to interpret J as the information on θ contained
in observation X. In the same way, when the estimators are built with the independent ob-
servations (X1, . . .Xn), it is easy to see that the additivity property of the Fisher information
matrix ensures that

E[(T (X1, . . . , Xn) − ψ(θ))2 | V = θ] ≥ ψ′2(θ)

nJ(θ)

if E[T (X1, . . .Xn)|V = θ] = ψ(θ).
Thus, conditioning (7) with respect to ψ one has

E[(T (X) − a)2 | ψ(V ) = a] ≥ Eρ[
ψ′2

J
| ψ = a] = ΓVψ [Id](a)

and ΓVψ [Id] appears as a natural bound of the problem. Similarly, one obtains

E[(T (X1, . . . , Xn) − a)2 | ψ(V ) = a] ≥
ΓVψ [Id](a)

n
.

Remark H: 1
ΓV
ψ

can be seen as an additive information when independent observations are

combined. �

4.3 Links with asymptotic statistics.

For the sake of simplicity about the question of existence and unicity of the maximum likelihood
estimator we suppose that for the model (Pθ)θ∈Θ, for all n ∈ N, for all (x1, . . . , xn) ∈ En, the
equation

n∑

i=1

∂

∂θ
logf(xi, θ) = 0

13



has a unique solution denoted by θ̂n(x1, . . . , xn) which is a maximum for the function θ →
n∏
i=1

f(xi, θ). In this section we assume that Θ is a convex bounded subset of R (this could easily

be extended to any finite dimension).
In order to show that ΓVψ is the key stone of some asymptotic results, one requires preliminary

knowledge concerning the convergence of the sequence of estimators (θ̂n(X1, . . . , Xn))n∈N.

4.3.1 Convergence of the maximum likelihood estimator.

We essentially refer the reader to [10], [11] for the proof of the results exposed here and for
complementary details.

The asymptotic techniques used in this section can be easily extended to a more general
framework than the case of experiments based on the observation of n-samples (especially for
the applications to stochastic processes). These techniques are not based on the historical
approach using Taylor’s formula any more (see for example [12] p.469) but on large deviation
tools.

An important idea of Ibragimov and Has’minskii has been to study the likelihood ratio

Zn,θ(u) =
n∏

i=1

f(Xi, θ + u√
n
)

f(Xi, θ)
with u ∈ Un,θ = {u ∈ R | θ +

u√
n
∈ Θ}.

Its asymptotic behavior is linked to that of the maximum likelihood estimator by the following
inequality

P(
√
n(θ̂n − θ) > H | V = θ) ≤ P( sup

|u|>H
Zn,θ(u) ≥ 1 | V = θ).

Furthermore this quantity is connected to the Hellinger’s distance:

E[Z
1
2
n,θ(u) | V = θ] = 1 − 1

2
r(P n

θ+ u√
n
, P n

θ )

where, for a given parametric model (Pθ), the Hellinger’s distance r is defined by

r(Pθ, Pθ′) =

∫
(
√
f(x, θ) −

√
f(x, θ′) )2dµ(x).

It is a measurement of the identifiability i.e the capacity of a model to distinguish two different
values of the parameter θ.

The following theorem gives sufficient conditions for the consistence of the maximum like-
lihood estimator.

Theorem 4.3.1 ([11] p.42) Let us suppose that

1) ∀θ, ∀n, the function u→ Zn,θ(u) is continuous

14



2) ∀θ, ∃M > 0, ∃m > 0 such that ∀n

sup
|u1|≤R,|u2|≤R

|u1 − u2|−2
E[ |Z

1
2
n,θ(u1) − Z

1
2
n,θ(u2)|2 | V = θ] ≤M(1 +Rm)

3) ∃a > 0 such that ∀u ∈ Un,θ, ∀n

E[Z
1
2
n,θ(u) | V = θ] ≤ e−a|u|

2

.

Then, ∀θ , ∃B > 0, ∃b > 0 such that ∀ε > 0, for n sufficiently large, one has

Eρ[1√
n|θ̂n(X1,...,Xn)−θ|>ε | V = θ] ≤ Be−bε

2

.

Consequently we obtain the almost sure convergence of θ̂n toward θ.

Remarks I: i) We can notice that hypothesis 3) implies the identifiability of the model.
This condition is necessary because one can’t find consistent estimators for a non-identifiable
model.

ii) There exists a uniform extension of the preceding theorem: If K is a compact set included
in Θ and if hypotheses 2) and 3) are fulfilled uniformly for θ ∈ K then ∃b(K) > 0, ∃B(K) > 0
such that ∀ε > 0, for large n,

sup
θ∈K

Eρ[1√
n|θ̂n−θ|>ε | V = θ] ≤ Be−bε

2

.�

The hypotheses of theorem 4.3.1 may appear restrictive, but the following result shows that
they are satisfied for a large class of regular models.

Proposition 4.3.2 ([11] p.81) If Pθ is a regular model fulfilling

1) 0 < inf
Θ

J(θ) ≤ sup
Θ

J(θ) <∞

2) ∀θ, ∀δ > 0
inf

u∈U1,θ,|u|>δ
r(Pθ, Pθ+u) > 0

then the hypotheses of theorem 4.3.1 hold.

From a practical point of view, the condition of local asymptotic normality introduced in
the following theorem, yields a useful result for constructing confidence intervals. It possesses
also a uniform version.
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Theorem 4.3.3 ([11] p.185) We suppose that the hypotheses of theorem 4.3.1 are fulfilled.
Moreover we assume that the model satisfies the local asymptotic normality condition introduced
by Le Cam: for all θ, the sequence of stochastic processes (Zn,θ(u)) converges in the sense of

finite dimensional marginals toward the process Zθ(u) = eu△− 1
2
J(θ)u2

where △ is a random
variable distributed as N (0, J(θ)). Then, ∀θ ∈ Θ, one has

1) given V = θ
√
n(θ̂n(X1, . . . , Xn) − θ) →

L(P)
N (0,

1

J(θ)
),

2) ∀p > 0

E[n
p
2 (θ̂n(X1, . . . , Xn) − θ)p | V = θ] → mp,

where mp is the p-th moment of the law N (0, 1
J(θ)

).

Remarks J: i) The hypotheses of theorem 4.3.1 lead to the tightness of the process (Zn,θ(u))
in the space of continuous functions vanishing at infinity. The pointwise convergence of this
sequence becomes functional and gives 1).

ii) The maximum likelihood estimator is asymptotically unbiased and achieves asymptoti-
cally the bound of the Cramer Rao inequality.

iii) Since J is continuous under the hypotheses of regular models, the construction of asymp-
totic confidence intervals is done classically. �

Now, one of the most important property of regular models is the following:

Proposition 4.3.4 ([11] p.114) The condition of local asymptotic normality is fulfilled for reg-
ular models.

In the following section we used those asymptotic results to give a new interpretation of ΓVψ .

4.3.2 ΓVψ as an asymptotic variance

We are able to exhibit a consistent estimator in the problem of the direct estimation of
ψ(θ) using the experiment generated by the observation of (X1, . . . , Xn), given ψ(V ) = a. The
quantity ΓVψ will appear in the limit theorems associated to this statistical procedure.

Proposition 4.3.5 Under the hypotheses of proposition 4.3.2 one has ∀a ∈ ψ(Θ),
1) ∀ε > 0,

E[1|ψ(θ̂n(X1,...,Xn))−ψ(V )|>ε | ψ(V ) = a] → 0.

2) Given ψ(V ) = a √
n(ψ(θ̂n) − a) →

L(P)
Ga
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where Ga is a random variable with the following density

g(x, a) = Eρ[1ψ′ 6=0
1√

2πψ
′2

J

e
−x2J
2ψ′2 | ψ = a]

with respect to Lebesgue measure on R ( Ga has a variance equal to ΓVψ [Id](a)).

Proof: 1) We denote by C the Lipschitz constant of ψ.
According to Fubini theorem and by definition of the conditional expectation, ∀(x1, . . . , xn) ∈

(E)n, ∀a ∈ ψ(Θ),
E[1|ψ(θ̂n(X1,...,Xn))−ψ(V )|>ε | ψ(V ) = a]

is equal to

Eρ[

∫
1|ψ(θ̂n(x1,...,xn))−a|>εf(x1, .) . . . f(xn, .)dµ(x1) . . . dµ(xn) | ψ = a].

But we have
1|ψ(θ̂n(X1,...,Xn))−ψ(Θ)|>ε ≤ 1|θ̂n(X1,...,Xn)−Θ|> ε

C

and the result follows by theorem 4.3.1 and dominated convergence theorem.
2) When ψ′(θ0) = 0, theorem 4.3.3 yields

E(1√
n|ψ(θ̂n(X1,...,Xn))−ψ(Θ)|>ε | V = θ0)−−−→n→∞ 0

and when ψ′(θ0) 6= 0, Slutsky’s lemma (see [12] p.86) gives that, given V = θ0,

√
n(ψ(θ̂n(X1, . . . , Xn)) − ψ(θ0)) →

L(P)
N

(
0,
ψ′2(θ0)

J(θ0)

)
.

If F is a bounded continuous function, using the same argument as in 1), one has that

∫
F (

√
n(ψ(θ̂n) − a))Eρ[f(x1, .) . . . f(xn, .) | ψ = a]dµ(x1) . . . dµ(xn)

is equal to

Eρ[

∫
F (

√
n(ψ(θ̂n(x1, . . . , xn)) − ψ))f(x1, .) . . . f(xn, .)dµ(x1) . . . dµ(xn) | ψ = a]

and the result comes by dominated convergence.�

Remarks K: i) When ψ is injective, ψ(θ̂n) is the maximum likelihood estimator associated
to the model (Qa)a∈ψ(Θ).

ii) Using the Borel-Cantelli theorem and the fact that ψ is in Lip1(Θ), we can extend the
convergence in probability in 1) to an almost sure convergence.
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iii) ΓVψ [Id] is a mean of the inverse of the local Fisher information. Let us simply show this
on an example: we suppose that Θ =] − 1, 1[ \ {0}, ρ(θ) = q(θ)dθ and ψ(θ) = θ2.

If a0 ∈]0, 1[, this point has two antecedents for ψ: θ1 =
√
a0 with the local Fisher infor-

mation J
ψ(V )
θ1

(a0) = J(θ1)
ψ′2(θ1)

and θ2 = −√
a0 with J

ψ(V )
θ2

(a0) = J(θ2)
ψ′2(θ2)

. A calculus of conditional
expectation gives

ΓVψ [Id](a0) =

q(θ1))

J
ψ(V )
θ1

(a0)
+ q(θ2)

J
ψ(V )
θ2

(a0)

q(θ1) + q(θ2)

which is none other than a barycenter weighted by ρ.
iv) When ρ(θ) = q(θ)dθ with q continuous, we have similar results if we replace the maxi-

mum likelihood estimator by the bayesian estimator associated to the quadratic loss function
and the a priori law ρ.

v) The estimation bound given in 4.2 becomes an asymptotic equality. �

In order to obtain a quadratic convergence for
√
n(ψ(θ̂n) − a) ( allowing to approximate in

this way ΓVψ [Id] by Monte-Carlo methods) we have to reinforce the hypotheses of proposition
4.3.5.

Proposition 4.3.6 Let us suppose that the model (Pθ)θ∈Θ can be extended in a regular model
on an open set Θ′ such that Θ ⊂ Θ′. Moreover, if
1) 0 < inf

Θ′
J(θ) ≤ sup

Θ′
J(θ) <∞

2) ∀δ > 0
inf
θ∈Θ′

inf
u∈Ũ1,θ,|u|>δ

r(Pθ, Pθ+u) > 0

where Ũ1,θ = {u ∈ R | θ + u ∈ Θ′}, then, ∀a ∈ ψ(Θ)

E[n(ψ(θ̂n(X1, . . . , Xn)) − a)2 | ψ(V ) = a] → ΓVψ [Id](a).

Proof: Conditions 1) and 2) lead to an uniform version of theorem 4.3.3:

sup
θ∈Θ

(E[n(θ̂n − θ)2 | V = θ] − 1

J(θ)
) → 0. (8)

By Fubini theorem,
E[n(ψ(θ̂n) − a)2 | ψ(V ) = a]

is equal to

Eρ[

∫
n(ψ(θ̂n(x1, . . . , xn)) − ψ)2f(x1, .) . . . f(xn, .)dµ(x1) . . . dµ(xn) | ψ = a].

Since ψ is lipschitzian, it follows from (8) that

A =

∫
n(ψ(θ̂n(x1, . . . , xn)) − ψ(θ))2f(x1, θ) . . . f(xn, θ)dµ(x1) . . . dµ(xn)

18



fulfills A ≤ k
J(θ)

with J−1 ∈ L1(ρ) and k ∈ R
∗
+. We conclude thanks to the dominated conver-

gence theorem using that

E[n(θ̂n − θ)2 | V = θ] → 1

J(θ)

implies

E[n(ψ(θ̂n)−ψ(θ))2 | V = θ] → ψ′2(θ)

J(θ)
. �

4.3.3 Comments and perspectives.

From the hypotheses made on the model (Pθ)θ∈Θ, we are able to give a bound concerning the
direct estimation of ψ(θ), using the experiment generated by the observation of (X1, . . . , Xn)
given ψ(V ) = a. A question naturally arises: what happens when the model (Qa)a∈ψ(Θ) is
sufficiently regular to define its Fisher information matrix Jψ(V )? One has another estimation
bound that appears in some limits theorems associated to the estimation of a = ψ(θ) by means
of a n-sample of Qa.

When ψ is injective it is easy to show that those bounds coincide, but it is not generally
the case as we can see on the following example.
Suppose

- Θ =] − 1; 1[ \{0}, ρ is distributed as the normalized uniform law on Θ

- dPθ(x) = f(x, θ)dµ(x) = 1√
2π
e

−(x−θ)2

2 dx

- ψ(θ) = θ2.

The model (Pθ)θ∈Θ is regular and fulfills the assumptions of proposition 2.2.2 a). From the
definition of the conditional expectation, we obtain for a ∈]0, 1[

dQa(x) =
f(x,

√
a) + f(x,−√

a)

2
dx = h(x, a)dx.

As the function a→ h(x, a) is in C1(]0, 1[,R) and that, according to the dominated convergence

theorem, a →
∫ (h′a(x,a))

2

h(x,a)
dx is continuous, using the method of [13] p.95, one shows that the

model (Qa) is regular. Moreover we have

ΓVψ [Id](a) = 4a.

In order to compare ΓVψ [Id] and Jψ(V ) we need the following lemma.

Lemma 4.3.7 Suppose that p(x, θ)dµ(x) and r(x, θ)dµ(x) are two regular models on Θ such
that the function θ → (p(x, θ), r(x, θ)) is differentiable. If we put s(x, θ) = p(x, θ)+ r(x, θ) then

∫
s′2

s
dµ(x) ≤

∫
p′2

p
dµ(x) +

∫
r′2

r
dµ(x). (9)
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Proof: We set s̃ =
√
s, p̃ =

√
p, r̃ =

√
r, inequality (9) becomes

∫
s̃′2dµ(x) ≤

∫
p̃′2dµ(x) +

∫
r̃′2dµ(x). (10)

It is easy to show that
(10) ⇔ p̃′2r̃2 + r̃′2p̃2 ≥ 2p̃p̃′r̃′r̃ µ− a.e

and (9) follows with equality if and only if p̃r̃′ = p̃′r̃.�

Thus we have
1

Jψ(V )
> ΓVψ [Id]. (11)

Hence, in this situation, we can see that error calculus gives a more precise bound. At
present, we are not able to exhibit an example where (11) is contradicted.

5 Product structures.

First of all, we recall the definition of the product of two error structures (see [3] p.200).

Definition 5.0.8 If Si = (Wi,Wi, mi,Di,Γi) (i=1,2) are two error structures, the product,
denoted by S1 ⊗ S2, is define as the structure (W1 ×W2,W1 ⊗W2, m1 ⊗m2,D,Γ) with

D = {f ∈ L2(m1 ⊗m2)| for m2 − almost every y f(., y) ∈ D1

for m1 − almost every x f(x, .) ∈ D2∫
Γ[f ](x, y)dm1(x)dm2(y) <∞}

and
Γ[f ](x, y) = Γ1[f(., y)](x) + Γ2[f(x, .)](y).

Here we are interested in the evaluation of a parameter θ = (θ1, θ2) where θ1 and θ2 are
supposed to be independent i.e. V1 and V2 are independent random variables. Let us denote by
V = (V1, V2) : (Ω,A,P) → Θ1 × Θ2 the realization of the parameter θ. The law of the random
variables V , denoted by ρ, fulfills:

dρ(θ) = dρ1(θ1)dρ2(θ2).

To estimate θ1 [resp.θ2] we choose the following regular parametric model:

dPθ1 = f(x, θ1) dµ(x) [resp. dQθ2 = g(y, θ2) dν(y)]
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with a regular Fisher information matrix J1(θ1) [resp.J2(θ2)] such that hypothesis E is fulfilled.
Let us consider a random variable X [resp. Z] with a conditional law given V1 = θ1 [resp.

V2 = θ2] having the density:

f(x, θ1) dµ(x) [resp. g(y, θ2) dν(y)].

We suppose that (X, V1) and (Z, V2) are independent.

Remark L: We are in the situation where the pairs (parameter, observation) are indepen-
dent. In terms of errors, this independence has to be linked with (5) which is the intuitive
meaning of the preceding definition of product structures. �

To estimate θ, it is natural to use the conditional law of (X,Z) given V = (θ1, θ2) denoted
by Rθ1,θ2. From these hypotheses, it comes that

dRθ1,θ2 = f(x, θ1) g(y, θ2) dµ(x) dν(y).

Thus, we obtain for this model the following Fisher information matrix

[
J1(θ1) 0

0 J2(θ2)

]

and for F ∈ Lip1(Θ1 × Θ2),

ΓV [F ](θ1, θ2) =
[F ′

1(θ1, θ2)]
2

J1(θ1)
+

[F ′
2(θ1, θ2)]

2

J2(θ2)
.

Then we have the following proposition:

Proposition 5.0.9 1) SV = SV1 ⊗ SV2

2) If ψ1 and ψ2 are regular changes of variables then

(ψ1, ψ2)∗S
(V1,V2) = ψ1 ∗S

V1 ⊗ ψ2 ∗S
V2 .

Proof: 1) Let us notice that Lip1(Θ1 ×Θ2) is included in the domain of the product structure
SV1 ⊗ SV2 .

Moreover, from the expression of the information matrix, for F ∈ Lip1(Θ1 × Θ2) it follows
that

EV [F ] =

∫
EV1[F (., y)]dρ2(y) +

∫
EV2 [F (x, .)]dρ1(x).

Thus ‖ . ‖EV coincides on Lip1(Θ1 × Θ2) with the norm associated to the product structure.
Hence, we can deduce that the hypothesis E is fulfilled for the model (Rθ1,θ2)Θ1×Θ2 : SV is
well-defined.
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Furthermore, since Lip1(Θ1 ×Θ2) is dense in (DV , ‖ . ‖EV ), D
V is included in the domain of

the product structure and the two squared field operators coincide on D
V .

For the other inclusion, we use the fact that the functions of the form F =
p∑
i=1

figi with

fi ∈ D
V1 and gi ∈ D

V2 are dense in the domain of the product structure for the associated norm
(see [3] p.201) and belong to D

V as easily seen using the closedness of the forms EV1 and EV2 .
2) The equality comes from 1) and section 3. �

Remarks M: i) The preceding results extended obviously to n-tuple.
ii) We can notice that this property expresses the additive property of the Fisher informa-

tion for independent experiments. �

Since it is easy to build infinite products of error structures (see [3],[6],[14]), we are able to
obtain an empirical error calculus associated to the estimation of the parameters of the type
θ = (θi)i∈N working component per component.

6 The choice of an a priori law ρ.

In the preceding sections, the choice of an a priori law on the space of parameters Θ is left
to the practitioner as in the bayesian analysis. The determination of our error structure SV

can appear, to some degree, incomplete. We are going to show that, once a regular parametric
model is chosen, a natural probability measure becomes apparent: the Jeffreys prior (see [12]
p.490). This probability is well known in bayesian analysis. Moreover, it possesses a remarkable
stability concerning error calculus: it is invariant under reparameterization and compatible with
the notion of product.

Let (Pθ)θ∈Θ be a regular model such that

K =

∫

Θ

√
det(J(θ))dθ <∞.

We can define on Θ the following probability measure

ρV (dθ) =
IΘ

√
det(J(θ))dθ

K

called the Jeffreys prior induced by the model (Pθ)θ∈Θ. It is often used in bayesian analysis
for its invariance under reparameterisation. Moreover it is the prior measure which has the
smallest influence on the posterior measure in the sense of the asymptotic Shannon information
(see [13]). In term of error calculus its properties are summarized in the following proposition:

Proposition 6.0.3.1 a) If ψ : Θ → R
d is a regular change of variables

ψ∗ρ
V = ρψ(V ).

b) In the framework of section 5
ρ(V1,V2) = ρV1 ⊗ ρV2 .
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Proof: Obvious using the classical properties of the Fisher information. �

Finally, with suitable hypotheses, the Jeffreys prior may be seen as the invariant measure
of the generator associated to the induced infinitesimal perturbation in the convergence of the
maximum likelihood estimator.

7 Conclusion.

Through statistical experiments, we have seen that the fundamental identification gave an error
structure intrinsically linked to the observed physical phenomenon. The remarkable robustness
of this identification, regarding injective changes of variables and products, yields a particularly
efficient tool for finite dimensional estimation.

The existence of such an error structure built from the parametric model allows to prop-
agate the accuracy through calculations performed with the parameter thanks to a coherent
specific differential calculus (property 1 of Γ). Moreover error calculus provides a natural frame-
work concerning the study of non-injective mapping. A possible extension will be to generalize
such an experimental protocol when J is singular and also to explore more precisely the con-
nections between Dirichlet forms and asymptotic statistics. Finally, we wonder whether the
semi-parametric and non-parametric estimation theories (see [15]) could lay the foundation of
an infinite dimensional identification in order to get Γ on the Wiener space, using a direct
functional reasoning instead of a component per component argument as above.
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