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Abstract: This study presents the contributions of system identification techniques to the

experimental modelling of photosensitiser uptake kinetics in photodynamic therapy. The

experimental framework is limited to one cancer cell line (HT29-A4), one photosensitiser

(Chlorin e6), one photosensitiser dose (5µg · ml−1), four albumin rates in a monolayer

culture and eight measurements between 1h and 24h. Issues associated with this exper-

imental modelling study are the deficiency of measurement points, low signal-to-noise

ratios and ’poor’ excitation signals (step signals). This paper deals with model structure

selection, parameter estimation and parameter uncertainty description by probabilistic

confidence regions. Moreover, an explicit relationship between the static gain of the

estimated model and the albumin rate of the culture medium has been established ∗.
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1. INTRODUCTION

Photodynamic therapy (PDT) (Moser, 1998) is an

emerging therapy for displastic tissues such as can-

cers. This therapy involves selective uptake and re-

tention of a photosensitive drug (photosensitiser, PS)

in a tumour, followed by irradiation with light at an

appropriate wavelength. The activated photosensitiser

is thought to produce singlet oxygen at high doses and

thereby to initiate apoptotic and necrotic death of tu-

mour. In current clinical practice, photodynamic ther-

apy is carried out with prescribed drug doses and light

doses as well as fixed drug-light intervals and illumi-

nation fluence rates. These doses are determined from

a physical model, see e.g. (Patterson et al., 1990; Het-

zel et al., 2005), defined in equation (1).

[R] = ks · b · ǫ · Iλ · T · [ 1P ] · Φ · f (1)

where: [R] is a threshold concentration of oxidising

events radicals that needs to occur in a sensitive loca-

tion within a cancer cell to elicit the cascade toward

cell death, Iλ is the irradiance on the tissue surface,

T is the exposure time of treatment light and [ 1P ] is

the concentration of intracellular photosensitive drug

(photosensitiser P). ks is the backscatter factor due

to reflected light from underlying tissue, b is a con-

version factor, ǫ is the extinction coefficient of photo-

sensitive drug, Φ is the quantum yield for conversion

of activated drug to oxidising radicals, which usu-

ally depends on the oxygen concentration dissolved

in the cells and f is the fraction of generated oxi-

dising radicals, which attack sensitive cellular sites,

while the fraction (1 − f) of the radicals attack lesser



sites and have minor effect. Despite its current use in

clinical applications, several polemical points can be

addressed against this model:

• Equation (1) shows a simple reciprocity of pho-

tosensitiser concentration and light. Neverthe-

less, several experiments have shown contra-

dictory results (Moesta et al., 1995; Yuan et

al., 1997). Moreover Potter et al. have shown

that a reduction in photosensitiser concentration

during treatment, e.g. PS photodegradation, is an

important consideration (Potter, 1986) .

• The term (Φ) is function of oxygenation but is

usually a unknown factor during PDT (Tromberg

et al., 1990; Nichols and Foster, 1994; Hetzel et

al., 2005; Dysart et al., 2005).

• Sites of photodamage mainly depend on the lo-

cation of the PS in the cell. Sites of action for

singlet oxygen in PDT include mitochondria,

endoplasmic reticulum, Golgi apparatus, lyso-

somes, DNA and lipid membranes (Henderson

and Dougherty, 1992; Epe et al., 1993). Some

of them are critical sites. Unfortunately, equa-

tion (1) does not take into account the intracel-

lular location of PS.

• In fact, all quantities are generally time depen-

dent, i.e. their concentrations (or in the case of

light, its fluence rate) can change during irradi-

ation. In other words, PDT is a dynamic process

but equation (1) is just a static model (Georgakoudi

et al., 1997; Georgakoudi and Foster, 1998;

Dysart et al., 2005).

This previous list is not exhaustive but presents some

of the main modelling requirements and challenges

for increasing scientific knowledge of PDT. System

identification (Ljung, 1987; Söderström and Stoica,

1989; Walter and Pronzato, 1997) is the field of math-

ematical modelling of dynamic systems from exper-

imental data. No identification study has ever been

applied to the PDT problem. It is therefore interesting

to assess the contributions of system identification to

the experimental modelling of PDT.

The problem addressed in this paper deals with system

identification of in vitrophotosensitiser uptake kinet-

ics, i.e. the first phase of PDT. Problems encountered

are generic problems in biology, i.e few measurement

points (ne ·nt < 20), low signal-to-noise ratios due to

a great measurement variability and ’poor’ stimulus

signals (step signals in general). In this experimen-

tal framework, objectives are : (1) selecting a model

structure (M(p)), (2) estimating its parameters (p),
(3) determining the parameter uncertainties and if nec-

essary explaining how the serum concentration in the

culture medium ([Se]) can influence model parame-

ters, i.e. determining the relationship f(·) such that

p̂ = f([Se]).

This paper is organised as follows. A macroscopic

model of PDT is firstly presented in section 2 to intro-

duce the system identification problem of PS uptake

kinetics under a restricting experimental framework.

The remaining sections are put into a chronological

order of system identification steps. Section 3 deals

with model structure selection, section 4 presents the

estimation step, section 5 describes the parameter un-

certainty, section 6 concerns the validation of the noise

hypothesis and section 7 discusses on the explicit in-

fluence of the serum concentration.

2. MATHEMATICAL MODEL OF PDT

2.1 Macroscopic model

Table 1. Main notations

Symb. Description

[x] concentration of x M

Qx quantity of x mol

Dx dose of x M · s

t time s

P photosensitiser molecule

Pa administrated PS

Pi intracellular PS

Px extracellular PS

PPP photoproduct of PS

zP photosensitiser intraC. colocation A.U.· cell−1

M Medium

Se serum (proteins) in the medium %

CCL cancer cell line

Ath critical intracellular damage threshold

L light

Iλ fluence rate of light with wavelength λ W · m−2

S cancer cell survival rate %

p parameter vector of a model

M(·) model structure

s differentiation operator

nt number of measurement points

ne number of repeated experiments

SNR signal-to-noise ratio dB

A macroscopic model of PDT is described by a block

diagram in figure 1. Main variables, except the stan-

dard notations of chemical elements, are given in ta-

ble 1. This macroscopic model is composed of three

macro-blocks associated with the three main phases

of PDT, i.e. the PS uptake, the irradiation and the cy-

totoxicity phases. The photosensitiser, light generator,

cell culture medium and cancer cell line are described

by signal generators (grey blocks). The main input

variables, Iλ, QPa and [O2] are represented by bold

arrows. [Se] and CCL are usually supposed to be con-

stant during the therapy. λ is regarded as a parameter

of the light source. The PS uptake and cytotoxicity

phases are described by black-box models since their

dynamic behaviour is not well understood currently.

eP , e[O2], eS are error variables describing the com-

bined effects of modelling errors, measurement noises

and disturbances.

2.2 PS uptake kinetics

A sketch of the PS uptake phenomenon under in vitro

condition is shown in figure 2. During this phase, a

mass balance equation applied to the PS molecules is:
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QPa(t) = QPi(t) + QPx(t) (2)

The uptake kinetics between the input variable QPa(t)
and the output variable QPi(t) is described as follows:

QPi(t) = M(t, p, QPa) + e(t) (3)

where the model structure M(·) and its parameters

p are unknown. e(t) corresponds to the output error,

i.e. the error between the measured output (QPi(t))
and the model output (Q̂Pi

(t) = M(t, p, QPa)). e(t)
is assumed to be a random variable with a normal

distribution defined by πe(e(t)) ∝ N (0, σ2
e). The

sequence e =
(
e(t1) · · · e(tnt

)
)

is supposed to be

independent and identically distributed.

2.3 Experimental data

Materials and methods concerning PS uptake experi-

ments are described in (Barberi-Heyob et al., 2004).

The experimental protocol is summarised in figure 3.

A step signal was applied to QPa (step magnitude
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Figure 4. Four estimation data sets

5µg · ml−1). CCL is a human colon cancer cell

line (HT29A4) and the PS molecule (P ) is chlorin

e6 (Ce6). Four experiments were carried out for four

different doses of albumin ([Se] ∈ {0, 2, 5, 9%BSA})

where BSA denotes bovine serum albumin. The four

responses of QPi, measured with spectrofluorimeter,

are shown in figure 4. Measurement times are defined

in the vector t =
(
1 2 4 6 8 14 18 24h

)
. Each ex-

periment was repeated two or three times and the full

line plot corresponds the mean response. Note that the

variation between two samples measured at the same

time can reach about 66%, i.e. a signal-to-noise ratio

estimated to RSB ≈ 3, 5dB.

3. SELECTION OF A KINETIC MODEL

STRUCTURE

The first question deals with the determination of a

parsimonious model structure (M(p)) among a set

M of candidate model structures. Three a priori dis-

tinguishable model structures (Walter and Pronzato,

1997) are examined, M = {M1,M2,M3} with:

M1: (1 + T1 · s)QPi(t) = k1 · QPa(t);
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M2: (1 + T21 · s)(1 + T22 · s)QPi(t) = k2 · QPa(t);

M3: (1+T31 ·s)(1+T32 ·s)QPi(t) = k3 ·(1+T33 ·s)QPa(t).

s is the differentiation operator defined by: s·QP (t)
def
=

∂QP /∂t. For each model structure Mi is associated a

parameter vector pi belonging to some prior feasible

set Pi. In this application, the Akaike’s AIC criterion,

defined in equation (4) is used. For a synoptic presen-

tation of various available criteria of model structures,

see e.g. (Söderström, 1977).

M̂(p̂) = arg min
Mi∈M

min
pi∈Pi

JAIC(Mi(pi), t), (4)

with JAIC = 1/nt(− ln(πQP i
(Qk

Pi|pi)) + dim(pi)),

QPi =
(
QPi(t1) · · · QPi(tnt

)
)

and Qk
Pi is the kth

realisation of the output measurement vector QPi. By

taking into account the probabilistic distribution of

output errors (see paragraph 2.2), minimising JAIC

comes to minimise:

J̃AIC = nt · ln(σ2
e) + 2 dim(pi), (5)

where the variance σ2
e is a function of Mi(pi). For

each model structure, p̂i is obtained by a non linear

least squares estimator, as shown in figure 5. Results of

the model structure selection are gathered in figure 6.

The most parsimonious model structure corresponds

to M1 since it minimises JAIC for three different val-

ues of [Se]. As illustrated in figure 6(b), this choice is

confirmed by the final prediction error (FPE) criterion.
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Figure 7. Measured and simulated responses of QPi

4. PARAMETER ESTIMATION

The parameter estimation relies on the output error

method for a parallel model as shown in figure 5 in

which the optimisation step is based on a Levenberg

Marquardt algorithm. Estimates of p1 =
(
k1 T1

)

are given in table 2. Figure 7 compares the measured

(mean values) and simulated step responses of QPi for

the four different albumin rates.

Table 2. Estimation results

[Se] 0% 2% 5% 9%

k1 501 257 117 81

T1 (h) 3.19 2.93 2.02 2.03

5. PARAMETER UNCERTAINTY

Determining the optimal value of the parameters with

respect to a chosen criterion is not enough. It is

also important to evaluate the uncertainty associated

with those estimates. Herein, parameters uncertainty

is described by confidence regions, noted Rα, defined

in (Hamilton et al., 1982; Walter and Pronzato, 1997)

as follows:

Rα =

{
p ∈ R

np |
eT (p)Π(p)e(p)

npσ̂2
≤ Fα(np, ne − 1)

}

(6)

Rα defines a 100(1 − α)% confidence region for

the parameters. Fα(n1, n2) denotes a Fisher-Snedecor

distribution with n1 and n2 degrees of freedom.

e(p) = QPi − Q̂Pi(p) is the output error vector ∈
R

nt . The orthogonal projection matrix Π(p) is given

by:

Π(p) = S
Q̂P i

(ST

Q̂P i

· S
Q̂P i

)−1ST

Q̂P i

, (7)

where S
Q̂P i

= ∂Q̂Pi(p)/∂pT is the sensitivity func-

tion (gradient) of the output model in respect with

the parameter vector. The estimated noise variance is

given by:



σ̂2 =
1

nent − 1

nt∑

i=1

ne∑

k=1

(QPi(ti,k) − Q̄Pi,i)
2

Q̄Pi,i =
1

ne

ne∑

k=1

QPi(ti,k). (8)

ne refers to the number of repeated experiments. Fig-

ure 8 shows the four 95% confidence regions asso-

ciated with the four values of the albumin rate. This

result reveals a large uncertainty about the estimates,

mainly for T̂1. The number of time instants cannot

be significantly increased in practice. Nevertheless,

adapting materials and measurement systems in order

to increase the number of samples at each time instant

is possible. This solution could significantly reduce

the area of confidence regions.
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6. NOISE HYPOTHESIS VALIDATION

The determination of the confidence regions relies

on the assumption that {e(ti, p)} is a sequence of

normal random variables, independent and identically

distributed, i.e. e(ti, p) ∝ N (0, σ2
e). Histograms of

output residuals are depicted in figure 9. Their empiri-

cal distribution is clearly dependent on the serum rates

([Se]). Unfortunately, the number of realisations is too

small (≤ 20) to accurately check the Gaussian distri-

bution of the residuals. However, the assumption about

the nullity of the mean is perceptibly valid. Moreover,

almost all histograms are symmetric. There is thereby

no convincing reason to reject the initial hypothesis.

In other terms, no conclusion can be drawn about the

validity of the noise assumption. In fact, in this experi-

mental setup, the gaussian and i.i.d. assumption, usual

stochastic paradigm in system identification, is not

suited to the description of the parameter uncertainty.

In perspective, it would be interesting to assess recent

alternative approaches like the interval analysis (Jaulin

et al., 2001) or the Leave-out Sign-dominant Correla-

tion Regions proposed by Campi and Weyer in (Campi

and Weyer, 2006).
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7. ANALYSIS OF THE SERUM DEPENDANCE

Figure 10(a) shows that k̂1 is a decreasing function

of [Se]. The dotted graph refers to the four estimates

of k1 and the continuous curve is a regression model,

defined in equation (9).

k̂1 ≈
922

[Se] + 1.83
. (9)

This model expresses an inversely proportional rela-

tionship between the static gain k̂1 and the serum rate

[Se]. A new in vitro model (monolayer culture) of the

PS uptake kinetic, defined in equation 10, can thereby

be put forward.

T1Q̇Pi(t) + QPi(t) =
α

[Se] + β
· QPa(t) + e(t),

(10)

where the parameters T1, α and β are functions of

the cancer cell line. The output error e(t) is sup-

posed to be an independent stochastic process nor-

mally distributed N (0, σ2). No significant relation-

ship has been pointed out between T̂1 and [Se].
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8. MODEL VALIDATION

The previous model has not been cross validated yet

but a similar model, i.e. a first-order model, has been

identified for another cancer cell line (HT29 BLK).

Ffigure 10(b) corobore the inversely proportional re-

lationship between k1 and [Se] for the HT29 BLK
line.

9. CONCLUSION

Contributions of system identification to the in vitro

modelling of photosensitiser uptake kinetics in pho-

todynamic therapy are examined in this study. Diffi-

culties of such an application are triple: (i) lack of

measurement, (ii) low signal-to-noise ratio and (iii)

’poor’ stimulus signals. The identification procedure

deals with model structure selection, parameter esti-

mation, uncertainty description and model validation.

The resulting behavioural model relies on a first-order

differential equation taking into account the effects of

the protein factor. This result has confirmed the ap-

plicability of system identification algorithms in such

an experimental setup. However, estimates are char-

acterized by large confidence regions. The number

of time instants cannot be significantly increased in

practice. Nevertheless, adapting materials and mea-

surement systems in order to increase the number of

samples at each time instant is possible. Future exper-

iments will be carried out to check the validity of the

proposed behavioural model for other photosensitisers

and cancer cell lines.
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