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Abstract. These notes are based on a talk given at the Institut de Mathématiques
Élie Cartan de Nancy in June 2006. Their purpose is to introduce the reader to some
links between two fields of mathematics : analytic number theory and random matrices.
After some historical overview of these connections, we expose a conjecture about the
moments of the Riemann zeta function, formulated by Keating and Snaith in [8]. Last,
we give some probabilistic interpretations of their corresponding results about unitary
random matrices.

1 Introduction

1.1 The Riemann zeta function : definition and some conjectures

Following Patterson in [10] the Riemann zeta function can be defined, for σ := ℜ(s) > 1, as a Dirichlet
series or an Euler product :

ζ(s) :=

∞∑

n=1

1

ns
=
∏

p∈P

1

1 − 1
ps

,

where P is the set of all prime numbers. This function admits a meromorphic continuation to C, and is
regular except at the single pole s = 1, with residue 1. Moreover, the classical functional equation holds :

π−s/2Γ
(s

2

)

ζ(s) = π−(1−s)/2Γ

(
1 − s

2

)

ζ(1 − s). (1)

The zeta function admits trivial zeros at s = −2,−4,−6, . . . corresponding to the poles of Γ(s/2). From
equation (1) one can check that all non-trivial zeros are confined to the "critical strip" 0 ≤ σ ≤ 1, and they
are symmetrically positioned about the real axis and the "critical line" σ = 1/2. The Riemann hypothesis
states that all these zeros lie on the critical line.

The importance of the Riemann hypothesis in many mathematical fields justifies the intensive studies
which continue to be made about the behavior of ζ(1/2 + it) for t ≥ 0. In particular, there is the following
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famous conjecture, which is implied by the Riemann hypothesis.

The Lindelöf hypothesis. For every ε > 0, as t→ ∞,

∣
∣
∣
∣
ζ

(
1

2
+ it

)∣
∣
∣
∣
= O(tε). (2)

This conjecture can be shown to be equivalent to another one relative to the moments of ζ on the critical
line.

The moments hypothesis. For all ε > 0 and k ∈ N, as T → ∞,

Ik(T ) :=
1

T

∫ T

0

ds

∣
∣
∣
∣
ζ

(
1

2
+ is

)∣
∣
∣
∣

2k

= O(T ε). (3)

Equation (3) may be easier to study than (2), because it deals with means of ζ and no values at specific
points.

By modeling the zeta function with the characteristic polynomial of a random unitary matrix, Keating
and Snaith [8] even got a conjecture for the exact equivalent of Ik(T ). This will be exposed in part 3 of these
notes, and urges us to define precisely some families of random matrices for compact groups.

1.2 Random matrices : classical compact groups and Haar measure

Let us first define the following classical compact groups :

• O(n) (orthogonal group) is the set of n× n matrices O such as OOT = In ;

• SO(n) is the subgroup of O(n) of matrices A with det(A) = 1 ;

• U(n) (unitary group) is the set of n×n matrices U such as UU∗ = In, with U∗ the conjugate of UT ;

• USp(2n) (the symplectic group) is the subgroup of U(2n) of matrices U commuting with

(
0 In

−In 0

)

.

General theory about topological groups implies the following well-known result.

Existence and uniqueness of a Haar measure. Let Γ = O(n), SO(n), U(n) or USp(n).
There exists a unique probability measure µΓ on Γ such as :

• µΓ(A) > 0 for all nonempty open sets A ⊂ Γ ;

• µΓ(gA) = µΓ(A) for all g ∈ Γ and nonempty open sets A ⊂ Γ.

This measure µΓ is called the Haar measure of Γ.

There is no generic way to choose an element of a group endowed with the Haar measure, but for the
special cases considered here, we mention the following results, with no proofs.

• Let G be a random n× n matrix, with all Gjk’s independent standard normal variables. Then, if O
is the Gram-Schmidt transform of G, its distribution is the Haar measure µO(n).

The same method for generating an element of U(n) applies, with this time Gjk = ajk + ibjk, and all
ajk’s and bjk’s standard independent normal variables.

• A decomposition of an orthogonal matrix into reflections leads to the following generator of µO(n),
as proven in [9].

Let e1 be the unit vector corresponding to the first coordinate of Rn, and v be a unit vector chosen
uniformly on the sphere Sn. Let

u :=
v + e1
|v + e1|
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be the unit vector along the bisector of v and e1 (u is well-defined with probability 1). The reflection
with respect to the hyperplane orthogonal to u is H(v) = In − 2uuT . If On−1 is distributed with the
Haar measure µOn−1 , and v is uniformly distributed on Sn, independently of On−1, then

On := H(v)

(
1 0
0 On−1

)

(4)

is distributed with the Haar measure µOn
. Similar decompositions for U(n) and USp(2n) exist. A

decomposition like (4) can be useful to compute the law of some functionals of random matrices.

Let us now consider specially the unitary group U(n). The Haar measure induces a measure on the ei-
genvalues (eiθ1 , . . . , eiθn) of a unitary matrix. More precisely, the following formula holds.

Weyl’s integration formula. With the previous notations, the joint distribution of (θ1, . . . , θn) is given
by

µU(n)(dθ1, . . . , dθn) =
1

(2π)nn!

∏

1≤j<m≤n

∣
∣eiθj − eiθm

∣
∣
2
dθ1 . . . dθn. (5)

Similar formulas exist for other compact groups, but we shall not need them in the following.

2 The zeta function and random unitary matrices : probabilistic links

2.1 The encounter of Montgomery and Dyson

Let us assume the Riemann hypothesis and write all non-trivial roots of the zeta function 1/2± itn with
0 < t1 ≤ t2 ≤ · · · ≤ tn ≤ . . . After making the normalization wn = tn

2π log tn
2π , it has been shown that

N(W )

W
−→
W→∞

1,

where N(W ) = |n : wn < W |. This is a key step for an analytic proof of the prime number theorem,
shown independently by Hadamard and de la Vallée Poussin in 1896. A further step is the study of the pair
correlation

1

W

∣
∣(wn, wm) ∈ [0,W ]2 : α ≤ wn − wm ≤ β

∣
∣ ,

and more generally the operator

R2(f,W ) =
1

W

∑

1≤j,k≤N(W ),j 6=k

f(wj − wk).

The following theorem establishes the asymptotics of R2(f,W ) for a large class of functions f .

Theorem (Montgomery, 1973). If the Fourier transform of f (f̂(τ) :=
∫∞

−∞
dxf(x)e2iπxτ ) has a

compact support included in [−1, 1], then

R2(f,W ) −→
W→∞

∫ ∞

−∞

dxf(x)R2(x) (6)

with

R2(x) := 1 −
(

sinπx

πx

)2

.

A conjecture due to the number theorist H. L. Montgomery states that the result remains true even if f̂ has
no compact support, and this problem is still open. . .
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Is there a connection with Random Matrix Theory ? In 1972, at the Princeton Institute for Advanced
Studies, Montgomery and some colleagues stopped working for afternoon tea, an important ritual for most
mathematics departments. There, he was introduced to the quantum physicist Freeman Dyson by Indian
number theorist Daman Chowla. Then Montgomery described his model for the pair correlation of zeros
of the zeta function, and Dyson recognized the pair correlation of eigenvalues of a unitary matrix. . . The
connection was born !

More precisely, let (eiθ1 , . . . , eiθN ) be the eigenvalues of an element A ∈ U(N). We write

φn :=
N

2π
θn

for the normalized angles (θn is considered modulo 2π, but not φn). Then it can be shown that

1

N

∫

U(N)

dµU(N)(A) |(n,m) : α < φn − φm < β| −→
N→∞

∫ β

α

dx

(

1 −
(

sinπx

πx

)2
)

,

and, more generally, for a continue function f with compact support, the asymptotic law of the pair correlation
for eigenvalues in U(N) is given by

1

N

∫

U(N)

∑

j 6=k

f(φj − φk)dµU(N)(A) −→
N→∞

∫ ∞

−∞

dxf(x)R2(x). (7)

The similarity between formulas (6) and (7) suggests a strong connection between the zeros of the Riemann
zeta function and the spectra of the random unitary matrices.

This link is reinforced by the Polya-Hilbert program : if one writes the non trivial zeros of the zeta function
as 1/2 ± itn (n ≥ 1), showing that the tn’s are the eigenvalues of an hermitian operator would imply the
Riemann hypothesis.

2.2 Two central limit theorems

The law of a unitary matrix determinant gives another example of similarity between Random Matrix
Theory and the zeta function.

First, we recall the following famous result due to Selberg.

Theorem. For any regular1 Borel set Γ ⊂ C

1

T

∫ 2T

T

dt1




log ζ

(
1
2 + it

)

√
1
2 log logT

∈ Γ



 −→
T→∞

∫∫

Γ

dxdy
2π

e−
x2+y2

2 (8)

(here, and in the following, log is a continuous determination of the complex logarithm).

In other terms, if our probability space is the interval [1, 2], fitted with Lebesgue measure (du), and if

LT (u) :=
log ζ

(
1
2 + iuT

)

√
1
2 log logT

,

then, with N standing for a standard normal variable on C,

LT
law−→
T→∞

N .

1Here, regular means that its boundary has zero Lebesgue measure.
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This theorem admits a "cousin", concerning the characteristic polynomial of a generic unitary matrix
A ∈ U(N). Precisely, let us define

Z(A, θ) := det
(
IN −Ae−iθ

)
=

N∏

n=1

(

1 − ei(θn−θ)
)

, (9)

where eiθ1 , . . . , eiθN are the eigenvalues of A.

Theorem. For any regular Borel set Γ ⊂ C

∫

U(N)

dµU(N)(A)1




logZ(A, θ)
√

1
2 logN

∈ Γ



 −→
N→∞

∫∫

Γ

dxdy
2π

e−
x2+y2

2 (10)

Note that the limit does not depend on θ : by definition, the Haar measure is invariant under action of
the unitary group (especially under action of eiθIN ), so the law of Z(A, θ) is the same as the law of Z(A, 0).

Remark 1 : about the interval [T, 2T ] in Selberg’s theorem. One may ask what happens if instead
of integrating between T and 2T one does so on the interval [0, T ]. A simple dominated convergence argument
shows that there is no difference in doing so. Here is the argument. Denote

γ(t, T ) := 1




log ζ

(
1
2 + it

)

√
1
2 log log T

∈ Γ



 .

Then, write

1

T

∫ T

0

dt γ(t, T ) =

∞∑

n=0

1

2n+1

1

2−(n+1)T

∫ 2−nT

2−(n+1)T

dt γ(t, T )

︸ ︷︷ ︸

=:un(T )

.

As log log(2−(n+1)T ) ∼
T→∞

log logT , every un(T ) converges to
∫∫

Γ
dxdy
2π e−

x2+y2

2 . Moreover, the un(T )’s are

uniformly bounded (by supT>0
1
T

∫ 2T

T dt γ(t, T ) < ∞) as T → ∞, so from the dominated convergence argu-
ment one can exchange the sum and the limit, which gives the result.

Remark 2 : a "true" multidimensional generalization of Selberg’s theorem. In order to transform
the "static" limit in law (8) into a "dynamic" one (ie : showing the convergence in law of a sequence of processes
towards another process), it is somewhat natural to replace T by Nλ with λ > 0.

For a fixed λ, we define

Lλ(u,N) :=
log ζ

(
1
2 + iuNλ

)

√
1
2 logN

.

Then, if u is uniformly distributed on [1, 2], Selberg’s theorem immediately implies that

Lλ(•, N)
law−→
N→∞

Nλ,

where

P(Nλ ∈ dxdy) =
1

2πλ
e−

x2+y2

2λ dxdy. (11)

As λ varies, there is the following multidimensional extension of (8) and (11).
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Theorem. ([7]) For 0 < λ1 < λ2 < · · · < λk,

∫ 2

1

dy 1 (Lλ1(u,N) ∈ Γ1, . . . ,Lλk
(u,N) ∈ Γk) −→

N→∞

k∏

i=1

P(Nλi
∈ Γi),

a result which may be interpreted as the convergence of the finite dimensional marginals of {Lλ(•, N), λ > 0}
towards those of {Nλ, λ > 0}, which denotes the totally disordered Gaussian process : its components are all
independent, Nλ being distributed as indicated in (11).

This theorem suggests some comments.

• The process (Nλ, λ > 0) does not admit a measurable version. Assuming the contrary we would

obtain by Fubini : for every a < b,
∫ b

a dλ Nλ = 0. Thus Nλ = 0, dλ a. s., which is absurd.

• In the asymptotic study of the occupation measure of planar Brownian motion (Zt, t ≥ 0), where for

f ∈ L1(C, dxdy) there is the convergence in law of 1
log T

∫ T

0 dtf(Zt) towards an exponential variable,

the change of scale T = Nλ was also performed, but the resulting limiting process (f · eλ, λ > 0) is
not totally disordered but is in fact an "honest" measurable process.

• A totally disordered Gaussian process (X(θ)+ iY (θ)) has also been encountered by Hugues, Keating
and O’Connell in [6]. They have proven that, with the notation (9),

logZN (A, θ)
√

1
2 logN

converges weakly towards a totally disordered process with covariance

E (X(θ1)X(θ2)) = E (Y (θ1)Y (θ2)) = δ(θ1 − θ2).

3 The Keating-Snaith conjecture

3.1 The moments of zeta

In the following we keep the notation from (3) for the moments of the zeta function. The mean Ik(T ) has
been extensively studied, but its equivalent is well known in only two cases :

– I1(T ) ∼
T→∞

logT (Hardy-Littlewood, 1918) ;

– I2(T ) ∼
T→∞

1
2πT (log T )2 (Ingham, 1926).

Keating and Snaith [8] have formulated the following conjecture about the asymptotics of Ik(T ).

The Keating-Snaith conjecture. For every k ∈ N∗

Ik(T ) ∼
T→∞

HMat(k)HP(k)(log T )k
2

with the following notations :

• the "arithmetic" factor

HP(k) :=
∏

p∈P

(

1 − 1

p

)k2 ( ∞∑

m=0

(
Γ(k +m)

m!Γ(k)

)2
1

pm

)

;

• the "matrix" factor

HMat(k) :=

k−1∏

j=0

j!

(j + k)!
. (12)
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Here are some first steps to understand the origins of this conjecture.

• Imagine that all prime numbers were "independent", in such a way that one might approximate

Ik(T ) = E(|ζ(s)|2k) = E

(
∏

p∈P

∣
∣
∣

1
1−p−s

∣
∣
∣

2k
)

by
∏

p∈P E

(∣
∣
∣

1
1−p−s

∣
∣
∣

2k
)

(the expectations are taken

with respect to Lebesgue measure ds/T on the segment [1/2, 1/2+ iT ]). Then one would get exactly
HP(k)(log T )k

2

for the equivalent of Ik(T ).

So the coefficient HMat(k) appears as a constant correction compared to this "independent" model.

• Another model used to approximate the zeta function is the determinant of a unitary matrix : all
previous analogies can comfort us in the accuracy of such an approximation. Thanks to Selberg’s in-
tegral formula [1], Keating and Snaith [8] have calculated the generating function for the determinant
of a random unitary matrix with respect to the Haar measure :

PN (s, t) := E

(

|ZN (A, θ)|teis argZN (A,θ)
)

=

N∏

j=1

Γ(j)Γ(t+ j)

Γ(j + t+s
2 )Γ(j + t−s

2 )
. (13)

Thanks to this closed form, they showed in particular that

E
(
|ZN(A, θ)|2k

)
∼

N→∞
HMat(k)N

k2

,

where HMat(k) is defined by (12). This led them to introduce this "matrix" factor in the conjectured
asymptotic of Ik(T ).

However, these two explanations are not sufficient to understand really how these "arithmetic" and "ma-
trix" factors must be combined to get the Keating-Snaith conjecture. A better comprehension of this point
is the purpose of the following paragraph.

3.2 Understanding the conjecture : the hybrid GHK model

In [4], Gonek, Hughes and Keating were able to give a partial justification for the Keating-Snaith conjec-
ture based on a particular factorization of the zeta function. More precisely, let us first introduce some
notations.

Let s = σ + it with σ ≥ 0 and |t| ≥ 2, let X ≥ 2 be a real parameter, and let K be any fixed
positive integer. Let u(x) be a nonnegative C ∞ function of mass 1, supported on [e1−1/X , e], and set U(z) :=
∫∞

0 u(x)E1(z log x)dx, where E1(z) is the exponential integral
∫∞

z (e−w/w) dw.
Let also

PX(s) := exp




∑

n≤X

Λ(n)

ns logn





where Λ is Van Mangoldt’s function (Λ(n) = log p if n is an integral power of a prime p, 0 otherwise), and

ZX(s) := exp

(

−
∑

ρn

U ((s− ρn) logX)

)

where (ρn, n ≥ 0) are the imaginary parts of the zeros of ζ. Then the following result, independent of any
conjecture, was proved in [4].

Theorem. With the previous notations,

ζ(s) = PX(s)ZX(s)

(

1 +O

(
XK+2

(|s| logX)K

)

+O
(
X−σ logX

)
)

,

where the constants before the O only depend on the function u and K.
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With this decomposition, the PX term leads to the "arithmetic" factor of the Keating-Snaith conjecture,
while the ZX term leads to the "matrix" factor. More precisely, this decomposition suggests a proof for the
Keating-Snaith conjecture along the following steps.

• First, for a value of the parameter X chosen such as X = O(log(T )2−ε) here and in the sequel, the
following conjecture A suggests that the moments of zeta are well approximated by the product of
the moments of PX and ZX (they are sufficiently "independent").

Conjecture A : the splitting hypothesis. With the previous notations

1

T

∫ T

0

ds

∣
∣
∣
∣
ζ

(
1

2
+ is

)∣
∣
∣
∣

2k

∼
T→∞

(

1

T

∫ T

0

ds

∣
∣
∣
∣
PX

(
1

2
+ is

)∣
∣
∣
∣

2k
)(

1

T

∫ T

0

ds

∣
∣
∣
∣
ZX

(
1

2
+ is

)∣
∣
∣
∣

2k
)

• Assuming that conjecture A is true, we then need to approximate the moments of PX and ZX . The
moments of PX were evaluated in [4], where the following result is proven.

Theorem : the moments of PX .With the previous notations,

1

T

∫ T

0

ds

∣
∣
∣
∣
PX

(
1

2
+ is

)∣
∣
∣
∣

2k

= HP (k) (eγ logX)k
2

(

1 +O

(
1

logX

))

.

• Finally, a conjecture about the moments of ZX , if proven, would be the last step.

Conjecture B : the moments of ZX .With the previous notations,

1

T

∫ T

0

ds

∣
∣
∣
∣
ZX

(
1

2
+ is

)∣
∣
∣
∣

2k

∼
t→∞

HMat(k)

(
logT

eγ logX

)k2

.

The reasoning which leads to conjecture B is the following. First of all, the function ZX is not as
complicated as it seems, because as X tends to ∞, the function u tends to the Dirac measure at
point e, so

ZX

(
1

2
+ it

)

≈
∏

ρn

(i(t− ρn)e
γ logX) .

The ordinates ρn (where ζ is zero) are supposed to have many statistical properties identical to those
of the eigenangles of a random element of U(N). In order to make an adequate choice for N , we recall
that the γn are spaced 2π/ logT on average, whereas the eigenangles have average spacing 2π/N :
thus N should be chosen to be the greatest integer less than or equal to logT . Then the calculation
for the moments of this model leads to conjecture B.

4 Probabilistic interpretations for some Keating-Snaith formulas

The main point of this section is to give a simple representation for ZN(A, θ), thanks to formula (13). We
first recall some results about gamma and beta variables.

4.1 Some formulas about the beta-gamma algebra

A gamma random variable γa with coefficient a > 0 has density on [0,∞[ given by

P (γa ∈ dt)
dt

=
ta−1

Γ(a)
e−t.
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Its Mellin transform is (s > 0)

E (γsa) =
Γ(a+ s)

Γ(a)
. (14)

A beta random variable βa,b with strictly positive coefficients a and b has density on [0, 1] given by

P (βa,b ∈ dt)
dt

=
Γ(a+ b)

Γ(a)Γ(b)
ta−1(1 − t)b−1.

Its Mellin transform is (s > 0)

E
(
βsa,b

)
=

Γ(a+ s)

Γ(a)

Γ(a+ b)

Γ(a+ b + s)
.

These formulas will also be useful in the following (for justifications, the reader could see [3]).

• The algebra property, where all variables are independent :

βa,bγa+b
law
= γa. (15)

• The duplication formula for the gamma function, with all variables independent :

γj
law
= 2

√

γ j
2
γ′j+1

2

. (16)

4.2 Decomposition of ZN into independent random variables

Let us recall formula (13) :

PN (s, t) := E

(

|ZN(A, θ)|teis argZN (A,θ)
)

=
N∏

j=1

Γ(j)Γ(t+ j)

Γ(j + t+s
2 )Γ(j + t−s

2 )
.

Remark. As we already mentioned, the result does not depend on θ, which is a consequence of the
definition of the Haar measure. So in the following we will write E(f(ZN )) for E(f(ZN (A, θ))).

Moreover, this Mellin-Fourier transform implies E(ZtN ) = 1 for all t > 0. A somewhat similar, but more
trivial identity is

E

(

es(N+iN ′)
)

≡ 1,

where N and N ′ are independent, standard, real Gaussian variables : one can show it directly with the
independence of N and N ′, or using the fact that eαZt is a martingale, with (Zt, t ≥ 0) a complex planar
Brownian motion. There does not seem to be a trivial explanation for E(ZtN ) = 1, but one can give another
proof of this result.

Let g be a function on the unitary group U(N), stable on the conjugation classes : g(U) can be written
g(θ1, . . . , θN ), where the θ′is are the eigenangles of U . Then Weyl’s formula (5) gives the existence of a density
function f invariant by translation (f(θ1, . . . , θN ) = f(θ1 + θ, . . . , θn + θ)) such as

E(g(U)) =

∫

[0,2π]N
g(θ1, . . . , θN )f(θ1, . . . , θN ) dθ1 . . . dθN ,

where the expectation is with respect to the Haar measure.
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For the function g : U 7→ det ((IN − U)t) =
∏N
k=1

(
1 − eiθk

)t
, we get

E
(
ZtN
)

=

∫

[0,2π]N
f(θ1, . . . , θN) dθ1 . . .dθN

N∏

k=1

(
1 − eiθk

)t

=

∫

[0,2π]

dθ
2π

∫

[0,2π]N
f(θ1, . . . , θN ) dθ1 . . .dθN

N∏

k=1

(
1 − eiθk

)t

=

∫

[0,2π]

dθ
2π

∫

[0,2π]N
f
(

θ̃1 + θ, . . . , θ̃N + θ
)

dθ̃1 . . . dθ̃N

N∏

k=1

(

1 − ei(θ̃k+θ)
)t

E
(
ZtN
)

=

∫

[0,2π]N
f(θ̃1, . . . , θ̃N) dθ̃1 . . .dθ̃N

∫

[0,2π]

dθ
2π

N∏

k=1

(

1 − ei(θ̃k+θ)
)t

︸ ︷︷ ︸

(∗)

.

When t is an integer, (∗) can be expanded with Newton’s binomial formula, and we get (∗) =
∫

[0,2π]
dθ
2π

(

1 +
∑Nt

l=1 ale
ilθ
)

=

1, so E(ZtN ) = 1. This reasoning can be generalized to the case t > 0, but we need to use the definition
ut = et log u, with exp and log defined by their Taylor series ; the justification of the exchange between inte-
gral and sum then becomes tricky.

We now come back to the general Mellin-Fourier transform. It implies the following proposition.

Proposition. The modulus |ZN | of the characteristic polynomial ZN satisfies both identities in law

N∏

j=1

γj
law
= |ZN |

N∏

j=1

√

γjγ′j , (17)

|ZN | law
= 2N





N∏

j=1

√

β j
2 ,

j
2









N∏

j=1

√

β j+1
2 , j−1

2



 , (18)

where all random variables are independent and we make the convention βa,0 = 1.

Proof. First, formula (13) with s = 0 can be written, for all t > 0,

N∏

j=1

Γ(j + t)

Γ(j)
= E

(
|ZN |t

)
N∏

j=1

(

Γ
(
j + t

2

)

Γ(j)

)2

,

which translates (thanks to formula (14)) as

N∏

j=1

γj
law
= |ZN |

N∏

j=1

√

γjγ′j ,

because the Mellin transform is injective. To deduce (18) from (17), we successively use formulas (16) and
(15) :

γj
law
= 2

√

γ j
2
γ′j+1

2

law
= 2

√
(

β j
2 ,

j
2
γj

)(

β j+1
2 , j−1

2
γ′j

)

,

which gives the desired result.

As a nice consequence of (17), we show how to recover partially the central limit theorem (10).
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Corollary. The following central limit theorem holds :

log |ZN |
√

1
2 logN

law−→ N

as N tends to ∞, with N a standard normal variable.

Proof. Take logarithms on both sides of (17), and subtract expectations :

LN law
= log |ZN | + 1

2
(LN + L′

N ) ,

with obvious notations. After division by
√

1
2 logN the LHS converges in law towards N (0, 2/3). The result

follows easily.

We gave a probabilistic interpretation for the law of |ZN |, but we can do more with the joint law of
(ℜ logZN ,ℑ logZN ). Indeed, thanks to the Mellin-Fourier transform (13), after some calculation one can
check that

(ℜ logZN ,ℑ logZN)
law
=





N∏

j=1

βj,j−12 cosWj ,

N∑

j=1

Wj





with all β’s and W ’s independent, and Wj with density on [−π/2, π/2]

P(Wj ∈ dx)
dx

= cj cos(x)j ,

where cj is the normalization constant (cj = Γ(1 + j/2)2/Γ(1 + j)). Another way to express this result is the
following proposition.

Proposition. There is the representation

ZN
law
=

N∏

j=1

βj,j−1(1 − eiW̃j ) (19)

where the beta and W̃ variables are independent. Furthermore, W̃j is distributed on [0, 2π] as

P(W̃j ∈ dw) =
c2(j−1)

2

(

2 sin
w

2

)2(j−1)

dw.

4.3 Mellin type limit theorems

This paragraph shows how the Mellin-Fourier transform (13) implies the central limit theorem (10) and
a generalization.

Let us first recall some results about the Barnes’ G-function.

• It is defined on the half plane ℜ(1 + z) > 0 by

G(1 + z) := (2π)
z
2 e−

(1+γ)z2+z

2

∞∏

n=1

(

1 +
z

n

)n

e−z+
z2

2n ,

where γ is Euler’s constant. Its logarithm can be written

logG(1 + z) = (log 2π − 1)
z

2
− (1 + γ)

z2

2
+

∞∑

n=3

(−1)n−1ζ(n− 1)
zn

n
. (20)
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• As mentioned by Jacod in [5], the Barnes’ G-function appears naturally in some limit theorems. In

particular, let ψ := Γ′/Γ denote the usual dilogarithm function and ΓN (λ) := E

((
∏N
j=1 γj

)λ
)

=

∏N
j=1

Γ(j+λ)
Γ(j) . Then

ΓN (λ)

N
λ2

2

e−λ
PN

j=1 ψ(j) −→
N→∞

(
2π
e

)λ
2

G(1 + λ)
. (21)

Keating and Snaith [8] are able to recover (10) after writing the series expansion of PN (s, t). For simplicity,
let us consider the case s = 0. Then one can write

PN (0, t) = E(|ZN |t) = exp

(
∞∑

m=0

α(N)
m

tm

m!

)

,

that is : the coefficients α(N)
m (m = 0, 1, . . . ) are the cumulants of log |ZN |. From (13), one obtains







α
(N)
0 = α

(N)
1 = 0

α
(N)
2 = 1

2 logN + 1
2 (γ + 1) +O

(
1
N2

)

α
(N)
m = (−1)m

(
1 − 1

2m−1

)
Γ(m)ζ(m− 1) +O

(
1

Nm−2

)
, m ≥ 3

. (22)

Thus, it follows that

E



exp



t
log |ZN |
√

1
2 logN







 = E

(

|ZN |
t√

1
2

log N

)

−→
N→∞

e
t2

2 ,

which yields to the central limit theorem for log |ZN |. However, the previous analysis shows more than (10) :
from the expression (22) of the cumulants and formula (20), Keating and Snaith immediately get the following
theorem.

Mellin-type limit theorem. For |λ| < 1/2,

1

Nλ2 E
(
|ZN |2λ

)
−→
N→∞

G(1 + λ)2

G(1 + 2λ)
.

Remark. Rather than using directly the information about the cumulants given in (22), one can show
the previous theorem with the duplication identity (17) and the limit (21).

Moreover, one can write (13) as

PN (s, t) =
ΓN (t)

ΓN
(
t+s
2

)
ΓN
(
t−s
2

) ,

with the notations of (21). Then, using the limit (21), we get the following generalization of the Mellin-type
limit theorem.

Proposition. If t ≥ |s|,

1

N
t2−s2

4

PN (s, t) −→
N→∞

G
(
1 + t+s

2

)
G
(
1 + t−s

2

)

G(1 + t)
.
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4.4 Further works

Formula (19) can be written

det(IN −AN )
law
= XN det(IN−1 −AN−1),

where AN−1 (resp AN ) is distributed with the Haar measure µU(N−1) (resp µU(N)), and XN is a random
variable independent of AN−1. Can we directly (ie : without the Selberg integrals) find such a formula ?

A recursive decomposition of the Haar measure, presented in [2] will give a positive answer to this ques-
tion, not only for the unitary group but also for O(n), SO(n), USp(2n). . .

Moreover, further developments about the characteristic polynomials of random matrices linked to these
notes might be the following :

• Is it possible to extend formula (19) for the characteristic polynomial det(IN −xA), and not only for
its value at x = 1 ?

• For distinct angles θ1 and θ2, what is the asymptotic law of ZN (A, θ1)ZN(A, θ2) ?
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