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INTRODUCTION

Photodynamic therapy (PDT) [START_REF] Moser | Photodynamic Tumor Therapy: 2nd and 3rd Generation[END_REF] is an emerging therapy for displastic tissues such as cancers. This therapy involves selective uptake and retention of a photosensitive drug (photosensitiser, PS) in a tumour, followed by irradiation with light at an appropriate wavelength. The activated photosensitiser is thought to produce singlet oxygen at high doses and thereby to initiate apoptotic and necrotic death of tumour. In current clinical practice, photodynamic therapy is carried out with prescribed drug doses and light doses as well as fixed drug-light intervals and illumination fluence rates. These doses are determined from a physical model, see e.g. [START_REF] Patterson | In vivo tests of the concept of photodynamic threshold dose in normal rat liver photosensitized by aluminum chlorosulphonated phthalocyanine[END_REF][START_REF] Hetzel | Photodynamic therapy dosimetry[END_REF], defined in equation (1).

[R] = k s • b • ǫ • I λ • T • [ 1 P ] • Φ • f (1)
where: [R] is a threshold concentration of oxidising events radicals that needs to occur in a sensitive location within a cancer cell to elicit the cascade toward cell death, I λ is the irradiance on the tissue surface, T is the exposure time of treatment light and [ 1 P ] is the concentration of intracellular photosensitive drug (photosensitiser P). k s is the backscatter factor due to reflected light from underlying tissue, b is a conversion factor, ǫ is the extinction coefficient of photosensitive drug, Φ is the quantum yield for conversion of activated drug to oxidising radicals, which usually depends on the oxygen concentration dissolved in the cells and f is the fraction of generated oxidising radicals, which attack sensitive cellular sites, while the fraction (1f ) of the radicals attack lesser sites and have minor effect. Despite its current use in clinical applications, several polemical points can be addressed against this model:

• Equation (1) shows a simple reciprocity of photosensitiser concentration and light. Nevertheless, several experiments have shown contradictory results [START_REF] Moesta | Lack of reciprocity in drug and light dose dependence of photodynamic therapy of pancreatic adenocarcinoma in vitro[END_REF][START_REF] Yuan | Predictions of mathematical models of tissue oxygenation and generation of singlet oxygen during photodynamic therapy[END_REF]. Moreover Potter et al. have shown that a reduction in photosensitiser concentration during treatment, e.g. PS photodegradation, is an important consideration [START_REF] Potter | The theory of photodynamic therapy dosimetry: consequences of photodestruction of sensitizer[END_REF]) . • The term (Φ) is function of oxygenation but is usually a unknown factor during PDT [START_REF] Tromberg | In vivo oxygen tension measurements for the evaluation of the efficiency of photodynamic therapy[END_REF][START_REF] Nichols | Oxygen diffusion and reaction kinetics in photodynamic therapy of multicell tumor spheroids[END_REF][START_REF] Hetzel | Photodynamic therapy dosimetry[END_REF][START_REF] Dysart | Calculation of singlet oxygen dose from photosentitizer fluorescence and photobleaching during mTHPC photodynamic therapy of MLL cells[END_REF]. • Sites of photodamage mainly depend on the location of the PS in the cell. Sites of action for singlet oxygen in PDT include mitochondria, endoplasmic reticulum, Golgi apparatus, lysosomes, DNA and lipid membranes [START_REF] Henderson | How does photodynamic therapy work?[END_REF][START_REF] Epe | DNA damage induced by photosensitizers in cellular and cell-free systems[END_REF]. Some of them are critical sites. Unfortunately, equation (1) does not take into account the intracellular location of PS. • In fact, all quantities are generally time dependent, i.e. their concentrations (or in the case of light, its fluence rate) can change during irradiation. In other words, PDT is a dynamic process but equation ( 1) is just a static model [START_REF] Georgakoudi | The mechanism of photofrin c photobleaching and its consequences for photodynamic dosimetry[END_REF][START_REF] Georgakoudi | Singlet oxygen-versus nonsinglet oxygen-mediated mechanisms of sensitizer photobleaching and their effects on photodynamic dosimetry[END_REF][START_REF] Dysart | Calculation of singlet oxygen dose from photosentitizer fluorescence and photobleaching during mTHPC photodynamic therapy of MLL cells[END_REF].

This previous list is not exhaustive but presents some of the main modelling requirements and challenges for increasing scientific knowledge of PDT. System identification [START_REF] Ljung | System identification : theory for the user[END_REF][START_REF] Söderström | System identification[END_REF][START_REF] Walter | Identification of Parametric Models from experimental data[END_REF] This paper is organised as follows. A macroscopic model of PDT is firstly presented in section 2 to introduce the system identification problem of PS uptake kinetics under a restricting experimental framework. The remaining sections are put into a chronological order of system identification steps. Section 3 deals with model structure selection, section 4 presents the estimation step, section 5 describes the parameter uncertainty, section 6 concerns the validation of the noise hypothesis and section 7 discusses on the explicit influence of the serum concentration. -

MATHEMATICAL MODEL OF PDT

Macroscopic model

[O 2 ] [Se] Q PP Q Pi , [P i ] Q Pa Q Px CCL Figure 1. Block diagram of the PDT z P A P CCL medium cancer cell [Se] Q Pa Q Pi Q Px Figure 2. PS uptake phenonenon PS Uptake Models t Q Pa [Se] ∈ {0, 2, 5, 9} CCL = HT 29 A4 % y = Q Pi u = Q Pa Figure 3. Experimental protocol Q P a (t) = Q P i (t) + Q P x (t) (2) 
The uptake kinetics between the input variable Q P a (t) and the output variable Q P i (t) is described as follows:

Q P i (t) = M(t, p, Q P a ) + e(t) (3) 
where the model structure M(•) and its parameters p are unknown. e(t) corresponds to the output error, i.e. the error between the measured output (Q P i (t)) and the model output (

QPi (t) = M(t, p, Q P a )). e(t)
is assumed to be a random variable with a normal distribution defined by π e (e(t)) ∝ N (0, σ 2 e ). The sequence e = e(t 1 ) • • • e(t nt ) is supposed to be independent and identically distributed.

Experimental data

Materials and methods concerning PS uptake experiments are described in [START_REF] Barberi-Heyob | Wild-type p53 gene transfer into mutated p53 HT29 cells improves sensitivity to photodynamic therapy via induction of apoptosis[END_REF]. The experimental protocol is summarised in figure 3. A step signal was applied to Q P a (step magnitude 4. Measurement times are defined in the vector t = 1 2 4 6 8 14 18 24h . Each experiment was repeated two or three times and the full line plot corresponds the mean response. Note that the variation between two samples measured at the same time can reach about 66%, i.e. a signal-to-noise ratio estimated to RSB ≈ 3, 5dB.

SELECTION OF A KINETIC MODEL STRUCTURE

The first question deals with the determination of a parsimonious model structure (M(p)) among a set M of candidate model structures. Three a priori distinguishable model structures [START_REF] Walter | Identification of Parametric Models from experimental data[END_REF] are examined, M = {M 1 , M 2 , M 3 } with: 

M 1 : (1 + T 1 • s)Q P i (t) = k 1 • Q P a (t);
! " # $ % & ' ( ) * !%& !%! !$& !$! !#& !#! !"& !"! +,e.
M 2 : (1 + T 21 • s)(1 + T 22 • s)Q P i (t) = k 2 • Q P a (t); M 3 : (1+T 31 •s)(1+T 32 •s)Q P i (t) = k 3 •(1+T 33 •s)Q P a (t).
s is the differentiation operator defined by: s•Q P (t) def = ∂Q P /∂t. For each model structure M i is associated a parameter vector p i belonging to some prior feasible set P i . In this application, the Akaike's AIC criterion, defined in equation ( 4) is used. For a synoptic presentation of various available criteria of model structures, see e.g. [START_REF] Söderström | On model structure testing in system identification[END_REF].

M(p) = arg min Mi∈M min p i ∈Pi J AIC (M i (p i ), t), (4) with J AIC = 1/n t (-ln(π Q P i (Q k P i |p i )) + dim(p i )), Q P i = Q P i (t 1 ) • • • Q P i (t nt ) and Q k P i
is the k th realisation of the output measurement vector Q P i . By taking into account the probabilistic distribution of output errors (see paragraph 2.2), minimising J AIC comes to minimise:

JAIC = n t • ln(σ 2 e ) + 2 dim(p i ), (5) 
where the variance σ 2 e is a function of M i (p i ). For each model structure, pi is obtained by a non linear least squares estimator, as shown in figure 5. Results of the model structure selection are gathered in figure 6. The most parsimonious model structure corresponds to M 1 since it minimises J AIC for three different values of [Se]. As illustrated in figure 6(b), this choice is confirmed by the final prediction error (FPE) criterion. 

PARAMETER ESTIMATION

The parameter estimation relies on the output error method for a parallel model as shown in figure 5 in which the optimisation step is based on a Levenberg Marquardt algorithm. Estimates of p 1 = k 1 T 1 are given in table 2. Figure 7 compares the measured (mean values) and simulated step responses of Q P i for the four different albumin rates. 

PARAMETER UNCERTAINTY

Determining the optimal value of the parameters with respect to a chosen criterion is not enough. It is also important to evaluate the uncertainty associated with those estimates. Herein, parameters uncertainty is described by confidence regions, noted R α , defined in [START_REF] Hamilton | Accounting for intrinsic nonlinearities in nonlinear regression parameter inference regions[END_REF][START_REF] Walter | Identification of Parametric Models from experimental data[END_REF] as follows:

R α = p ∈ R np | e T (p)Π(p)e(p) n p σ2 ≤ F α (n p , n e -1) (6) 
R α defines a 100(1α)% confidence region for the parameters. F α (n 1 , n 2 ) denotes a Fisher-Snedecor distribution with n 1 and n 2 degrees of freedom. e(p) = Q P i -QP i (p) is the output error vector ∈ R nt . The orthogonal projection matrix Π(p) is given by:

Π(p) = S QP i (S T QP i • S QP i ) -1 S T QP i , (7) 
where S QP i = ∂ QP i (p)/∂p T is the sensitivity function (gradient) of the output model in respect with the parameter vector. The estimated noise variance is given by:

σ2 = 1 n e n t -1 nt i=1 ne k=1 (Q P i (t i,k ) -QP i,i ) 2 QP i,i = 1 n e ne k=1 Q P i (t i,k ). (8) 
n e refers to the number of repeated experiments. Figure 8 shows the four 95% confidence regions associated with the four values of the albumin rate. This result reveals a large uncertainty about the estimates, mainly for T1 . The number of time instants cannot be significantly increased in practice. Nevertheless, adapting materials and measurement systems in order to increase the number of samples at each time instant is possible. This solution could significantly reduce the area of confidence regions. 

NOISE HYPOTHESIS VALIDATION

The determination of the confidence regions relies on the assumption that {e(t i , p)} is a sequence of normal random variables, independent and identically distributed, i.e. e(t i , p) ∝ N (0, σ 2 e ). Histograms of output residuals are depicted in figure 9. Their empirical distribution is clearly dependent on the serum rates ([Se]). Unfortunately, the number of realisations is too small (≤ 20) to accurately check the Gaussian distribution of the residuals. However, the assumption about the nullity of the mean is perceptibly valid. Moreover, almost all histograms are symmetric. There is thereby no convincing reason to reject the initial hypothesis. In other terms, no conclusion can be drawn about the validity of the noise assumption. In fact, in this experimental setup, the gaussian and i.i.d. assumption, usual stochastic paradigm in system identification, is not suited to the description of the parameter uncertainty. In perspective, it would be interesting to assess recent alternative approaches like the interval analysis [START_REF] Jaulin | Applied Interval Analysis[END_REF] or the Leave-out Sign-dominant Correlation Regions proposed by Campi and Weyer in [START_REF] Campi | Identification with finitely many data points: The lscr approach[END_REF]. 

This model expresses an inversely proportional relationship between the static gain k1 and the serum rate

[Se].
A new in vitro model (monolayer culture) of the PS uptake kinetic, defined in equation 10, can thereby be put forward.

T 1 QP i (t) + Q P i (t) = α [Se] + β • Q P a (t) + e(t), (10) 
where the parameters T 1 , α and β are functions of the cancer cell line. The output error e(t) is supposed to be an independent stochastic process normally distributed N (0, σ 2 ). No significant relationship has been pointed out between T1 and [Se]. The resulting behavioural model relies on a first-order differential equation taking into account the effects of the protein factor. This result has confirmed the applicability of system identification algorithms in such an experimental setup. However, estimates are characterized by large confidence regions. The number of time instants cannot be significantly increased in practice. Nevertheless, adapting materials and measurement systems in order to increase the number of samples at each time instant is possible. Future experiments will be carried out to check the validity of the proposed behavioural model for other photosensitisers and cancer cell lines.

Figure 4 .

 4 Figure 4. Four estimation data sets 5µg • ml -1 ). CCL is a human colon cancer cell line (HT29A4) and the PS molecule (P ) is chlorin e6 (Ce6). Four experiments were carried out for four different doses of albumin ([Se] ∈ {0, 2, 5, 9%BSA}) where BSA denotes bovine serum albumin. The four responses of Q P i , measured with spectrofluorimeter, are shown in figure4. Measurement times are defined in the vector t = 1 2 4 6 8 14 18 24h . Each experiment was repeated two or three times and the full line plot corresponds the mean response. Note that the variation between two samples measured at the same time can reach about 66%, i.e. a signal-to-noise ratio estimated to RSB ≈ 3, 5dB.
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 5 Figure 5. Output error method for a parallel model

  Figure 6. Comparison of model structures

Figure 7 .

 7 Figure 7. Measured and simulated responses of Q P i

Figure 8 .

 8 Figure 8. 95% confidence regions for k1 and T1

  [Se] = 2%, me ≈ 3.7 • 10 -3 , σe ≈ 0.17

Figure 9 .

 9 Figure 9. Histograms of output residuals for M 1

  Figure 10. Relationship between k 1 and [Se] for two different CCL

Table 1 .

 1 Main notations

	Symb.	Description	
	[x]	concentration of x	M
	Qx	quantity of x	mol
	Dx	dose of x	M • s
	t	time	s
	P	photosensitiser molecule	
	Pa	administrated PS	
	P i	intracellular PS	
	Px	extracellular PS	
	P P P	photoproduct of PS	
	z P	photosensitiser intraC. colocation	A.U.• cell -1
	M	Medium	
	Se	serum (proteins) in the medium	%
	CCL	cancer cell line	
	A th	critical intracellular damage threshold	
	L	light	
	I λ	fluence rate of light with wavelength λ	W • m -2
	S	cancer cell survival rate	%
	p	parameter vector of a model	
	M(•)	model structure	
	s	differentiation operator	
	nt	number of measurement points	
	ne	number of repeated experiments	
	SN R	signal-to-noise ratio	dB
			a parameter
	of the light source. The PS uptake and cytotoxicity
	phases are described by black-box models since their
	dynamic behaviour is not well understood currently.
	e P , e [O2] , e S are error variables describing the com-
	bined effects of modelling errors, measurement noises
	and disturbances.	

A macroscopic model of PDT is described by a block diagram in figure

1

. Main variables, except the standard notations of chemical elements, are given in table 1. This macroscopic model is composed of three macro-blocks associated with the three main phases of PDT, i.e. the PS uptake, the irradiation and the cytotoxicity phases. The photosensitiser, light generator, cell culture medium and cancer cell line are described by signal generators (grey blocks). The main input variables, I λ , Q P a and [O 2 ] are represented by bold arrows. [S e ] and CCL are usually supposed to be constant during the therapy. λ is regarded as

2.2 PS uptake kinetics

A sketch of the PS uptake phenomenon under in vitro condition is shown in figure

2

. During this phase, a mass balance equation applied to the PS molecules is:

Table 2 .

 2 Estimation results

	[Se]	0%	2%	5%	9%
	k 1	501	257	117	81
	T 1 (h)	3.19	2.93	2.02	2.03