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Abstract. For process control improvement, coherency of information
supplied by instrument lines and sensors must first be ensured; because
of the presence of random and possibly gross errors, the model equations
of the process are not generally satisfied. Moreover, the parameters of
the considered model are not always exactly known. The problem of how
to reconcile the measurements so that they satisfy the model constraints
is considered in this article. The simultaneous presence of measurement
errors in process input and output measurements coupled with the model
parameter uncertainty poses serious problem in the rectification of data.
In that paper, the problem is solved using a special filter to estimate
both the parameters, the input and the output of a process represented
by an autoregressive model.

1 Introduction

The estimation of the state of a process is a fundamental part of modeling,
monitoring and control strategies. For example, in the field of diagnosis, the
success of fault detection and isolation mainly depends on the estimation of
the state of the process. Generally, for diagnosis purpose, estimation has to be
performed through on-line recursive techniques. This has been extendedly stud-
ied and Kalman filter in the stochastic case [8] or Luenberger observer in the
deterministic case are well known approaches. Some extensions have also been
considered for processes with unknown parameters; in this case [13], general non-
linear estimation involving both data reconciliation and parameter estimation
have been developed. However, in these approaches, the estimation problem is
generally reduced to the state estimation, the input of the process being known.

Although our presentation is limited to linear model, the problem addressed
in this article is more general than those mentioned in the previous works, since
it is desired to simultaneously estimate the state, the input of the process and
its parameters. In the field of process engineering, state estimation is generally



seen through the classical concept of data reconciliation [9], [1]. Data reconcili-
ation is mainly a physical problem: the variables of the process should obey the
mass and energy conservation constraints. In the following, this concept of bal-
ance constraints will be considered. With a general point of view, the problem
of state estimation of a process may be formulated under the following state-
ment: knowing the measurements collected on the process, whose functioning is
characterized by state variables, and knowing a model of the process involving
unknown parameters, is it possible to give an estimate of the state of the pro-
cess? Generally this problem is too complex and no analytical solution may be
found. However, with some specifications on the measurement system and when
considering particular descriptions of the model of the process, it is possible to
establish the existence conditions of the solution and the solution itself [4], [5],
[11]. For example, it is the case when the process and the measurement system
are modeled by linear equations (in respect to the state):

dx(t)

dt
= A(θ)x(t) + Bu(t), y(t) = Cx(t)

for which, when the parameters θ are known, the observer theory [7] gives ade-
quate solutions. The problem under consideration here is however more general
while the parameters are unknown. Consequently, our aim is to estimate the
state of the process and simultaneously the parameters of its model. On a gen-
eral point of view, this problem may be addressed as a nonlinear estimation one.
Cox [2] is probably one of the first being concerned with such difficulties and
has proposed an iterative solution based of the maximization of the likelihood
function of the measurement constrained by the model of the system. El Sherief
[3] has also proposed an estimation method based on the Kalman filter. These
methods are also known as “bootstrap methods” and Puthenpura [12] has given
some refinement in order to increase the robustness of the estimation. Compared
to the existing techniques, our contribution is directed in the following directions:
first, one presents a complete analytic formulation of the estimation problem,
second, one takes into account the presence on errors affecting the measurement
of both input and output of the process and third, one gives to the user data
which are representative of the system i.e. verifying all the state equations and
with some good properties of smoothing.

2 Objective of the method

When considering single-input – single-output system, let us note x the input
and y the output, both being discretized at the same sampling constant rate; x̃

et ỹ will represent the corresponding measurements. It is supposed that the true
data x and y are subject to an ARX constraint:

yk =

n
∑

i=1

aiyk−i +

n
∑

i=1

bixk−i (1)



From available measurements x̃ et ỹ, the aim is to estimate the parameters of
the system model. Unfortunately, the measured data being subject to errors, they
don’t verify the model constraints; thus, one tries to simultaneously estimate
the true data x and y. In the following, these estimates are noted x̂ and ŷ. Both
measurements x̃ and ỹ are subjected to additive errors:

x̃k = xk + εxk
(2a)

ỹk = yk + εyk
(2b)

where εxk
and εyk

are supposed to be realizations of independent random vari-
ables.

The principle that can be used for the extended estimation (estimation of the
parameters and the variables) is the constrained maximization of the likelihood
function of the measurement errors. Otherwise, without assumption concerning
the distribution of the measurement errors, it seems reasonable to minimize the
sum of square deviations between the measurements and the estimates:

Φ =

N
∑

k=1

(ŷk − ỹk)
2
+

N−1
∑

k=1

(x̂k − x̃k)
2

(3)

N being the number of considered samples. Without restriction to generality,
the deviations between estimates and measurements have not been weighted;
however, it is easy to introduce weights, for example according to the precision
of the measurements or to use more specific information about the probability
density function of the errors of measurements. As previously said, the estimates
have to satisfy the constraint:

ŷ(k) =
n

∑

i=1

âiŷk−i +
n

∑

i=1

b̂ix̂k−i (4)

The computation of the estimates of the variables x and y and the param-
eters ai and bi is achieved by minimizing the criterion (3) taking into account
the constraint (4) which is applied at each sampling time. On a numerical point
of view, the problem is reduced to the optimization of a quadratic criterion
(in respect to model parameters and input-output variables) under nonlinear
equality constraints (the nonlinearity resulting from the link between variables
and parameters). Despite of a classical and well know formulation, because the
dimension of the problem (number of variables and parameters in the dynami-
cal model) and also because the noise affecting the measurements, conventional
techniques for the resolution are not always powerful; consequently, we have de-
veloped an original way based on a robust hierarchical estimation.

To present the idea, let us consider a first order system yk = ayk−1 + bxk−1

observed on a finite time interval k ∈ {1, 2, 3, 4}. The problem to be solved is the
estimation of the parameters of the model and the estimation of the true values



of the input and the output of the system. The solution of the problem results
in optimizing the following function:

L =
1

2

3
∑

j=1

(xj − x̃j)
2 +

1

2

4
∑

j=1

(yj − ỹj)
2 (5)

under the constraints:

yk = ayk−1 + bxk−1 k = 2..4 (6)

Optimizing this criterion gives both the estimates of the parameters and the
estimates of the input and output. Classical Lagrange method can be used for
that purpose. Let us note that the optimality equations, in respect to x̂, ŷ, â, b̂

and λ (where λ is the Lagrange multiplier vector) are:

x̂i − x̃i − λib̂ = 0, i = 1, 2, 3 (7a)

ŷ1 − ỹ1 − λ1â = 0 (7b)

ŷ2 − ỹ2 + λ1 − λ2â = 0 (7c)

ŷ3 − ỹ3 + λ2 − λ3â = 0 (7d)

ŷ4 − ỹ4 + λ3 = 0 (7e)

λ1x̂1 + λ2x̂2 + λ3x̂3 = 0 (7f)

λ1ŷ1 + λ2ŷ2 + λ3ŷ3 = 0 (7g)

ŷi − âŷi−1 − b̂x̂i−1 = 0, i = 2, 3, 4 (7h)

Despite of symmetrical aspect of these equations, no analytical solution may
be exhibited. Therefore, numerical procedure must be established. For that pur-
pose, one should notice that, using (7a) to (7e) x̂i and ŷi may be easily expressed

in respect to λi, â and b̂:

x̂i = x̃i + λib̂, i = 1, 2, 3 (8a)

ŷ1 = ỹ1 + λ1â (8b)

ŷ2 = ỹ2 − λ1 + λ2â (8c)

ŷ3 = ỹ3 − λ2 + λ3â (8d)

ŷ4 = ỹ4 − λ3 (8e)

After some eliminations between (8) and (7f) to (7h), the following coupled
systems may be obtained:

(

λ2
1 + λ2

2 + λ2
3 0

0 λ2
1 + λ2

2 + λ2
3

) (

â

b̂

)

= −

(

λ1x̃1 + λ2x̃2 + λ3x̃3 − λ1λ2 − λ2λ3

λ1ỹ1 + λ2ỹ2 + λ3ỹ3

)





1 + â2 −â 0

−â 1 + â2 + b̂2 −â

0 −â 1 + â2 + b̂2









λ1

λ2

λ2



 =





ỹ2 − âỹ1 − b̂x̃1

ỹ3 − âỹ2 − b̂x̃2

ỹ4 − âỹ3 − b̂x̃3







This system may be easily solved in respect to â, b̂ and λi by using a direct
iteration procedure. In the following section, based on this principle, we suggest
a general formulation of the estimation of the parameters and the state of the
system.

3 General formulation of the problem

The model of the system is taken under the ARX representation:

yk = a1yk−1 + · · · + apyk−p + b1xk−1 + · · · + bpxk−p (9)

where, without loss of generality, the orders of the AR and the X parts have
been chosen equal to p. Let us define the following true value and measurement
vectors:

z =
(

x1 . . . xp+N−1 y1 . . . yp+N

)T
, z ∈ IRq, q = 2N − 1 (10a)

z̃ =
(

x̃1 . . . x̃p+N−1 ỹ1 . . . ỹp+N

)T
, z̃ ∈ IRq (10b)

where:

ỹi = yi + εyi
i = 1..p + N (11a)

x̃i = yi + εxi
i = 1..p + N − 1 (11b)

The model (9) written on the given time interval [1, p + N − 1], can be
expressed by:

Mθ − N = 0 (12)

with the definitions:

M =











yp . . . y1 xp . . . x1

yp+1 . . . y2 xp+1 . . . x2

...
yp+N−1 . . . yN xp+N−1 . . . xN











, M ∈ IRN×2p (13)

θ =
(

a1 . . . ap b1 . . . bp

)T
, θ ∈ IR2p (14)

N =
(

yp+1 yp+2 . . . yp+N

)T
, N ∈ IRN (15)

In order to emphasize the linearity of the model (12) in respect to the input
and output, a more convenient equivalent form of (12) consists in expanding the
matrices M and N in respect to z:

M =

q
∑

j=1

zjMj Mj =
∂M

∂zj

, Mj ∈ IRN×2p (16a)

N =

q
∑

j=1

zjNj Nj =
∂N

∂zj

, Nj ∈ IRN (16b)



where the matrices Mj (resp. Nj) are built from the matrices M (resp. N) as
follows. If the (l, m) element of M (resp. N) is equal to zj , then the (l, m) ele-
ment of Mj(resp. Nj) is equal to 1; else it is equal to 0. Thus the matrices Mj

and Nj only describe the occurrence of the variable zj.

Thus, using (16), model (12) may be alternatively written:

q
∑

j=1

zj (Mjθ − Nj) = 0 (17a)

Thus, the simultaneous parameter and state estimation problem may be for-
mulated as the optimization of the Lagrangian:

L =
1

2

q
∑

j=1

w−1
j (zj − z̃j)

2
+ λT

q
∑

j=1

zj (Mjθ − Nj) (18)

where wj is a weighting factor associated to each measurement and where λ ∈

IRN . If the measurements are only subject to random errors with zero mean, the
optimal weight corresponds to the variance vi of the measurement. On the other
hand, if the measurements are corrupted by outliers, the weight can be adapted
to remove their influence on the estimate. For that purpose, the following weight
can be proposed [6], [10]:

w−1
j = v−1

j

1
(

1 +
(

ẑj−zj

r

)2
)2

r2

(19)

Clearly, the further away the estimate is from measurement, the less the
corresponding weight is important, r being a tuning parameter The first or-
der optimality conditions of the Lagrangian (18) in respect to z, θ and λ are
expressed:

w−1
j (ẑj − z̃j) + λT (Mj θ̂ − Nj) = 0 (20a)

λT

q
∑

j=1

ẑjMj = 0 (20b)

q
∑

j=1

ẑj(Mj θ̂ − Nj) = 0 (20c)

Solving system (20) in respect to ẑj, θ and λ is not easy in the general case.
Approximate solution can be obtained through iterative algorithm as proposed
in the following section.



4 Solution

We propose to solve the nonlinear system (20) with a direct iterative algorithm.
First, from (20a), we derive:

ẑj = z̃j − wjλ
T (Mj θ̂ − Nj) (21)

More compactly:

ẑ = z̃ − WRT (θ̂)λ (22a)

W = diag
(

w1 . . . wq

)

(22b)

R(θ̂) =
(

R1(θ̂) . . . Rq(θ̂)
)

(22c)

Rj(θ̂) = Mj θ̂ − Nj (22d)

Then using (20c) and (21) with the definition:

P̂ =

q
∑

j=1

wj(Mj θ̂ − Nj)(Mj θ̂ − Nj)
T (23)

= R(θ̂)WRT (θ̂) (24)

we deduce:

λ = P̂−1

q
∑

j=1

z̃j(Mj θ̂ − Nj) (25)

λ = P̂−1R(θ̂)z̃ (26)

By analogy with (16), let us introduce the following matrices:

M̃ =

q
∑

j=1

z̃jMj, Ñ =

q
∑

j=1

z̃jNj , M̂ =

q
∑

j=1

ẑjMj (27)

Taking into account the definitions (22c), (22d) and (16), equation (25) can
be written as:

λ = P̂−1(M̃ θ̂ − Ñ) (28)

The input-output estimate is then obtained using (22a) and (28):

ẑ =

(

I − WRT (θ̂)
(

R(θ̂)WRT (θ̂)
)

−1

R(θ̂)

)

z̃ (29)

Reporting (28) into (20b) gives:

q
∑

j=1

ẑjM
T
j P̂−1(M̃ θ̂ − Ñ) = 0 (30)



or equivalently using (16a):

M̂T P̂−1(M̃ θ̂ − Ñ) = 0 (31)

from which the parameter may be deduced:

θ̂ = (M̂T P̂−1M̃)−1M̂T P̂−1Ñ (32)

Thus, (29) and (32) are implicit form of the solution ẑ and θ̂. A natural way
for solving this system consists in using an iterative algorithm expressed by:

P̂(k) = R(θ̂(k))WR(θ̂(k))
T (33a)

θ̂(k+1) =
(

M̂T
(k)P

−1
(k) M̃

)

−1

M̂T
(k)P

−1
(k) Ñ (33b)

ẑ(k+1) =

(

I − WRT (θ̂(k))
(

R(θ̂(k))WR(θ̂(k))
)

−1

R(θ̂(k))

)

z̃ (33c)

It should be noticed that (33) looks like a least square estimator, by min-

imizing the residual M̃θ̂ − Ñ with a weighting matrix P̂ and an instrumental
matrix M̂ . Summarizing, the estimation procedure is expressed by:

– 0 - initialize the parameter estimation: θ̂(0) (e.g. θ̂(0) = 0)
and the input and output estimate z(0), (e.g. z(0) = z̃), k = 0

– 1 - compute the matrices Mj and Nj (13), (15), (16)

– 2 - compute the matrix P̂(k) (33a)

– 3 - update the parameters θ̂(k+1) (33b)
– 4 - compute the input and output estimates ẑ(k+1) (33c)
– 5 - test the convergence

if the test don’t fire, k = k + 1 and go to step 2
else θ̂ = θ̂(k+1), ẑ = ẑ(k+1) and stop

5 Example

Data have been obtained from the simulation of a first order system with pa-
rameter values a = 0.800 and b = 0.2000. The output has been corrupted with a
centered random noise and with outliers of magnitude 0.5 and −0.5. The stan-
dard least square estimation gives the following results: a = 0.6840 and b = 0.16
which are strongly affected by the outlier values. With the proposed approach,
the estimated parameters are: a = 0.800 and b = 0.2030; they have been obtained
in 6 iterations of the algorithm initialized with the standard least square solution.

The figure 1 shows from top to down: the input, the output, the estimated
output, the output error estimation, the weights. In order to ease the repre-
sentation, the weights have been normalized between 0 and 1. The estimated
input has not been represented as, for that example, the estimate is close to the
measurement. The dashed vertical lines indicate the time instants of the outlier
occurrences. Considering the output error, the outliers have been “detected” and
“removed” from the measured output; this is due to the output weights which
have been automatically adjusted in order to aside the corrupted measurements.



0 10 20 30 40 50 60 70 80 90 100

−2

0

2 Input

0 10 20 30 40 50 60 70 80 90 100

−1

0

1 Output

0 10 20 30 40 50 60 70 80 90 100

−1

0

1 Estimated output

0 10 20 30 40 50 60 70 80 90 100
−1

0

1
Output error

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1
Weight

Fig. 1. Results

6 Discussion and conclusion

The problem of estimating simultaneously the input, the output and the model
parameters of a system described by an ARX model has been investigated in
this paper. Initially, the proposed method has been developed for signals cor-
rupted by additive centered noises (Gaussian noises for example). Next, thanks to
the introduction of adaptive weights (based on Cauchy’s function or Lorentzian
function) in the optimization criterion, the method has been made robust to
the presence of outliers in the measured signals. The result analysis of numer-
ous simulations shows that the parameters are always correctly estimated and
the estimated output signal is filtered in a satisfactory way. Moreover, as shown
by the proposed example, the occurrence of outliers can easily be taken into
account and their influence minimized. On the other hand, the filtering of the
input signal is rather weak and it will be necessary to study this effect and to
propose some modifications of the algorithm by incorporating a filtering effect
of the reconstruction of the input. A possible improvement also relates to the
development of a recursive algorithm (actually, the proposed algorithm operates
on a given sliding observation window).



References

1. Bousghiri, S., Kratz, F., Ragot, J. Comparison of the data reconciliation and the
finite memory observer at the inverted pendulum. IFAC/IMACS Symposium on
Fault Detection, Supervision and Safety for Technical Processes, Safeprocess’94,
Espoo, Finland, June 13-15, 1994.

2. Cox, H. On the estimation of state variables and parameters for noisy dynamic
systems. IEEE Transactions on Automatic Control, AC-9, 5-12, 1964.

3. El Sherief, H., Sinha, N. Bootstrap estimation of parameters and states of linear
multivariable systems. IEEE Transactions on Automatic Control, 24 (2), 340-343,
1979.

4. Gee, D.A., Ramirez, W.F. On-line state estimation and parameter identification for
batch fermentation. Biotechnology Progress, 12 (1), 132-140, 1996.

5. Gove, J.H., Hollinger, D.Y. Application of a dual unscented Kalman filter for simul-
taneous state and parameter estimation in problems of surface-atmosphere exchange
Journal of Geophysical Research. 111, 21 p., 2006.

6. Huber, P.J. Robust statistics. John Wiley, New-York, 1981.
7. Kailath, T. Linear systems theory. Englewood Cliffs, NJ, Prentice-Hall, 1980.
8. Karjala, T.W., Himmelblau, D.M.. Dynamic rectification of data via recurrent neu-

ral nets and the extended Kalman filter. AIChE Journal, 42 (8), 2225-2239, 1996.
9. Liebman, M.J., Edgar, T.F., Lasdon, L.S. Efficient data reconciliation and estima-

tion for dynamic process using non linear programming techniques. Computers and
Chemical Engineering, 16 (10/11), 963-986, 1992.
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